首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   4篇
  国内免费   1篇
林业   5篇
农学   18篇
基础科学   4篇
  52篇
综合类   14篇
农作物   12篇
水产渔业   8篇
畜牧兽医   22篇
园艺   2篇
植物保护   17篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   9篇
  2017年   13篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   21篇
  2012年   14篇
  2011年   12篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1990年   3篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有154条查询结果,搜索用时 796 毫秒
51.
DNA markers in chickpea, targetting resistance genes for different races of Fusarium oxysporum f.sp. ciceris (Foc), have been identified in chickpea, but validation of these markers is essential for effective use in resistance breeding. In view of this, different simple sequence repeats (SSR) markers were analysed in Pakistani germplasm including induced mutants and some local lines. Most of the SSR markers showed good correlation with phenotypic evaluation of genotypes to different races of Foc and may be used effectively in resistance breeding, except those markers for race 3. Markers for race 3 showed deviations from phenotypic data and the reason might be that race 3 is actually Fusarium proliferatum as reported recently and resistance to this race might involve some other major resistance genes. Poor correlation of markers with foc-3 on LG2 in our study and a recent report of independent segregation of foc-2 and foc-3 in near isogenic lines suggested that linkage distances among different resistance genes need further investigation. Moreover three Pakistani mutant lines (97477, CM444/92 and CM368/93) depicted high levels of resistance to Foc races and can be deployed as a valuable source in resistance breeding programmes.  相似文献   
52.
A doubled haploid population of Brassica juncea, developed from a cross between two parental lines differing for days to maturity, was used to study the efficiency of indirect selection for a primary trait through selection of secondary trait(s) over direct selection for the primary trait when quantitative trait loci information is available for both primary and secondary traits, and applied. Days to maturity was considered as primary trait, while days to first flowering, days to end of flowering, flowering period and plant height were considered as secondary traits. An RFLP linkage map was employed for QTL analysis of maturity and maturity-determinant traits, and a stable QTL B6 simultaneously affecting these two types of traits was identified. This linked QTL explained 11.7% phenotypic variation for days to maturity, 20.7% variation for days to first flowering, 24.3% variation for days to end of flowering and 14.4% variation for plant height. Phenotypic evaluation of maturity and/or maturity-determinant traits, viz. days to first flowering, days to end of flowering and plant height revealed that limited genetic advance for early maturity can be achieved through phenotypic selection of the primary and/or the secondary trait(s). However, the estimates of genetic advance for early maturity based on combined phenotypic evaluation and linked QTL data was found to be, at least, three times higher compared to genetic advance based on phenotypic evaluation only, demonstrating the potential of marker-assisted selection in breeding for early maturity in B. juncea.  相似文献   
53.
ABSTRACT

This review deals with the mechanism of antagonistic action of bacterial and fungal biocontrol agents such as the production of antibiotics, siderophores, enzyme secretion, competition for nutrition, plant growth promotion by rhizosphere microorganism. The utilisation of synthetic pesticides has been the predominant control processor for diseases brought about by phytopathogenic microorganisms. Notwithstanding, their open and improper application in intensive agriculture has realised issues that have prompted ecological contamination, considerable residues in agricultural products and phytopathogen resistance. They are likewise disrupting the quantity of beneficial microorganism which is available in the soil and capable of expanding soil fertility. Along these lines, there is a need to look through the option of synthetic pesticides that are safe, environmental and monetarily feasible to confront this problem. Biocontrol agent’s utilisation is the best alternative method to control the different kinds of diseases, such as nematode infestation, fungal pathogen and bacterial pathogen. Nowadays, biocontrol agents assume a significant role in the field of agriculture. It is a financially savvy, environment-friendly and inhibits the advancement of pathogenic microorganism sustainably. This review emphasises the role of biocontrol agents against different pathogenic microorganisms and their significance potentiality to improve plant growth and enhance defence system of plants.  相似文献   
54.
Abstract

Waste production is associated with human inhabitation and its rate is increasing over time. Globally, the major proportion of waste is disposed of through landfilling and open dumping, which is environmentally unsafe due to emission of greenhouse gases (GHGs). Thus, in order to avoid emission of GHGs from wastes it is important to use techniques that can convert wastes to energy/nutrients on eco-friendly economical way. Furthermore, quantification of the impacts of these waste management techniques on ecosystem is also needed through the application of tools like modeling, remote sensing, geographical information system (GIS), Unmanned Aerial Vehicles (UAVs) and life cycle assessments (LCA). Thus, this review was conducted by considering focus on potential of nutrient and energy recovery techniques from various types of wastes and approaches to enhance the efficiency of the process. The outcomes depicted that the aerobic and anaerobic digestion is suitable to deal with biodegradable and organic fraction of the waste, but anaerobic digestion seem to be more sustainable waste management techniques. Additionally, the review covers the techniques to drive energy and recover nutrient from non-biodegradable proportion. Different modern analytical tools; such as remote sensing, GIS and simple/dynamic models could be useful tool to help in the decision-making processes for waste managements. These tools can help us to design integrated solid waste management processes. Finally, we suggest that LCA should be considered to determine the environmental load of material/product from its production to final disposal (from cradle to grave).  相似文献   
55.
A pot experiment was conducted to elucidate the effects of inoculating five exopolysaccharide- (EPS-) producing bacterial strains on the dry matter yield and the uptake of K+, Na+, and Ca2+ by wheat seedlings grown in a moderately saline soil. The bacteria were isolated from the rhizosphere soil (RS) of wheat grown in a salt-affected soil and included Aeromonas hydrophila/caviae (strain MAS-765), Bacillus insolitus (strain MAS17), and Bacillus sp. (strains MAS617, MAS620 and MAS820). The inoculation substantially increased the dry matter yield of roots (149–527% increase) and shoots (85–281% increase), and the mass of RS (176–790% increase). All the strains, except MAS617, also increased the RS mass/root mass ratio as well as the population density of EPS bacteria on the rhizoplane, and both these parameters were significantly correlated with the content of water-insoluble saccharides in the RS. Inoculation restricted Na+ uptake by roots, which was not attributable to the binding of Na+ by the RS, or to the ameliorative effects of Ca2+ under salinity. The decreased Na+ uptake by roots of inoculated than uninoculated plants was probably caused by a reduced passive (apoplasmic) flow of Na+ into the stele due to the higher proportion of the root zones covered with soil sheaths in inoculated treatments. Among the strains tested, MAS820 was the most efficient in all respects, whereas MAS617 was the least effective. Results suggested that inoculating selected EPS-producing bacteria could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.  相似文献   
56.
Sex in reptiles is determined by genes on sex chromosomes or by incubation temperature. Previously these two modes were thought to be distinct, yet we show that high incubation temperatures reverse genotypic males (ZZ) to phenotypic females in a lizard with ZZ and ZW sex chromosomes. Thus, the W chromosome is not necessary for female differentiation. Sex determination is probably via a dosage-sensitive male-determining gene on the Z chromosome that is inactivated by extreme temperatures. Our data invite a novel hypothesis for the evolution of temperature-dependent sex determination (TSD) and suggest that sex chromosomes may exist in many TSD reptiles.  相似文献   
57.
Using an alkaline calcareous soil, experiments were conducted to elucidate the effects of nitrification inhibitor dicyandiamide (DCD) on the fate of 15N-labelled urea applied to cotton, maize, and wheat under greenhouse conditions. Combined effects of DCD and two levels of wheat straw (applied to cotton) and of fertilizer application method (conventional broadcast vs. point injection in maize and wheat) on the recovery of the fertilizer N were also studied. High soil temperatures prevailed under cotton and maize, whereas the soil temperature was relatively moderate during the wheat growing season. The fertilizer N loss under cotton was lowest (44% of the applied) when urea was applied alone; the loss increased due to DCD (54%) or wheat straw (50–54%) and was highest (63–64%) when DCD and wheat straw were applied together. Under maize also, DCD increased the loss of the fertilizer N applied by the conventional method (51% without DCD vs. 66% with DCD) or by point injection (26% without DCD vs. 42% with DCD). With the conventional method under wheat, DCD had no effect on the fertilizer N loss (34–37% of the applied). The fertilizer N loss under wheat was least (16%) when urea solution was point-injected but increased (24–26%) due to DCD or/and when pH of the urea solution was reduced to 2. Besides, DCD significantly reduced the fertilizer N uptake and increased the fertilizer N immobilization in soil under cotton and maize. However, DCD applied in combination with a higher level of wheat straw significantly increased the cotton dry matter and N yields due to increased N availability from sources other than the fertilizer. The results suggested that the use of DCD may not be beneficial in alkaline calcareous soils and that point injection of urea solution without any amendment is more effective in conserving the fertilizer N as compared to the conventional broadcast method.  相似文献   
58.
Clinically successful hematopoietic cell transplantation is dependent on hematopoietic stem and progenitor cells. Here we identify the matricellular protein Nephroblastoma Overexpressed (Nov, CCN3) as being essential for their functional integrity. Nov expression is restricted to the primitive (CD34) compartments of umbilical vein cord blood, and its knockdown in these cells by lentivirus-mediated RNA interference abrogates their function in vitro and in vivo. Conversely, forced expression of Nov and addition of recombinant Nov protein both enhance primitive stem and/or progenitor activity. Taken together, our results identify Nov (CCN3) as a regulator of human hematopoietic stem or progenitor cells.  相似文献   
59.
Journal of Soils and Sediments - Soil organic carbon (SOC) is an important parameter determining soil fertility and sustaining soil health. How C, N, and P contents and their stoichiometric ratios...  相似文献   
60.
ABSTRACT

Field experiments were conducted to determine the interactive effect of sulfur (S) and nitrogen (N) on nitrogen accumulation, its distribution in various plant parts, and nitrogen harvest of oilseed crops viz. rapeseed (Brassica campestris L. cv. ‘Pusa Gold’) and taramira (Eruca sativa Mill.) differing in their N-assimilation potential. Two combinations of S and N (in Kg/ha): 0S + 100N (?S+N) and 40S + 100N (+S+N) were used. The results showed that combined application of S and N (+S+N) significantly (P < 0.05) increased the nitrogen accumulation in both the genotypes at all the growth stages compared with N applied alone (?S+N). This increase in nitrogen accumulation was due to the improvement in the reduction of nitrate into reduced nitrogen as evident from higher nitrate reductase (NR) activity in the leaves of plants grown with both S and N, compared with N alone. Nitrate-N content in the leaves of plants grown with only N (?S+N) was higher compared to those grown with both S and N (+S+N), showing that combined application of S along with N (+S+N) appreciably reduced the nitrate content in the leaves due to higher NR activity. This decline in nitrate (NO3 ?) was followed by an overall increase in N-accumulation in the plants. Consequently, the nitrogen content in the plant was increased by 29–148% in rapeseed and 38-166% in taramira with +S+N treatment. Combined application of S along with N (+S+N) also increased seed protein content and nitrogen harvest index of both the genotypes. It is concluded that combined application of S along with N (+S+N) not only increased the N-accumulation, but also its mobilization towards economic sinks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号