首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   7篇
  国内免费   26篇
林业   21篇
农学   8篇
基础科学   1篇
  370篇
综合类   36篇
农作物   8篇
水产渔业   34篇
畜牧兽医   4篇
园艺   3篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   15篇
  2020年   11篇
  2019年   19篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   26篇
  2014年   10篇
  2013年   9篇
  2012年   15篇
  2011年   25篇
  2010年   22篇
  2009年   27篇
  2008年   24篇
  2007年   25篇
  2006年   38篇
  2005年   18篇
  2004年   24篇
  2003年   14篇
  2002年   5篇
  2001年   4篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   9篇
  1996年   15篇
  1995年   6篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   8篇
  1987年   2篇
  1986年   7篇
  1985年   2篇
排序方式: 共有485条查询结果,搜索用时 15 毫秒
1.
N fertilizer is often poorly recovered in irrigated cotton production, due to N loss through denitrification. We researched the ability of inhibitors to delay nitrition and reduce the availability of NO3 - to denitrifying microorganisms and thus improve N fertilizer recovery, 2-Ethynylpyridine, etridiazole, and nitrapyrin proved highly effective nitrification inhibitors, although nitrification was evident several weeks after their application. CaC2 was relatively ineffective, even when wax-coated to prolong the evolution of C2H2. Phenylacetylene and ethynylcyclohexanol were also ineffective, despite having a chemical structure similar to 2-ethynylpyridine. A strong association was identified between each compound's ability to inhibit nitrification and its capacity to improve N fertilizer recovery. In one experiment, N fertilizer recovery was increased by 50% with 2-ethynylpyridine, etridiazole, or nitrapyrin application, from 33% without inhibitors. The inhibitors had little effect on fertilizer recovery where N losses were relatively small. 3-Methyl pyrazole significantly increased N uptake and lint yield, but the nitrification inhibitors had no significant effect on N uptake or on yield in two of the three of the cotton crops. A laboratory study confirmed that nitrification inhibitor effectiveness declined in the order 2-ethynylpyridine>etridiazole>nitrapyrin>3-methyl pyrazole>phenylacetylene>CaC2>ethynylcyclohexanolThis research was conducted at Australian Cotton Research Institute, CSIRO Division of Plant Industry, Locked Bag 59, Narrabri, NSW 2390, Australia  相似文献   
2.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   
3.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   
4.
The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   
5.
6.
Water is usally thought of a limiting factor for the restoration of semi-arid ecosystem. In the growing season of 2006, a study was conducted to determine the effects of modeling precipitation on seasonal patterns in concentrations of soil-available nitrogen and to describe the seasonal patterns in soil nitrogen availability and seasonal variation in the rates of net nitrogen mineralization of topsoil at Daqinggou ecological station in Keerqin sand lands, Inner Mongolia Autonomous Region, China. Manipulation of water (80 mm) was designed to be added to experiment plots of sandy grasslands in dry season. Water addition (W) treatment and control (CK) treatment were separately taken in six replications and randomly assigned in 12 plots (4 m×4 m for each) with 2-m buffers betweens. Results showed that the content of soil inorganic nitrogen and net nitrogen mineralization rate were not affected by adding water in sandy grassland of Keerqin sand lands. Net nitrogen mineralization rates ranged from 0.5 μg·g-1·month-1 to 4 μg·g-1·month-1. The highest values of soil inorganic nitrogen and net nitrogen mineralization occurred on October 15 in control plots. The seasonal changes of soil inorganic nitrogen contents exhibited "V" shape pattern that was related to seasonal patterns of soil ammonium-N (ascending trend) and nitrate-N transformation (descending trend).  相似文献   
7.
Measurements of net nitrification rates in forest soils have usually been performed by extended sample incubation (2–8 weeks), either in the field or in the lab. Because of disturbance effects, these measurements are only estimates of nitrification potential and shorter incubations may suffice. In three separate studies of northeastern USA forest soil surface horizons, we found that laboratory nitrification rates measured over 1 day related well to those measured over 4 weeks. Soil samples of Oa or A horizons were mixed by hand and the initial extraction of subsamples, using 2 mol L−1 KCl, occurred in the field as soon as feasible after sampling. Soils were kept near field temperature and subsampled again the following day in the laboratory. Rates measured by this method were about three times higher than the 4-week rates. Variability in measured rates was similar over either incubation period. Because NO3 concentrations were usually quite low in the field, average rates from 10 research watersheds could be estimated with only a single, 1-day extraction. Methodological studies showed that the concentration of NH4+ increased slowly during contact time with the KCl extractant and, thus, this contact time should be kept similar during the procedure. This method allows a large number of samples to be rapidly assessed.  相似文献   
8.
We studied controls on nitrification in an undisturbed water-limited ecosystem by inhibiting autotrophic nitrifying bacteria in soils with varying levels of vegetative cover. The activity of nitrifying bacteria was disrupted using nitrapyrin, 2-chloro-6-(trichloromethyl)-pyridine, under field conditions in three microenvironments (underneath shrubs, next to grasses and in bare soil). Ammonia-oxidising bacteria were detected by PCR analysis of DNA in soils. The inhibition of nitrification changed the concentrations of NO3 and NH4+ in the soil, while the microenvironment was most important in determining the response of bacteria to the inhibitor. Nitrapyrin application resulted in a significant (p<0.05) reduction in soil NO3 concentration (39%) and a significant increase (p<0.001) in soil NH4+ concentration (41%). Untreated bare-soil microenvironments had the lowest concentrations of NH4+ (1.57 μg/g of dry soil) and NO3 (0.49 μg/g of dry soil) when compared to the other microenvironments, and showed the highest impacts of nitrification inhibition. For example, NH4+ concentrations increased 288% and NO3 concentrations decreased 60% in inhibited bare-soil microenvironments. In contrast, untreated microenvironments underneath shrubs had the highest levels of NH4+ (10.01 μg/g of dry soil) and NO3 (0.69 μg/g of dry soil), but showed no significant effects of inhibition of nitrification on soil nitrogen concentrations.  相似文献   
9.
Arctic soils emit nitrous oxide, which is a potent greenhouse gas and also represents an important loss of nitrogen to oligotrophic Arctic ecosystems. However, little is known about the temperature sensitivity of nitrous oxide release in Arctic soils or the organisms mainly responsible for it. We investigated controls on nitrous oxide emissions in an Arctic soil across a typical temperature range (between 4 and 13 °C) on Truelove Lowland, Devon Island, Canada (75°40′N 84°35′W) at two different moisture contents. When fertilized with ammonia or nitrate, nitrous oxide emissions and temperature dependence of nitrous oxide emissions were insensitive to soil moisture content but linked to nitrification rates. Stable isotope analysis revealed that nitrous oxide was predominantly released by nitrifiers. However, nitrous oxide emissions were not linked to nitrifier prevalence with an insignificant (P < 0.219) increase in amoA genes and a (P < 0.01) decrease in archaeal nitrifiers. In contrast, denitrifier nosZ prevalence was 10,000 times greater than that of nitrifiers and was related to nitrous oxide emission potential when soils were fertilized with nitrate. Manipulating water-filled pore space should have changed the pattern of N2O emissions. We used selective inhibitors to further explore why denitrification did not occur under field conditions when we manipulated water-filled pore space or when we used 15N analysis. When fungi were inhibited in the soil, nitrous oxide emissions from denitrifiers increased with no change in nitrous oxide released by nitrifiers. When fungi were active in the soil, there was little available nitrate but when fungi were inhibited, available soil nitrate increased over the incubation period. The dominance of nitrifiers in nitrous oxide emissions from Arctic soils under field conditions is linked to the competition for nitrate between fungi and denitrifiers.  相似文献   
10.
 Land use changes in semiarid grasslands have long-lasting effects. Reversion to near-original conditions with respect to plant populations and productivity requires more than 50 years following plowing. The impact of more subtle management changes like small, annual applications of N fertilizer or changing cattle stocking rates, which alters N redistribution caused by grazing and cattle urine deposition, is not known. To investigate the long-term effects of N addition to the Colorado shortgrass steppe we made weekly, year-round measurements of N2O and CH4 from the spring of 1990 through June 1996. Fluxes of NOx (NO plus NO2) were measured from October 1995 through June 1996. These measurements illustrated that large N applications, either in a single dose (45 g N m–2), simulating cattle urine deposition, or in small annual applications over a 15-year period (30 g N m–2) continued to stimulate N2O emissions from both sandy loam and clay loam soils 6–15 years after N application. In sandy loam soils last fertilized 6 years earlier, average NOx emissions were 60% greater than those from a comparable, unfertilized site. The long-term impact of these N additions on CH4 uptake was soil-dependent, with CH4 uptake decreased by N addition only in the coarser textured soils. The short-term impact of small N additions (0.5–2 g N m–2) on N2O, NOx emissions and CH4 uptake was observed in field studies made during the summer of 1996. There was little short-term effect of N addition on CH4 uptake in either sandy loam or clay loam soils. Small N additions did not result in an immediate increase in N2O emissions from the sandy loam soil, but did significantly increase N2O flux from the clay loam soil. The reverse soil type, N addition interaction occurred for NOx emissions where N addition increased NOx emissions in the coarser textured soil 10–20 times those of N2O. Received: 31 October 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号