首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   45篇
林业   120篇
农学   39篇
基础科学   6篇
  218篇
综合类   153篇
农作物   49篇
水产渔业   88篇
畜牧兽医   307篇
园艺   33篇
植物保护   57篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   31篇
  2020年   33篇
  2019年   27篇
  2018年   24篇
  2017年   26篇
  2016年   28篇
  2015年   27篇
  2014年   26篇
  2013年   38篇
  2012年   89篇
  2011年   85篇
  2010年   35篇
  2009年   39篇
  2008年   94篇
  2007年   73篇
  2006年   68篇
  2005年   71篇
  2004年   64篇
  2003年   50篇
  2002年   40篇
  2001年   11篇
  2000年   9篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1955年   1篇
  1940年   1篇
排序方式: 共有1070条查询结果,搜索用时 158 毫秒
141.
In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain) and Arcachon Bay (SW France). Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter.  相似文献   
142.
Rapid ?ōhi?a Death (ROD) is a fungal disease of ?ōhi?a lehua (Myrtaceae: Metrosideros polymorpha) caused by Ceratocystis lukuohia and C. huliohia. ROD is the aetiological agent of widespread mortality of this important tree on Hawai?i Island, but its epidemiology remains unclear. We investigated the prevalence and viability of C. lukuohia in ambrosia beetle frass in ROD‐affected ?ōhi?a trees. A total of 200 frass traps were placed onto C. lukuohia‐infected ?ōhi?a at four locations on the east side of Hawai?i Island. Frass was collected and screened for the presence of C. lukuohia DNA using a diagnostic qPCR assay. In addition, frass samples were screened for viability by carrot baiting. All trapped beetles were of the genus Xyleborus, with the majority being the non‐native X. ferrugineus. Of the frass samples tested, 62% contained C. lukuohia DNA and 17% of carrot baits were positive for the fungus. These results indicate that ambrosia beetle frass releases C. lukuohia into the environment. We discuss the potential role infested frass could play in the ROD pathosystem.  相似文献   
143.
In temperate and boreal mixedwood forests of eastern North America, partial disturbances such as insect outbreaks and gap dynamics result in the development of irregular forest structures. From a forest ecosystem management perspective, management of these forests should therefore include silvicultural regimes that incorporate medium- to high-retention harvesting. We present 12-year results of a field experiment undertaken to evaluate the effects of variable retention harvesting on stand structure, recruitment, and mortality. Treatments were gap harvesting (GAP), diameter-limit harvesting (DL), careful logging (CL), and careful logging followed by scarification (CL + SCAR), and an unharvested control. Although post-harvest basal area in the GAP treatment was significantly lower than that of controls, it maintained a diameter distribution profile and densities of balsam fir regeneration similar to those of pre-harvest conditions. Lower retention treatments (DL, CL, and CL + SCAR) tended to favor regeneration of pioneer, shade-intolerant species. Except for black spruce (for which mortality was highest in DL), stem mortality was similar among harvesting treatments. From an ecosystem management perspective, this study suggests that gap harvesting can maintain, in the short term, forest stand composition and structure similar to unharvested forests, and could be used where management objectives include the maintenance of late successional forest conditions.  相似文献   
144.
Modern breeding primarily targets crop yield traits and is likely to influence root-associated microbiomes, which play significant roles in plant growth and health. The relative importance of soil and cultivar factors in shaping root-associated microbiomes of modern maize (Zea mays L.) remains uncertain. We conducted a pot experiment in a controlled environment using three soils (Mollisol, Inceptisol, and Ultisol) and four contrasting cultivars, Denghai 605, Nonghua 816, Qiaoyu 8, and Zhengdan 958, which are widely planted in China. We used 16S rRNA gene amplicon sequencing to characterize the bacterial communities in the bulk soil, rhizosphere, and endosphere. Our results showed that the four cultivars had different shoot biomass and root exudate total organic carbon and organic acid contents. The microbiomes in the bulk soil, rhizosphere, and endosphere were different. We observed apparent community divergence between soils rather than cultivars, within which edaphic factors substantially contributed to microbiome variation. Moreover, permutational multivariate analysis of variance corroborated significant contributions of soil type but not cultivar on the root-associated microbiome structure. Differential abundance analysis confirmed that each soil presented a distinct root microbiome, while network analysis indicated different co-occurrence patterns of the root microbiome among the three soils. The core root microbiome members are implicated in plant growth promotion and nutrient acquisition in the roots. In conclusion, root-associated microbiomes of modern maize are much more controlled by soil characteristics than by cultivar root exudation. Our study is anticipated to help improve breeding strategies through integrative interactions of soils, cultivars, and their associated microbiomes.  相似文献   
145.
146.
The protective impact of aggregation on microbial degradation through separation has been described frequently, especially for biotically formed aggregates. However, to date little information exists on the effects of organic‐matter (OM) quantity and OM quality on physical protection, i.e., reduced degradability by microorganisms caused by physical factors. In the present paper, we hypothesize that soil wettability, which is significantly influenced by OM, may act as a key factor for OM stabilization as it controls the microbial accessibility for water, nutrients, and oxygen in three‐phase systems like soil. Based on this hypothesis, the first objective is to evaluate new findings on the organization of organo‐mineral complexes at the nanoscale as one of the processes creating water‐repellent coatings on mineral surfaces. The second objective is to quantify the degree of alteration of coated surfaces with regard to water repellence. We introduce a recently developed trial that combines FTIR spectra with contact‐angle data as the link between chemical composition of OM and the physical wetting behavior of soil particles. In addition to characterizing the wetting properties of OM coatings, we discuss the implications of water‐repellent surfaces for different physical protection mechanisms of OM. For typical minerals, the OM loading on mineral surfaces is patchy, whereas OM forms nanoscaled micro‐aggregates together with metal oxides and hydroxides and with layered clay minerals. Such small aggregates may efficiently stabilize OM against microbial decomposition. However, despite the patchy structure of OM coating, we observed a relation between the chemical composition of OM and wettability. A higher hydrophobicity of the OM appears to stabilize the organic C in soil, either caused by a specific reduced biodegradability of OM or indirectly caused by increased aggregate stability. In partly saturated nonaggregated soil, the specific distribution of the pore water appears to further affect the mineralization of OM as a function of wettability. We conclude that the wettability of OM, quantified by the contact angle, links the chemical structure of OM with a bundle of physical soil properties and that reduced wettability results in the stabilization of OM in soils.  相似文献   
147.
148.
Recent advances in on-the-go soil sensing, terrain modelling and yield mapping have made available large quantities of information about the within-field variability of soil and crop properties. But the selection of the key variables for an identification of management zones, required for precision agriculture, is not straightforward. To investigate a procedure for this selection, an 8 ha agricultural field in the Loess belt of Belgium was considered for this study. The available information consisted of: (i) top- and subsoil samples taken at 110 locations, on which soil properties: textural fractions, organic carbon (OC), CaCO3 and pH were analysed, (ii) soil apparent electrical conductivity (ECa) obtained through an electromagnetic induction based sensor, and (iii) wetness index, stream power index and steepest slope angle derived from a detailed digital elevation model (DEM). A principal component analysis, involving 12 soil and topographic properties and two ECa variables, identified three components explaining 67.4% of the total variability. These three components were best represented by pH, ECa that strongly associated with texture and OC. However, OC was closely related to some more readily obtainable topographic properties, and therefore elevation was preferred. A fuzzy k-means classification of these three variables produced four potential management classes. Three-year average standardized yield maps of grain and straw showed productivity differences across these classes, but mainly linked to their landscape position. In the loess area with complex soil-landscape interactions pH, ECa and elevation can be considered as key properties to delineate potential management classes.  相似文献   
149.
Safflower ( Carthamus tinctorius L.) is currently being developed as a platform for the production of novel proteins. Methods for detecting and quantifying transgenic safflower are needed to ensure seed quality and to monitor for its adventitious presence. We developed and compared three methods of assaying for transgenic safflower presence in conventional seedlots: field bioassays, enzyme-linked immunosorbent assays (ELISA), and quantitative polymerase chain reaction (Q-PCR). Limits for reliable quantification for both ELISA and Q-PCR are approximately 0.1%, although levels at least as low as 0.02% can be detected by Q-PCR. Levels of quantification for the field bioassay are limited only by space and resources available. Multiple sampling methods to detect and quantify transgenic safflower presence at levels lower than 0.1% were used on field collected samples from a pollen outcrossing experiment to quantify the adventitious presence of transgenic safflower. Taking into account the potential utility and relative advantages or disadvantages of each detection method, it is recommended that the initial testing for the adventitious presence of transgenic seed be carried out using an antibody-based test if available and that Q-PCR-based assays to quantify transgenic proportion be used when it is necessary to identify specific transgenic constructs or if antibody-based assays are not readily available.  相似文献   
150.
In recent years, arsenic (As) has received increased attention as humans may be exposed to it through occupational and environmental exposure. Tobacco (Nicotiana tabacum L.) like other crops can uptake this element from the soil, which may lead to human exposure. Here, we report on a survey on arsenic in cured or processed tobacco leaves obtained from Africa, Asia, Europe, South and North America. A total of 1,431 leaf samples of flue-cured, burley, and Oriental tobaccos were obtained from various sampling locations during 2002 to 2004. Arsenic concentration in the samples averaged 0.4?±?0.6 μg g?1 as determined by inductively coupled plasma-mass spectrometry. Recorded values from most samples showed that concentrations of arsenic were usually found at the lower end of the distribution. Significant differences were found among tobacco types, sampling locations, and crop years. Arsenic concentrations were rather low in the majority of regions investigated, which is compatible with data from the literature. However, sample size was small and sampling geographically restricted. Our results would need to be validated with a larger dataset.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号