首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   17篇
林业   7篇
农学   22篇
基础科学   5篇
  32篇
综合类   13篇
农作物   18篇
水产渔业   11篇
畜牧兽医   26篇
园艺   4篇
植物保护   17篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   14篇
  2017年   16篇
  2016年   9篇
  2015年   9篇
  2014年   2篇
  2013年   16篇
  2012年   9篇
  2011年   7篇
  2010年   8篇
  2009年   1篇
  2008年   8篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1993年   1篇
  1984年   2篇
  1982年   1篇
  1972年   2篇
  1942年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
41.
High temperature has deleterious impacts on tomato growth and development and limits its production. Acetyl salicylic acid (ASA) and 24-epibrassinolide (EBL) have been widely reported as stress-ameliorating agents. The effect of exogenous application of varying levels of EBL (0.75, 1.5, and 3 µM) and ASA (0.25, 0.75, and 1.25 mM) on root activity (RA) in terms of 2,3,5 triphenyl tetrazolium chloride (TTC) reduction and root morphological features was evaluated in four-week-old tomato seedlings (cultivar: Mei Jie Lo) grown under high-temperature stress (46°C/4 h per day) for 21 days. The daily heat stress treatment almost ceased the root growth of chemically untreated seedlings. However, both EBL and ASA significantly attenuated the deleterious impacts of heat stress to different extents regarding root activity, total root length, surface area, volume, and number of nodes and connections. Different concentrations demonstrated signature effects. EBL (3 µM) was over all the best treatment to improve root activity whereas ASA (0.25 mM) best enhanced root architecture (net length, volume, and area) as compared to the untreated heat-stressed controls. However, EBL (3 µM) and ASA (1.25 mM) slightly inhibited mean root diameter. It is concluded that under high-temperature conditions, the exogenous EBL and ASA in studied doses improve root morphological features and root activity, hence enhance heat stress tolerance. Both chemical agents can be potential candidates in practical agriculture for extension of tomato growth period in summer by virtue of their heat stress amelioration ability.  相似文献   
42.
43.
Two new pentacyclic triterpenes named kirmanoic acid (1) and kurramanoic acid (2) have been isolated from the chloroform-soluble portion of the whole plant of Nepeta clarkei Hook. The structures of the two new compounds were assigned on the basis of their 1H and 13C NMR spectra including two-dimensional NMR techniques such as COSY, HMQC, and HMBC experiments. Kirmanoic acid (1) was investigated for analgesic, anti-inflammatory, and CNS depressant activities. Interestingly kirmanoic acid (1) showed strong analgesic activity than standard drug in acetic induced writhing and formalin tests. Similarly kirmanoic acid (1) also showed strong anti-inflammatory activity than its standard drug. The gross behavioral study of kirmanoic acid (1) revealed that it exhibited mild CNS stimulant and muscle relaxant in the mice. Compound 1 showed a slight increase in Locomotor activity and possesses the antidepressant effect.  相似文献   
44.
This study is aimed at assessing the ability of metal-resistant yeast, Candida tropicalis, to uptake cadmium from the liquid medium. The minimum inhibitory concentration of Cd2+ against C. tropicalis was 2,800 mg L?1. The yeast also showed tolerance towards Zn2+ (3,100 mg L?1), Ni2+ (3,000 mg L?1), Hg2+ (2,400 mg L?1), Cu2+ (2,300 mg L?1), Cr6+ (2,000 mg L?1), and Pb2+ (1,200 mg L?1). The yeast isolate showed typical growth curves, but low specific rate of growth was observed in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 7. The metal processing ability of the isolate was determined in a medium containing 100 mg L?1 of Cd2+. C. tropicalis could decline Cd2+ 57%, 69%, and 80% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2+ 56% and 73% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and non-protein thiol levels by 146.15% and 59.67% at 100 mg L?1 concentration, respectively. Metal tolerance and accumulation together with changes in the GSH status and non-protein thiols under Cd exposure were studied in C. tropicalis.  相似文献   
45.
Genetic behaviour of fibre quality parameters under heat‐stressed conditions clearly reflected the significant effect of heat stress on the phenotypic expression of fibre quality parameters. Results from the field experiments demonstrated that fibre quality was better among the upland cotton cultivars under non‐stressed (June) regime. Fibre length, strength, uniformity and fineness were substantially high under June regime when compared with that under April (heat stressed) regime. The prevalence of significant genotype × temperature regime interaction for fibre length, fineness and strength provided another evidence for the influence of temperature regimes on the expression of fibre traits. A significant effect of heat stress on the phenotypic expression of fibre quality parameters was observed.  相似文献   
46.
The objective of the present study was to evaluate the effects of dietary inulin and sucrose on the fermentation profile of the gastrointestinal microflora in chicken. Day-old broilers (n = 80) were assigned to four dietary treatments, either fed a basal diet or the same diet supplemented with sucrose (4%), inulin (1%) or sucrose and inulin. At day 35, birds were killed and pH, lactate, ammonia, short chain fatty acids (SCFA) and biogenic amines were determined in different parts of the digestive tract. Final body weights and the relative weights of liver, pancreas, crop, gizzard and small intestine were not influenced by treatment. The relative weights of the empty caeca and of the caecal digesta were higher with the diets containing inulin while caecal pH and ammonia were reduced. Lactate concentration was reduced in the crop (p < or = 0.01) and gizzard (p < or = 0.001) of sucrose-fed groups, while it was increased (p < or = 0.01) in the jejunum of inulin-fed group. Ammonia in the crop (p = 0.089) and gizzard (p = 0.067) tended to be lower in the group receiving inulin plus sucrose. Amongst SCFA, only acetate was detected in the crop and gizzard contents that tended to be lower (p = 0.09) in the crop digesta of sucrose plus inulin-fed group. N-butyrate (mol %) was higher (p < or = 0.001) in the caecal digesta of inulin-supplemented groups without affecting total SCFA. Dietary inulin elevated the concentration of putrescine in the jejunal and caecal contents. In the caecal digesta, total biogenic amines were increased (p < or = 0.001) in sucrose plus inulin-fed group without affecting production of biogenic amines in the jejunum. In conclusion, inulin could reduce the pH in the lower gastrointestinal tract of broilers, while sucrose had no acidifying influence in the upper digestive tract. Inulin enhanced the concentration or metabolic activity of butyrate-producing bacteria in the caecum. Further studies are needed to investigate the potential effect of inulin on the intestinal microbial composition.  相似文献   
47.
Drought stress is a severe threat to the sustainable rice production, which causes oxidative damage and disturbs plant water relations, while exogenously applied nitric oxide (NO) may have the potential to alleviate these effects in rice plants. In this study, the role of NO to improve drought tolerance in fine grain aromatic rice ( Oryza sativa L. cv. Basmati 2000) was evaluated. Sodium nitroprusside, a NO donor, was used at 50, 100 and 150  μ mol l−1 both as seed priming and foliar spray. To prime, the seeds were soaked in aerated NO solution of respective solution for 48 h and dried back to original weight. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a greenhouse. At four leaf stage, plants were subjected to drought stress except the controls, which were kept at full field capacity. Drought was maintained at 50 % of field capacity by watering when needed. Two controls were maintained; both receiving no NO treatments as foliar application or seed treatment, one under drought conditions and the other under well-watered conditions. Drought stress seriously reduced the rice growth, but both methods of NO application alleviated the stress effects. Drought tolerance in rice was strongly related to the maintenance of tissue water potential and enhanced capacity of antioxidants, improved stability of cellular membranes and enhanced photosynthetic capacity, plausibly by signalling action of NO. Foliar treatments proved more effective than the seed treatments. Among NO treatment, 100  μ mol l−1 foliar spray was more effective.  相似文献   
48.
49.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   
50.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号