首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16489篇
  免费   3篇
  国内免费   5篇
林业   3650篇
农学   1298篇
基础科学   139篇
  2744篇
综合类   734篇
农作物   2105篇
水产渔业   1780篇
畜牧兽医   1064篇
园艺   1115篇
植物保护   1868篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   9篇
  2018年   2751篇
  2017年   2705篇
  2016年   1183篇
  2015年   66篇
  2014年   18篇
  2013年   11篇
  2012年   792篇
  2011年   2133篇
  2010年   2110篇
  2009年   1263篇
  2008年   1318篇
  2007年   1581篇
  2006年   33篇
  2005年   99篇
  2004年   102篇
  2003年   151篇
  2002年   60篇
  2001年   5篇
  2000年   42篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1993年   12篇
  1992年   7篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.

Context

Ecological theory suggests that large habitat fragments should harbour more species than small fragments. However, this may depend on the surrounding matrix. Matrices in fragmented landscapes may either amplify or reduce area effects, which could influence predicted extinctions based on species-area relationships (SARs).

Objective

To determine the influence of matrix type on SARs.

Methods

We surveyed birds within 59 coastal forest fragments in two matrix types, anthropogenic (South Africa) and natural (Mozambique). We classified species as forest specialists or habitat generalists and fitted species-area models to compare how SAR slopes differed among matrix types. We also calculated nestedness and evenness to determine if these varied among matrix type and used logistic regressions to identify species-specific responses to matrix type.

Results

For habitat generalists, SARs were weak within both matrices, while for forest specialists it was strong in the anthropogenic but weak in the natural matrix. In the former, the SAR was similar to those recorded for real islands within archipelagos. Forest specialist assemblages were nested by area within anthropogenic, but not natural matrices. Matrix type did not influence evenness. Area only affected the occurrence of one species when the matrix was natural, compared to 11 species when it was anthropogenic.

Conclusions

Forest specialist bird species conformed to island biogeographic predictions of species loss in forest fragments embedded in anthropogenic, but not natural matrices. Extinctions from small forest fragments might be prevented by conserving natural- or restoring anthropogenic matrices, as well as by increasing forest area.
  相似文献   
992.

Context

Methods for measuring restoration success that include functional connectivity between species’ populations are rare in landscape ecology and restoration practices. We developed an approach that analyzes connectivity between populations of target species and their dispersal probabilities to assess restoration success based on easily accessible input data. Applying this method to landscape development scenarios can help optimize restoration planning.

Objectives

We developed an assessment for restoration success and restoration planning based on functional connectivity between species’ populations and spatially explicit scenarios. The method was used in a case study to test its applicability.

Methods

Based on data on available habitat, species’ occurrence and dispersal ranges, connectivity metrics and dispersal probabilities for target species are calculated using the software Conefor Sensinode. The metrics are calculated for scenarios that reflect possible changes in the landscape to provide a basis for future restoration planning. We applied this approach to floodplain meadows along the Upper Rhine for four plant species and three future scenarios.

Results

In the case study, habitats of the target species were poorly connected. Peucedanum officinale and Sanguisorba officinalis were more successful in recolonizing new habitats than Iris spuria and Serratula tinctoria. The scenarios showed that restoration of species-rich grassland was beneficial for dispersal of the target species. As expected in the agriculturally dominated study area, restoration of former arable land significantly increased dispersal probabilities.

Conclusions

In the case study, the developed approach was easily applicable and provided reasonable results. Its implementation will be helpful in decision-making for future restoration planning.
  相似文献   
993.

Context

Anthropogenic and environmental changes are reshaping landscapes across the globe. In this context, understanding the patterns, drivers, and consequences of these changes is one of the central challenges of humankind.

Purpose

We aim to test the possibilities of combining modern multidisciplinary approaches to reconstruct the land-cover and linking the changes in land-cover to socioeconomic shifts in southern Estonia over the last 200 years.

Methods

The historical records from five, and maps from six time periods and 79 pollen-based land-cover reconstructions from four lakes are used to determine the land-cover structure and composition and are thereafter combined with the literature based analyses of socioeconomic changes.

Results

All information sources recorded similar changes in the land-cover. The anthropogenic deforestation was comparable to today’s (approximately 50%) during the nineteenth century. Major political and socioeconomic changes led to the intensification of agriculture and maximal deforestation (60–85%) at the beginning of the twentieth century. The land nationalisation following the Soviet occupation led to the reforestation of the less productive agricultural lands. This trend continued until the implementation of European Union agrarian subsidies at the beginning of the twenty first century.

Conclusions

Pollen-based reconstructions provide a trustworthy alternative to historical records and maps. Accounting for source specific biases is essential when dealing with any data source. The landscape’s response to socioeconomic changes was considerable in Estonia over the last 200 years. Changes in land ownership and the global agricultural market are major drivers in determining the strength and direction of the land-cover change.
  相似文献   
994.
995.

Context

Although animal movement behaviors are influenced by spatial heterogeneity, such behaviors can also generate spatial heterogeneity via interactions with the emergent spatial structure and other individuals (i.e., the social landscape).

Objective

Elucidate the behavioral and ecological mechanisms of pattern formation in a homogeneous resource landscape.

Methods

We analyzed the movement pathways and space-use patterns of the lesser grain borer (Rhyzopertha dominica) within homogeneous resource landscapes (wheat kernels). Experimental trials consisted of individual beetles foraging alone or paired with a member of the same or different sex.

Results

We identified two sources of pattern formation: (1) beetles were attracted to areas where they or another beetle had previously fed, leading to increased patchiness via positive reinforcement; and (2) the presence of conspecifics affected whether and at what scales patchiness occurred. Solitary males had lower rates of movement and less tortuous pathways than solitary females, but both sexes generated fine-scale patchiness in the resource distribution. Patchy resource landscapes were also generated by male–female pairs, but not by same-sex pairings. Paired females in particular exhibited significantly greater daily net displacements and more random space use than solitary females.

Conclusions

Pattern formation is a complex process, even in a relatively simple, homogeneous resource landscape. In particular, patterns created by individuals when foraging alone versus in pairs underscores how social interactions can fundamentally alter the resultant pattern of heterogeneity that emerges in resource landscapes.
  相似文献   
996.

Context

The classical theory of island biogeography explains loss of species in fragmented landscapes as an effect of remnant patch size and isolation. Recently this has been challenged by the habitat amount and habitat continuum hypotheses, according to which persistence in modified landscapes is related to total habitat amount rather than habitat configuration or the ability of species to use all habitats to varying degrees. Distinguishing between these theories is essential for effective conservation planning in modified landscapes.

Objective

Identify which factors of habitat type, amount and configuration predict the persistence of a keystone woodland specialist, the eastern bettong Bettongia gaimardi, in a fragmented landscape.

Method

In the Midlands region of Tasmania we carried out camera surveys at 62 sites in summer and winter. We included habitat and landscape features to model whether habitat amount or patch size and isolation influenced the presence of the eastern bettong, and to measure effects of habitat quality.

Results

Habitat amount within a 1 km buffer was a better predictor of occupancy than patch size and isolation. Occupancy was also affected by habitat quality, indicated by density of regenerating stems.

Conclusion

Our results support the habitat amount hypothesis as a better predictor of presence. For a species that is able to cross the matrix between remnant patches and utilise multiple patches, the island biogeography concept does not explain habitat use in fragmented landscapes. Our results emphasize the value of small remnant patches for conservation of the eastern bettong, provided those patches are in good condition.
  相似文献   
997.

Context

Recent research suggests that novel geodiversity data on landforms, hydrology and surface materials can improve biodiversity models at the landscape scale by quantifying abiotic variability more effectively than commonly used measures of spatial heterogeneity. However, few studies consider whether these variables can account for, and improve our understanding of, species’ distributions.

Objectives

Assess the role of geodiversity components as macro-scale controls of plant species’ distributions in a montane landscape.

Methods

We used an innovative approach to quantifying a landscape, creating an ecologically meaningful geodiversity dataset that accounted for hydrology, morphometry (landforms derived from geomorphometric techniques), and soil parent material (data from expert sources). We compared models with geodiversity to those just using topographic metrics (e.g. slope and elevation) and climate data. Species distribution models (SDMs) were produced for ‘rare’ (N?=?76) and ‘common’ (N?=?505) plant species at 1 km2 resolution for the Cairngorms National Park, Scotland.

Results

The addition of automatically produced landform geodiversity data and hydrological features to a basic SDM (climate, elevation, and slope) resulted in a significant improvement in model fit across all common species’ distribution models. Adding further geodiversity data on surface materials resulted in a less consistent statistical improvement, but added considerable conceptual value to many individual rare and common SDMs.

Conclusions

The geodiversity data used here helped us capture the abiotic environment’s heterogeneity and allowed for explicit links between the geophysical landscape and species’ ecology. It is encouraging that relatively simple and easily produced geodiversity data have the potential to improve SDMs. Our findings have important implications for applied conservation and support the need to consider geodiversity in management.
  相似文献   
998.

Context

The study of ecosystem services has extended its influence into spatial planning and landscape ecology, the integration of which can offer an opportunity to enhance the saliency, credibility, and legitimacy of landscape ecology in spatial planning issues.

Objectives

This paper presents a conceptual framework suitable for spatial planning in human dominated environments supported by landscape ecological thinking. It seeks to facilitate the integration of ecosystem services into current practice, including landscape metrics as suitable indicators.

Methods

A literature review supported the revision of existing open questions pertaining to ecosystem services as well as their integration into landscape ecology and spatial planning. A posterior reflection of the current state-of-the-art was then used as a basis for developing the spatial planning conceptual framework.

Results and conclusion

The framework is articulated around four phases (characterisation, assessment, design, and monitoring) and three concepts (character, service, and value). It advocates integration of public participation, consideration of “landscape services”, the inclusion of ecosystem disservices, and the use of landscape metrics for qualitative assessment of services. As a result, the framework looks to enhance spatial planning practice by providing: (i) a better consideration of landscape configuration in the supply of services (ii) the integration of anthropogenic services with ecosystem services; (iii) the consideration of costs derived from ecosystems (e.g. disservices); and (iv) an aid to the understanding of ecosystem services terminology for spatial planning professionals and decision makers.
  相似文献   
999.

Context

Forest cover change analyses have revealed net forest gain in many tropical regions. While most analyses have focused solely on forest cover, trees outside forests are vital components of landscape integrity. Quantifying regional-scale patterns of tree cover change, including non-forest trees, could benefit forest and landscape restoration (FLR) efforts.

Objectives

We analyzed tree cover change in Southwestern Panama to quantify: (1) patterns of change from 1998 to 2014, (2) differences in rates of change between forest and non-forest classes, and (3) the relative importance of social-ecological predictors of tree cover change between classes.

Methods

We digitized tree cover classes, including dispersed trees, live fences, riparian forest, and forest, in very high resolution images from 1998 to 2014. We then applied hurdle models to relate social-ecological predictors to the probability and amount of tree cover gain.

Results

All tree cover classes increased in extent, but gains were highly variable between classes. Non-forest tree cover accounted for 21% of tree cover gains, while riparian trees constituted 31% of forest cover gains. Drivers of tree cover change varied widely between classes, with opposite impacts of some social-ecological predictors on non-forest and forest cover.

Conclusions

We demonstrate that key drivers of forest cover change, including topography, road distance and historical forest cover, do not explain rates of non-forest tree cover change. Consequently, predictions from medium-resolution forest cover change analyses may not apply to finer-scale patterns of tree cover. We highlight the opportunity for FLR projects to target tree cover classes adapted to local social and ecological conditions.
  相似文献   
1000.

Context

In agricultural landscapes, riparian forests are used as a management tool to protect stream ecosystems from agricultural activities. However, the ability of managers to target stream protection actions is limited by incomplete knowledge of scale-specific effects of agriculture in riparian corridor and catchment areas.

Objectives

We evaluated scale-specific effects of agricultural cover in riparian corridor and catchment areas on stream benthic macroinvertebrate (BMI) communities to develop cover targets for agricultural landscapes.

Methods

Sixty-eight streams assigned to three experimental treatments (Forested Riparian, Agricultural Riparian, Agricultural Catchment) were sampled for BMIs. Ordination and segmented regression were used to assess impacts of agriculture on BMI communities and detect thresholds for BMI community metrics.

Results

BMI communities were not associated with catchment agricultural cover where the riparian corridor was forested, but were associated with variation in catchment agriculture where riparian forests had been converted to agriculture. Trait-based metrics showed threshold responses at greater than 70% agricultural cover in the catchment. Increasing agriculture in the riparian corridor was associated with less diverse and more tolerant BMI communities. Eight metrics exhibited threshold responses ranging from 45 to 75% agriculture in the riparian corridor.

Conclusions

Riparian forest effectively buffered streams from agricultural activity even where catchment agriculture exceeds 80%. We recommend managers prioritize protection of forested riparian corridors and that restore riparian corridors where agricultural cover is near identified thresholds be a secondary priority. Adoption of catchment management actions should be effective where the riparian corridor has been converted to agriculture.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号