首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  国内免费   1篇
林业   1篇
农学   4篇
  1篇
综合类   3篇
农作物   1篇
水产渔业   1篇
畜牧兽医   1篇
植物保护   1篇
  2024年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Plant-derived secondary metabolites still constitute important resources for currently prescribed drugs and for the discovery of active principles which are effective in new indication areas. Promising compounds are often exclusively found in wild medicinal plants and the classical plant-based pharmaceutical production approach has been hampered by low yields, lack of reproducibility and the high complexity of plant extracts (Rischer and Oksman-Caldentey, 2005). Influencing the accumulation of target compounds by breeding or genetic engineering is greatly impeded because in most cases the general biosynthetic routes are incompletely understood.  相似文献   
2.
According to the dictionary, a system is something like “a group or combination of interrelated, interdependent, or interacting elements forming a collective entity”. In postharvest, fresh harvested food crops can be considered isolated small scale systems. Postharvest research aims to understand the quality of these ‘systems’ as influenced by postharvest conditions. The phenotypic quality of horticultural produce is based on genetic traits that are expressed through a cascade of reactions subject to complex regulatory mechanisms and diverse environmental conditions. Ultimately, to fully understand postharvest phenomena, a systemic approach that links genetic and environmental responses and identifies the underlying biological networks is required. Thanks to the development of high throughput omics techniques such system-wide approaches have become a viable option to support traditional postharvest research. This review provides an overview of systems biology and how it can lead postharvest research into a new era.  相似文献   
3.
4.
5.
6.
转录组学作为研究基因结构和功能的重要内容,在研究细胞生理活动规律、揭示基因表达与生命现象之间的内在联系等方面发挥着重要作用。猪肉作为我国也是全球第一大消费肉类品种,存在广阔的市场需求,关于猪肉品质的研究也是当前猪遗传育种的重点内容。文章就转录组学技术及其在猪肉质研究中的应用进行综述,鉴于当前的研究热点,重点概括基于转录组测序技术的非编码RNA的研究在猪肉质遗传研究中应用现状,以期为猪肉质相关研究提供参考。  相似文献   
7.
【目的】探索甘蓝型油菜不同发育时期种子和角果皮硫苷含量的动态变化规律,通过转录组关联分析解析控制硫苷含量变异的遗传机制。【方法】在由113个油菜品种构成的自然群体中,利用高效液相色谱法检测不同发育时期油菜种子及角果皮中的硫苷含量。提取油菜幼嫩叶片mRNA并进行mRNA-Seq测序,开发了355 536个单核苷酸多态性标记(SNP)和116 098个基因表达量标记(GEM)。将开发的SNPs和GEMs分别导入到混合线性模型(MLM)和回归分析模型中进行关联分析,获得与油菜硫苷表型变异显著相关的遗传位点,进一步通过序列比对和功能预测筛选确定候选基因。【结果】授粉后15 d(15 DAP),油菜种子和角果皮的硫苷含量变异范围分别是1.69-20.45和1.47-25.23 μmol·g-1。25 DAP种子、25 DAP角果皮以及成熟种子的硫苷变异范围分别是2.17-147.21、0.73-130.77和8.87-111.83 μmol·g-1。后两个时期(即25 DAP和成熟期)的硫苷含量表现出较大变异,适合进行转录组关联分析。基于mRNA-Seq测序数据,经质量控制后获得256 397个高质量的SNP标记(MAF>0.01)和53 889个GEM标记(平均基因表达量>0.4)。利用SNP标记对成熟种子、25 DAP种子和25 DAP角果皮硫苷含量进行关联分析,分别检测到167、158和3个显著关联位点(-log10P>6.71)。其中,与成熟种子显著关联的SNP标记形成5个明显的关联峰,分别位于A2、A9、C2、C7和C9染色体上。同时,利用GEM标记进行的关联分析中,分别检测到127、16和24个与成熟种子、25 DAP种子、25 DAP角果皮硫苷含量显著关联的位点(-log10P>6.03),这些位点主要分布在A2、A8、A9、C2和C9染色体上并形成明显的关联峰。其中,成熟种子和25 DAP角果皮在A9、C2和C9染色体上形成共同的关联峰。通过与公共数据库的基因组序列比对和功能注释,共筛选到295个功能基因,其中25个基因涉及硫苷代谢网路途径,直接参与硫苷的调控。其余基因虽然没有直接参与硫苷代谢过程,但是它们大多属于转录因子基因、刺激响应因子基因,涉及细胞过程或是具有催化活性,因而推测在硫苷积累中同样起到重要作用。【结论】油菜角果皮中的硫苷含量较高,而且与种子硫苷含量显著正相关,是硫苷合成或转运的重要器官。共检测到328个SNP显著标记和144个GEM显著标记,筛选到25个与硫苷合成或者转运有关的功能基因以及73个功能未知的新基因。  相似文献   
8.
逆境胁迫一直是限制植物生长发育的重要因素,对植物逆境胁迫的研究是植物研究的热点难点。转录组学的发展是研究基因转录调控的重要手段,利用转录组学技术对探究植物在非生物胁迫以及生物胁迫中基因的表达调控网络,研究参与逆境胁迫的分子机制有重要意义。对转录组学及其在植物抗逆中的研究进行总结。  相似文献   
9.
茶树(Camellia sinensis)属山茶科山茶属,是一种重要的木本经济作物,其叶片富含多种活性物质,其中尤以儿茶素、咖啡因、茶氨酸及其他游离氨基酸等活性成分对茶叶品质有重要影响。逆境胁迫是影响茶树生长发育、产量及品质的重要因素,人们对茶树应答逆境胁迫的分子机理越来越关注。转录组学作为功能基因组学的重要组成部分,它从RNA水平上全面研究物种的基因表达情况。利用该技术研究逆境胁迫下茶树基因表达的情况,有利于阐明茶树对逆境胁迫的应答机理。本综述主要介绍应用转录组学技术研究茶树应答生物胁迫和非生物胁迫(干旱,温度,盐碱,重金属等)的进展,以期为茶树抗逆性分子机理的研究提供理论参考。  相似文献   
10.
除虫脲(diflubenzuron, DFB)是一种常用的杀虫剂,其代谢物残留会威胁水生动物及人体健康。为探究水产动物响应DFB胁迫的分子机制,本研究以鲤(Cyprinus carpio)为对象,选定0.1 mg/L和1.0 mg/L的药浴浓度对鲤进行15 d暴露实验。采用RNA-Seq技术对肝脏开展转录组测序,以Padj<0.05和|log2Fold Change|≥1为标准筛选差异表达基因(DEGs)进行GO功能注释和KEGG富集分析等生物信息学分析。结果显示,0.1 mg/L暴露浓度下有2 406个DEGs发生显著变化,1.0 mg/L暴露浓度下有2 688个DEGs发生显著变化,2组共表达的DEGs有821个。GO分析结果显示,DFB暴露组DEGs富集在生物过程、细胞组成和分子功能上。KEGG富集分析显示,低浓度DFB暴露组DEGs显著富集到异生物质的生物降解和代谢、脂质代谢、碳水化合物代谢、氨基酸代谢、信号分子与相互作用、内分泌系统、免疫系统等代谢通路;高浓度DFB暴露组DEGs除了富集到上述代谢通路外,还显著富集到折叠、分类和降解、运输和分解代谢等代谢通路。结果表明,DFB暴露对鲤造成异生物质的生物降解和代谢、脂质代谢、碳水化合物代谢、氨基酸代谢紊乱,并产生内质网应激、炎症反应和免疫毒性。本研究从转录层面上解析了DFB暴露对鲤毒性作用的分子机制,为DFB在水产领域的限量标准制定和环境安全评价提供基础数据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号