排序方式: 共有55条查询结果,搜索用时 14 毫秒
1.
研究临床使用常规剂量及养殖环节加大盐酸土霉素可溶性粉剂量后其在鸡蛋中的残留消除规律。对产蛋期蛋鸡分别给予500 mg/L和667 mg/L 50%盐酸土霉素可溶性粉,集中饮水给药,每日1次,连续5 d。分别采集停药后1~12 d的鸡蛋样品,采用UPLC-MS/MS测定鸡蛋中土霉素的残留量。按上述方法给药后,低、高剂量组分别在停药第1天和停药第2天达到土霉素残留量最高。低、高剂量组的最高残留量分别为142. 72、82. 84μg/kg,均低于国家规定的最高残留限量(200μg/kg),不会造成土霉素残留超标。本试验通过研究土霉素可溶性粉在鸡蛋中的残留情况,确定弃蛋期前后土霉素残留量,以期为蛋鸡产蛋期安全用药,保障食品安全提供科学依据。 相似文献
2.
土霉素注射液在猪体内药代动力学比较 总被引:1,自引:5,他引:1
对长效土霉素注射液进行了猪体内药代动力学的比较研究。试验将三种产品(A、B、C)分别一次肌肉注射猪3头,剂量20mg/kg。结果表明,消除半衰期以产品B最长,血药峰浓度以产品B最高,达到峰浓度时间以产品A最慢,药时曲线下面积以产品B最大,24小时血药浓度以产品B最高,48小时血药浓度以产品C最低。以血浆土霉素浓度0.5μg/ml为最小有效浓度,产品A和B能够维持有效血药浓度24小时,产品C仅能够维持有效血药浓度12小时。 相似文献
3.
土霉素在黑鲷体内的药物代谢动力学研究 总被引:10,自引:0,他引:10
首次报道了黑鲷口服土霉素的药物代谢动力学特征,用高效液相色谱法测定组织中的药物含量,药物在肌肉,血液,肝脏中的平均回归率分别为85.61%,85.38%,82.005,该方法的检测限可达0.01μg/g,黑鲷1次口服剂量为75mg/kg的土壤素后,其血液药物浓度-时间数据符合一室开放动力学模型,吸收速率常数(ka)为0.296/h,达峰时间(Tamx)为10.635h,峰浓度(Cmax)为1.398μg/ml, 分布半衰期(T1/2a)为2.339h ,消除半衰期(T1/20β)为46.663h,药时曲线下面积(AUC)为110.25mg/L.h,黑绸口服药物0.5h后在血液,肥肉,肝脏,肾脏4种组织中就可以检测到药物的存在,药物在16h的采样点浓度达最高,分别为1.68μg/ml,1.68,2.52,6.77μg/g。 相似文献
4.
用添加酸牛奶和土霉素醋糖的日粮,饲喂伊莎褐商品代母雏。对照组,酸牛奶组及土霉素醋糖组的平均育雏率分别为71.9%、97.3%及9.68%(P<0.01)。8周龄平均体重分别为456g、527g及522g(P<0.05)。结果表明,添加酸牛奶和土霉素醋糖的日粮,能有效的预防雏鸡白痢,提高育雏率,降低育雏成本,经济效益明显。 相似文献
5.
用高效液相色谱(High performance liquid chromatography,HPLC)法测定家兔腿肌、心、肝、肾等组织中土霉素、四环素残留量。色谱柱为Hypersil BDS,以乙睛-3%冰乙酸水溶液(30∶70)为流动相,检测波长为350 nm,柱温30℃。结果表明:土霉素、四环素标准品浓度在8.2~262.5μg/mL范围内线性关系良好,土霉素线性方程为Y=19392.82X-22.90,r=0.99948;四环素线性方程为Y=14089.84X-33.34,r=0.99888。家兔肝脏的土霉素加样回收率平均为89.1%,RSD=2.03%;四环素加样回收率平均为91.1%,RSD=2.22%。说明HPLC法准确可靠,为监控兔产品土霉素、四环素残留提供了安全、方便的检测手段。 相似文献
6.
在水温(25±2)℃条件下,以15 mg/kg鱼体重的剂量给奥尼罗非鱼单次口灌盐酸土霉素,采用高效液相色谱法测定血浆和肌肉组织中的药物浓度,研究盐酸土霉素在奥尼罗非鱼体内的代谢及消除规律。结果显示:血药时间数据符合一级吸收二室开放模型,半衰期(T1/2Ka、T1/2α、T1/2β)分别为4.79、4.10、45.20 h,最大血药浓度为1.50μg/m L,达峰时间为7.30 h,药时曲线下面积(AUC)为42.35μg·h/m L。肌肉作为可食性组织,选取肌肉组织作为残留检测的靶组织,以0.1 mg/kg为最高残留限量,在本试验条件下,建议休药期不低于10 d。 相似文献
7.
Ståle Refstie Anne Marie Bakke-McKellep Michael H. Penn Anne Sundby Karl D. Shearer 《Aquaculture (Amsterdam, Netherlands)》2006,261(1):392-406
This experiment was done to study the effects of dietary soybean meal (SBM) and inulin (a prebiotic) on the capacity for digestive hydrolysis and amino acid absorption by Atlantic salmon, and how a dietary supplement of the broad-spectrum antibiotic oxytetracycline (OTC) modulated these responses. A control diet (FM) was made from fish meal, fish oil and extruded wheat. Two similar diets were made with 250 g soybean meal (SBM) or 75 g inulin kg− 1. Each diet was made with or without a supplement of 3 g OTC kg− 1. All six diets contained yttrium oxide for estimation of apparent nutrient absorption. Each diet was fed to two groups of 172 g salmon kept in 1 m2 tanks with 9 °C saltwater for 3 weeks. Intestinal organs were then sampled and weighed. Gastrointestinal tracts (GIT) were sectioned for analyses of brush border alkaline phosphatase (ALP) and leucine aminopeptidase (LAP) activities. Tissue from the distal intestine (DI) was also fixed for histological examination. Digesta from the different sections were freeze dried for estimation of trypsin and amylase activities, and of apparent absorption of amino acids (AA), nitrogen (N), and sulphur (S). About 85% of the trypsin activity, 70% of the amylase activity, 85% of the ALP activity, and 82% of the LAP activity were found in the proximal (PI) and mid (MI) intestine of fish with functional DI, and the absorption of AA, N, and S was quantitatively completed in the MI. Dietary OTC resulted in lower relative liver weight, but apart from increased ALP and LAP activities in DI when feeding OTC in combination with inulin, OTC did not modify the responses to dietary SBM or inulin. Dietary SBM resulted in lower relative liver weight, and induced pathomorphological changes in the DI mucosa, thus lower the ALP and LAP activities in the DI. SBM also stimulated absorption of AA, N, and S in the PI, but at the same time increased the activities of trypsin and amylase in the DI, indicating reduced re-absorption and increased faecal losses of these endogenous enzymes. Dietary inulin did not damage the DI, and stimulated intestinal growth and higher relative mass of the GIT. Inulin without OTC did not affect the hydrolytic and absorptive capacity of the salmon GIT. 相似文献
8.
[目的]建立一种快速、简便、灵敏的堆肥中土霉素和金霉素残留的检测方法。[方法]采用高效液相色谱(HPLC)荧光检测法检测堆肥中的土霉素和金霉素残留,以V(咪唑缓冲溶液)∶V(甲醇)=80∶20(pH=5)为流动相,C18柱分离,用苯乙烯二乙烯苯共聚物小柱富集,净化。[结果]土霉素和金霉素的检出限分别为0.02、0.04mg/L;土霉素加标量为0.02、0.05、0.10mg/L时的回收率为78.0%~91.5%,方法的RSD为2.1%~7.9%,金霉素加标量为0.04、0.10、0.20mg/L时的回收率为87.5%~93.5%,方法的RSD为4.3%~6.5%。[结论]采用高效液相色谱荧光检测法检测堆肥中的土霉素和金霉素具有灵敏度高、稳定性好、简便易行等优点,且被测组分可得到较好的分离。 相似文献
9.
宗瑞谦 《甘肃农业大学学报》1995,30(3):256-260
通过以中性氧化铝为吸附剂,0.5%CMC-Na为粘合剂,在展开剂分别为95%乙醇-1NHCl、正丁醇-1NHCl、正丁醇-1NHCl-水、甲醇-1NHCl和甲醇-1NHCl-水中对土霉素的层析效果研究,结果表明:中性氧化铝在上述5种展开剂中均不能使土霉素达到有效分离。故不能用中性氧化铝单独作为吸附剂对土霉素进行层析分离。 相似文献
10.
The pharmacokinetics of oxolinic acid and oxytetracycline were examined in kuruma shrimp (Penaeus japonicus) after intra-sinus (10 and 25 mg/kg, respectively) and oral (50 mg/kg) administration. The shrimp were kept in tanks with recirculated artificial seawater at a salinity of 22–23 ppt. The water temperature was maintained at 25±0.6 °C. The hemolymph concentrations of both drugs after intra-sinus dosing were best described by a two-compartment open model. The distribution and elimination half-lives (t1/2 and t1/2β) were found to be 0.59 and 33.2 h for oxolinic acid and 0.45 and 24.7 h for oxytetracycline, respectively. The apparent volume of distribution at a steady state (Vss) and total body clearance (CLb) were estimated to be 1309 ml/kg and 28.8 ml/kg/h for oxolinic acid and 748 ml/kg and 22.7 ml/kg/h, respectively. The hemolymph concentration–time curves after oral administration did not fit by the nonlinear least squares method using one- and two-compartment model with first-order absorption in either of the drugs. The peak hemolymph concentration (Cmax), the time to peak hemolymph concentration (tmax) and the elimination half-life were found to be 17.8 μg/ml, 7 h and 34.3 h for oxolinic acid and 24.3 μg/ml, 10 h and 33.6 h for oxytetracycline, respectively. The bioavailability (F) after oral administration was 32.9% for oxolinic acid and 43.2% for oxytetracycline. The hemolymph protein binding in vivo was determined to be 36.7±8.5% for oxolinic acid and 22.9±4.8% for oxytetracycline. 相似文献