首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1191篇
  免费   75篇
  国内免费   3篇
林业   57篇
农学   26篇
基础科学   5篇
  131篇
综合类   208篇
农作物   39篇
水产渔业   157篇
畜牧兽医   592篇
园艺   26篇
植物保护   28篇
  2023年   6篇
  2021年   28篇
  2020年   23篇
  2019年   33篇
  2018年   27篇
  2017年   33篇
  2016年   33篇
  2015年   23篇
  2014年   25篇
  2013年   51篇
  2012年   67篇
  2011年   75篇
  2010年   46篇
  2009年   39篇
  2008年   61篇
  2007年   65篇
  2006年   81篇
  2005年   59篇
  2004年   60篇
  2003年   55篇
  2002年   64篇
  2001年   27篇
  2000年   13篇
  1999年   13篇
  1998年   5篇
  1997年   9篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   13篇
  1992年   13篇
  1991年   14篇
  1990年   11篇
  1989年   7篇
  1988年   11篇
  1987年   10篇
  1986年   11篇
  1985年   14篇
  1984年   7篇
  1983年   9篇
  1982年   3篇
  1980年   3篇
  1979年   6篇
  1978年   8篇
  1976年   3篇
  1972年   7篇
  1970年   3篇
  1968年   5篇
  1967年   5篇
  1936年   3篇
排序方式: 共有1269条查询结果,搜索用时 250 毫秒
991.
992.
Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)-dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide-binding proteins (G proteins) activate PLC-βs and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-β3 bound to activated Gα(q) reveals a conserved module found within PLC-βs and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-β3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein-dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-β3 subsequently accelerates guanosine triphosphate hydrolysis by Gα(q), causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs.  相似文献   
993.
The points of zero charge (PZC) of manganese oxide (MnO2), titanium dioxide (TiO2), aluminum (Al) laterite, ferruginous (Fe) laterite, aluminum oxide (Al2O3), and a commercial activated carbon sample (AC001) were determined using acid-base potentiometric (PT) and mass titration (MT). The MT technique has been used extensively for carbonaceous materials but less for soils. In addition, little work has been done on the PZC of these metal oxides and carbon materials under similar experimental conditions concurrently. Our aim is to buttress the ease of MT usage over PT in routine laboratory analysis. The experimental PZC measured by acid-base potentiometric and mass titrations respectively were 4.97 and 4.11 for MnO2; 5.38 and 5.74 for TiO2; 4.19 and 4.08 for Al laterite; and 4.45 and 4.10 for Fe laterite. For Al2O3 and activated carbon, mass titration gave 7.53 and 8.41 respectively. Calculated standard deviations between the means of PT and MT were less than 1, and Student’s t-test at 95% confidence interval (CI) gave a P value of 0.135, suggesting that there is no significant difference between PT and MT and buttressing the reliability of the experimental procedures. In routine laboratory work, mass titration should be preferred for PZC measurement of (hydr)oxides and soil materials because it saves time.  相似文献   
994.
995.
Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.  相似文献   
996.
Forest plantations for wood production are an increasingly important land use in southern Australia, and there are potentially important hydrologic consequences of what is mostly a change in land use from agriculture to silviculture. An ability to predict, with some degree of accuracy, the impact of plantation expansion on surface water and groundwater resources is essential. A validated process-based modelling approach, integrating the many interacting environmental and management factors which may influence plantation growth and transpiration, can be used for this purpose. The 3PG forest growth model has been evaluated for a number of species from widely differing climate and site conditions. While growth predictions have been validated, little attention has been given to testing the accuracy of the transpiration predictions or the model's representation of the water balance. We enhanced the 3PG forest growth model (known as 3PG+) and then integrated it into the Catchment Analysis Tool (CAT), so that it now interfaces with a more detailed multi-layered, daily time step representation of the soil water balance. Simulated transpiration using 3PG+ in CAT was compared with field measurements in 30 plots (across 15 sites) representing 5 common plantation species (Eucalyptus globulus, E. nitens, E. grandis, E. regnans and Pinus radiata) across ages 2–31 years. Mean daily plot transpiration during the measurement periods ranged between 0.4 and 4.2 mm day−1 (average 2.0 mm day−1). Simulated mean daily plot transpiration using 3PG+ in CAT for Eucalyptus was good (coefficient of efficiency = 0.80; R2 = 0.81). While the model tended to slightly under-predict transpiration at higher measured rates (>3.5 mm day−1), predictions at monthly timescales had acceptable accuracy. The integration of 3PG+ into CAT resulted in an improvement in accuracy and applicability of CAT, and provides for the spatial application of 3PG+ across diverse and mixed land use catchments for investigation into carbon and water movement in forest systems.  相似文献   
997.
998.
999.
The authors have studied microstructure evolution during thermally induced phase separation in a class of binary supported lipid bilayers using a quantitative application of imaging ellipsometry. The bilayers consist of binary mixtures consisting of a higher melting glycosphingolipid, galactosylceramide (GalCer), which resides primarily in the outer leaflet, and a lower melting, unsaturated phospholipid, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Three different bilayer compositions of GalCer/DLPC mixtures at 35:65, 20:80, and 10:90 molar ratios were cooled at controlled rates from their high-temperature homogeneous phase to temperatures corresponding to their phase coexistence regime and imaged in real time using imaging ellipsometry. During the thermotropic course of GalCer gelation, we find that two distinct types of morphological features modulate. First, the formation and growth of chain and fractal-like defects ascribed to the net change in molecular areas during the phase transition. The formation of these defects is consistent with the expected contraction in the molecular area during the liquid crystalline to gel-phase transition. Second, the nucleation and growth of irregularly shaped gel-phase domains, which exhibit either line-tension dominated compact shape or dendritic domains with extended interfaces. Quantifying domain morphology within the fractal framework reveals a close correspondence, and the quantization of the transition width confirms previous estimates of reduced phase transition cooperativity in supported bilayers. A comparison of domain properties indicates that thermal history, bilayer composition, and cooling rate all influence microstructure details including shapes, sizes, and distributions of domains and defects: At lower cooling rates and lower GalCer fractions compact domains form and at higher GalCer fractions (or at higher cooling rates) dendritic domains are evident. This transition of domain morphology from compact shapes to dendritic shapes at higher cooling rates and higher relative fractions of GalCer suggests kinetic control of shape equilibration in these phospho- and glycolipid mixtures.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号