首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   13篇
林业   17篇
农学   11篇
基础科学   1篇
  83篇
综合类   81篇
农作物   22篇
水产渔业   26篇
畜牧兽医   93篇
园艺   5篇
植物保护   29篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   8篇
  2014年   10篇
  2013年   20篇
  2012年   23篇
  2011年   20篇
  2010年   18篇
  2009年   17篇
  2008年   30篇
  2007年   17篇
  2006年   13篇
  2005年   14篇
  2004年   19篇
  2003年   15篇
  2002年   16篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1969年   3篇
  1968年   5篇
  1963年   1篇
  1955年   1篇
  1951年   1篇
  1934年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
131.
Pears (Pyrus communis L. cv. Conference) may develop core breakdown when stored under low oxygen or elevated carbon dioxide conditions. This physiological disorder is characterized by the development of brown spots due to oxidation of phenolic compounds, and eventually, cavities in the center of the fruit. Based on metabolic profiling of brown and sound tissue using GC-EI-TOF-MS, the hypothesis that this disorder is due to an imbalance between oxidative and reductive processes at the cellular level was investigated. Brown tissue was clearly characterized by a distinctive pattern in changes which included a decrease of malic acid and an increase in fumaric acid and gamma aminobutyric acid (GABA), which indicated a reduced metabolic activity at the level of the Krebs cycle and a putative block of the GABA shunt pathway. Increased gluconic acid concentration might be related to ascorbic acid degradation due to insufficient reducing equivalents or to an impaired pentose phosphate pathway. For the first time, GABA and gluconic acid have been shown to be metabolic markers for core breakdown. The concentrations of other compounds which are believed to be related to hypoxic stress response such as trehalose and putrescine were also considerably higher in brown tissue than in sound tissue. The concentration of some sugars which are typically found in xyloglucans also increased during brown development, possibly indicating cell wall breakdown due to enzymatic processes or chemical reactions of hydroxyl radicals.  相似文献   
132.
Projected changes in climate for the northeastern USA over the next 100 years include a reduction in the depth and duration of the winter snowpack, which could affect soil temperatures and frost regimes. We conducted a snow-removal experiment in a northern hardwood forest at the Hubbard Brook Experimental Forest in central New Hampshire over 2 years to induce soil freezing and evaluate its effect on the abundance, richness, and diversity of soil arthropods during the growing season. Snow removal at the beginning of winter increased the depth and duration of soil frost, decreased soil temperatures, and led to a reduced abundance of some arthropod taxa, including Araneae (reduced by 57%; P = 0.0001), Pseudoscorpionida (75%; P < 0.0001), Hymenoptera (57%; P = 0.0033), Collembola (24%; P = 0.0019), adult Coleoptera (23%; P = 0.0057), and larval Diptera (33%; P < 0.0001) and an increase in other taxa, including Hemiptera (increased by 7%; P = 0.032). Taxa that did not respond significantly to snow removal included Chilopoda (P = 0.55), Acari (P = 0.66), Diplopoda (P = 0.66), adult Diptera (P = 0.54), and larval Coleoptera (P = 0.39). A delayed snowpack over two winters also resulted in decreased arthropod richness by 30% (P < 0.0001) and Simpson’s index of diversity by 22% (P = 0.0002) during the two subsequent growing seasons. Results of this study demonstrate that predicted changes in the winter snowpack and depth and duration of soil frost may reduce the abundance and alter the community composition of arthropods living in the forest floor of northern hardwood forests, which could have implications for the structure and function of northern forest ecosystems.  相似文献   
133.
Host–pathogen epidemiological processes are often unclear due both to their complexity and over-simplistic approaches used to quantify them. We applied a multi-event capture–recapture procedure on two years of data from three rabbit populations to test hypotheses about the effects on survival of, and the dynamics of host immunity to, both myxoma virus and Rabbit Hemorrhagic Disease Virus (MV and RHDV). Although the populations shared the same climatic and management conditions, MV and RHDV dynamics varied greatly among them; MV and RHDV seroprevalences were positively related to density in one population, but RHDV seroprevalence was negatively related to density in another. In addition, (i) juvenile survival was most often negatively related to seropositivity, (ii) RHDV seropositives never had considerably higher survival, and (iii) seroconversion to seropositivity was more likely than the reverse. We suggest seropositivity affects survival depending on trade-offs among antibody protection, immunosuppression and virus lethality. Negative effects of seropositivity might be greater on juveniles due to their immature immune system. Also, while RHDV directly affects survival through the hemorrhagic syndrome, MV lack of direct lethal effects means that interactions influencing survival are likely to be more complex. Multi-event modeling allowed us to quantify patterns of host–pathogen dynamics otherwise difficult to discern. Such an approach offers a promising tool to shed light on causative mechanisms.  相似文献   
134.
Nitrogen is a critical nutrient in plant-based primary production systems, therefore measurements of N cycling by microorganisms may add value to agricultural soil monitoring programs. Bacterial-mediated nitrogen cycling was investigated in soils from two broad land-uses (managed and remnant vegetation) across different Soil Orders from three geomorphic zones in Victoria, Australia, by examining the abundance of the genes amoA and nifH using quantitative polymerase chain reaction (qPCR). The aim of the study was to identify parameters influencing bacterial populations possessing the genes nifH and amoA, and examine their distribution at a regional scale across different management treatments. The gene amoA was most abundant in the neutral to slightly alkaline surface soils from Calcarosols in North-West Victoria. There was a highly significant (P < 0.001) interaction between land-use and geomorphic zones in terms of the abundance of amoA. Detection of the gene nifH was site specific with low copy number (less than 100 copies per nanogram of DNA) observed for some strongly acidic surface soil sites in North-East Victoria (Dermosols) and South-West Victoria (Sodosols/Chromosols), while nifH was more abundant in selected Calcarosols of North-West Victoria. The gene amoA was detected across more sites than nifH and was strongly influenced by land-use, with almost consistently greater abundance in managed compared to remnant sites, particularly for North-West and South-West Victoria. The abundance of nifH was not related to land-use, with similar copy numbers observed for both managed and remnant sites at some locations. For the gene nifH, there was no significant interaction between land-use and geomorphic zones, between managed and remnant sites or between the three geomorphic zones. Regression tree analysis revealed a number of likely soil chemical and microbial variables which may act as drivers of gene abundance of amoA and nifH. Variables identified as drivers for amoA included pH, Olsen P, microbial biomass carbon, nitrate and total nitrogen while for nifH the variables were microbial biomass carbon, electrical conductivity, microbial biomass nitrogen, total nitrogen and total potassium. Measures of N cycling genes could be used as an additional indicator of soil health to assess potential ecosystem functions. The spatial scale of the current study demonstrates that a landscape approach may assist soil health monitoring programs by evaluating N cycle gene abundance in the context of the different microbial and chemical conditions related to Soil Order and land-use management.  相似文献   
135.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   
136.
BACKGROUND: Since the discovery of Agrilus planipennis Fairmaire (emerald ash borer) in 2002, researchers have tested several methods of chemical control. Soil drench or trunk injection products containing imidacloprid are commonly used to control adults. However, efficacy can be highly variable and may be due to uneven translocation of systemic insecticides. The purpose of this study was to determine whether sectored xylem anatomy might influence imidacloprid distribution in tree crowns. RESULTS: Imidacloprid equivalent concentrations were higher in leaves from branches in the plane of the injection point (0°) than in leaves from branches on the opposite side of the injection point (180°). Leaves from branches 90° to the right of injection points had higher imidacloprid equivalent concentrations than leaves from branches 90° to the left of injection points. Leaves and shoots had higher imidacloprid equivalent concentrations than roots and trunk cores, indicating that imidacloprid moves primarily through the xylem. CONCLUSION: Imidacloprid equivalent concentration in leaves varied over time and in relation to injection points. It is concluded that ash trees have sectored ‘zigzag’ xylem architecture patterns consistent with sectored flow distribution. This could lead to variable distribution of imidacloprid in tree crowns and therefore to variable control of A. planipennis. Copyright © 2012 Society of Chemical Industry  相似文献   
137.
Cells promote polarized growth by activation of Rho-family protein Cdc42 at the cell membrane. We combined experiments and modeling to study bipolar growth initiation in fission yeast. Concentrations of a fluorescent marker for active Cdc42, Cdc42 protein, Cdc42-activator Scd1, and scaffold protein Scd2 exhibited anticorrelated fluctuations and oscillations with a 5-minute average period at polarized cell tips. These dynamics indicate competition for active Cdc42 or its regulators and the presence of positive and delayed negative feedbacks. Cdc42 oscillations and spatial distribution were sensitive to the amounts of Cdc42-activator Gef1 and to the activity of Cdc42-dependent kinase Pak1, a negative regulator. Feedbacks regulating Cdc42 oscillations and spatial self-organization appear to provide a flexible mechanism for fission yeast cells to explore polarization states and to control their morphology.  相似文献   
138.
One of the key issues in compost research is to assess when the compost has reached a mature stage. The maturity status of the compost determines the quality of the final soil amendment product. The nematode community occurring in a Controlled Microbial Composting (CMC) process was analyzed with the objective of assessing whether the species composition could be used as a bio-indicator of the compost maturity status. The results obtained here describe the major shifts in species composition that occur during the composting process. Compared to terrestrial ecosystems, nematode succession in compost differs mainly in the absence of K-strategists and numerical importance of diplogastrids. At the beginning of the composting process (thermophilic phase), immediately after the heat peak, the nematode population is primarily built by bacterial feeding enrichment opportunists (cp-1) (Rhabditidae, Panagrolaimidae, Diplogastridae) followed by the bacterial-feeding general opportunists (cp-2) (Cephalobidae) and the fungal-feeding general opportunists (Aphelenchoididae). Thereafter, during the cooling and maturation stage, the bacterial-feeding-predator opportunistic nematodes (Mononchoides sp.) became dominant. Finally, at the most mature stage, the fungal-feeding Anguinidae (mainly Ditylenchus filimus) were most present. Both, the Maturity Index (MI) and the fungivorous/bacterivorous ratio (f/b ratio), increase as the compost becomes more mature (ranging, respectively, from 1 to 1.86 and from 0 to 11.90). Based on these results, both indices are suggested as potential suitable tools to assess compost maturity.  相似文献   
139.
Alfalfa cultivar development will be enhanced by breeding strategies whichutilize the full potential of autotetraploid population genetic structures. Thisstudy evaluates the effectiveness of an allelic selection scheme, which wasdeveloped to overcome limitations of inbreeding depression and to exploitgeneral and specific combining ability effects in autotetraploid populations.Allelic selection entails the minimization of non-additive genetic effects byselecting among full-sib families (F1) which are at uniform levels ofheterozygosity. Such F1 lines are developed by crossing individuals fromtwo unrelated random mating populations. Selected F1 lines wereintercrossed to form an improved population. Eight random matingpopulations of alfalfa were developed to study the effectiveness of allelicselection. Selection for increased dry matter yield resulted in alfalfapopulations with 38 percent greater yield than the parent populations. Twocycles of intercrossing, among selected F1 lines, did not dissipate the gainfrom selection. This result has important implications for synthetic cultivardevelopment in which a major limitation is the decline in productivity withadvancing generations of seed increase. A positively correlated response toselection for dry matter yield was observed for plant height and stemdiameter. The results of this research indicate that continued testing of theallelic selection scheme is warranted and could have a significant impact onthe breeding of autotetraploid alfalfa, particularly for synthetic cultivardevelopment.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号