首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   54篇
  国内免费   27篇
林业   5篇
农学   9篇
基础科学   23篇
  46篇
综合类   185篇
农作物   8篇
水产渔业   416篇
畜牧兽医   22篇
园艺   10篇
植物保护   7篇
  2024年   4篇
  2023年   9篇
  2022年   8篇
  2021年   24篇
  2020年   25篇
  2019年   26篇
  2018年   22篇
  2017年   37篇
  2016年   32篇
  2015年   31篇
  2014年   36篇
  2013年   50篇
  2012年   40篇
  2011年   32篇
  2010年   30篇
  2009年   43篇
  2008年   44篇
  2007年   31篇
  2006年   54篇
  2005年   24篇
  2004年   25篇
  2003年   21篇
  2002年   16篇
  2001年   13篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   9篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1990年   1篇
  1989年   3篇
  1987年   4篇
排序方式: 共有731条查询结果,搜索用时 15 毫秒
1.
A jet fish pump with a throat of ø60 mm was designed to study its performance in the transport of different fish species and the physiological changes in fish thereafter. Experiments were conducted to investigate the fish transport rate and energy required to transport each ton of fish when transporting Carassius auratus, commonly known as the Chinese goldfish, Megalobrama amblycephala, or Wuchang bream, and Ctenopharyngodon idella, the grass carp. Fish were examined for external injuries as well as for several important enzymes and hormones which are indicators of tissue injury and stress. The results showed that the transport rate for all three species of fish rose dramatically with an increase in the primary stream rate. In this experiment, the transport rates of C. auratus, M. amblycephala and C. idella reached 2357 ± 37.2 kg  h−1, 2888 ± 41.6 kg  h−1, and 2060 ± 40.2 kg  h−1, respectively. However, both injury rate and energy required to transport each ton of fish increased no matter whether the primary stream rate was too low or too high. Considering both transport rate and injury rate, the mean primary stream rate of 80 m3  h−1 was determined to be the optimal operating condition in this experiment. Fish were stressed and most likely some of their organs were damaged. However, most physiological indexes almost fully recovered after several hours.  相似文献   
2.
Currently, very few aquaculture operations are employing airlift pump technology for water recirculation, aeration, and waste removal. This is likely due to the poor design and lower efficiency of traditional airlift design, the limited amount of research effort that has been invested in improving performance capabilities of air lift pumps and the general lack of awareness of the industry about the inherent advantages of airlift systems. A new efficient airlift pump is hydrodynamically designed by incorporating the Volume of Fluid (VOF) multi-phase model along with the K-ε turbulence model utilizing Computational Fluid Dynamics (CFD) tools. The pump is designed to offer a substantial reduction in total energy usage as well as an improved quality of the culture products in order to make it attractive to aquaculture industry. In this study, both numerical and experimental investigations were carried out for airlift systems operating under two different submergence ratios of 50% and 90% in a lab setting using 2.54 cm diameter pumps. Also, the performance of a large-scale pumps of 10.16 cm diameters were also tested in an aquaculture raceway to determine its effect on the operation. The numerical results were found to be in agreement with the experiments within ±20% which is considered very reasonable for multiphase flow analysis. The present study was found to present a great tool for modelling the airlift pump performance, and potentially proposing new designs.  相似文献   
3.
提出了一种直接利用燃煤电站余热淡化海水装置,从理论上研究了最高海水温度对系统性能的影响,分析了最高盐水温度对装置的造水比和冷却海水流量的影响以及该系统的经济性。结果表明:该系统能耗小,淡化成本低,同时利用了大量余热,证明该装置具有较大的应用前景。  相似文献   
4.
Dissolved oxygen (DO) is a key ecological factor to measure the quality of water in the aquaculture. As the pond water body is affected by the breeding environment, the spatial distribution of DO shows a certain law in the entire pond. Therefore, to simulate the distribution of DO in aquaculture waters and grasp the temporal and spatial variation of DO is the key to achieving precise regulation of DO. For this purpose, this paper proposed a method for simulating the temporal and spatial distribution of DO in pond culture based on a sliding window-temporal convolutional network together with trend surface analysis (SW-TCN-TSA). This paper first utilized SW to construct DO data sets with different prediction durations, and then used the improved TCN model to realize one-dimensional time series prediction for DO at single monitoring point. Based on the prediction results of DO, a TSA method was performed on the predicted values of DO at the extreme moments of all discrete monitoring points, so as to realize the simulation of the temporal and spatial distribution of DO in the pond. Experimental results show that the SW-TCN model has better prediction performance for one-dimensional time series prediction of DO. Compared with traditional deep networks, such as CNN, GRU, LSTM, CNN-GRU and CNN-LSTM, the values of evaluation indicators (MSE, MAE and RMSE) have been greatly improved. In the process of trend surface fitting, all fitting R2 of DO at different water depths are higher than 0.9, indicating that the TSA can accurately reflect the temporal and spatial distribution of DO. This method can provide a basis for the prediction and early warning of DO in the three-dimensional space of the pond and has high practicability in aquaculture.  相似文献   
5.
The net is regarded as the most critical component in marine aquaculture facilities as it is the only barrier which protects the environment from fish escapes. Accurate predictions of the net cage deformation and drag force on the nets are needed, both for ensuring fish welfare and for dimensioning of the mooring system. Thus, an appropriate hydrodynamic model is essential. In practice, two types of hydrodynamic force models, i.e., the Morison type and the Screen type, are commonly used to calculate the hydrodynamic forces on nets. Application of the models depends on the underlying structural model and the availability of data. A systematic review of hydrodynamic models is therefore undertaken to compare the models and various parameterisations, in aid of model selection during the design. In this study, eleven commonly used hydrodynamic models, i.e., five Morison models and six Screen models, are reviewed comprehensively, and implemented into a general finite element (FE) solver for dynamic simulations. Sensitivity studies on different current velocities, inflow angles and solidities of the nets are carried out. Moreover, different wake effects are also considered in numerical simulations. The numerical results from different models are compared against existing experimental data under pure current conditions. Suggestions for selection of suitable hydrodynamic models are provided, based on the model comparison.  相似文献   
6.
This work proposes a method for the statistical monitoring of the weekly weight of shrimp in a fish farm. The design of control charts for shrimp growth presents several challenges, the main ones being the presence of trend and autocorrelation. Several control charts are proposed, the most efficient being a chart based on the residuals of a second order autoregression whose parameters vary with the week. A control chart with less computational complexity is also provided. It is simply based on growth rates and works well at detecting negative weight changes. Real data from a large shrimp farm has been used for both the design and the evaluation.  相似文献   
7.
The design of aquaculture systems requires an understanding of the drag forces on cultivated kelp. This study measured the drag on line segments of cultivated Saccharina latissima in a towing tank. The drag on segments of farm line with full kelp bundles and with stipes alone (fronds removed) was measured at tow speeds of 0.10 to 0.50 m/s. The drag on individual fronds cut from the line was also measured. Video images were collected to evaluate the plant reconfiguration. Both kelp blades and stipes contributed to the total drag force on the line bundle. Within the velocity range of our experiments, the kelp blades were essentially horizontal. However, the pronation of kelp stipes increased as flow velocity increased. The reconfiguration of kelp stipes was observed to decrease the vertical extent of the kelp bundle. Due to this reconfiguration, the measured force, F, increased with velocity, U, at a rate slower than quadratic, and was consistent with scaling laws derived for reconfiguration. Specifically, FUα with α=1.35±0.17.  相似文献   
8.
The venturi aeration is an effective practice to increase the dissolved oxygen accessibility in the water bodies. This study aims to optimize the various geometrical parameters of the venturi aeration system. A non-dimensional technique was applied to find the optimum performance of various geometric parameters i.e. throat lengths (tl), number of air holes (N), and converging and diverging angles (α and β). These experiments have been carried out using 1124 L capacity of tank having dimensions of 105 cm long, 105 cm wide and 102 cm deep. The experiments were conducted at a constant flow velocity of water (1.096 m/s) with varying throat length (tl = 20–100 mm keeping 20 mm as interval between two consecutive length), number of air holes (N = 1–17 at an equal hole to hole distance of 5 mm between them), and converging and diverging angles (α and β = 10°, 15°, 20° and 25°). Multiple non-linear regression equations were also developed from the linear relation with the dependent variable (Non-dimensional form of standard aeration efficiency, NDSAE) and independent variables (tl and N). With the geometrically optimized venturi aerator the optimum performance was found for tl =100 mm, N = 17, and α and β = 15°. The maximum value of standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) obtained was 0.0216 kgO2/h and 0.611 kgO2/kWh respectively. From the non-dimensional study, it was found that the NDSAE is the function Reynolds number (Re) and Froude number (Fr). The simulation equations were developed on the basis of Re and Fr for NDSAE, and subjected to 7.378 × 10−6 < Re < 3.689 × 10-5 and 0.163 < Fr < 0.817, respectively.  相似文献   
9.
A survey was conducted to determine the geometry, operating parameters, and other key features of large circular or octagonal culture tanks used to produce Atlantic salmon smolt and post-smolt at six major Norwegian Atlantic salmon production companies. A total of 55 large tanks were reported at seven land-based hatchery locations, i.e., averaging 7.9 (range of 4–12) large tanks per land-based site. In addition, one 21,000 m3 floating fiberglass tank in sea was reported. Culture volume ranged from 500 to 1300 m3 for each land-based tank. Most tanks were circular, but one site used octagonal tanks. Land-based tank diameters ranged from 14.5 to 20 m diameter, whereas the floating tank was 40 m diameter. Maximum tank depths ranged from 3.5 to 4.5 m at land-based facilities, which produced diameter-to-average-depth ratios of 3.6:1 to 5.5:1 m:m. The floating tank was much deeper at 20 m, with a diameter-to-average-depth ratio of only 2.4:1 m:m. All land-based tanks had floors sloping at 4.0–6.5% toward the tank center and various pipe configurations that penetrated the culture tank water volume at tank center. These pipes and sloping floors were used to reduce labor when removing dead fish and harvesting fish.Maximum flow ranged from 3 to 19 m3/min per land-based tank, with 400 m3/min at the floating tank, but tank flow was adjustable at most facilities. Land-based tanks were flushed at a mean hydraulic retention time (HRT) of 35–170 min. Maximum feed load on each land-based tank ranged from 525 to 850 kg/day, but the floating tank reached 3700 kg/day. Almost half of the large tanks reported in this survey were installed or renovated since 2013, including the three tank systems with the highest flow rate per tank (greater than 17.6 m3/min). These more recent tanks were operated at more rapid tank HRT’s, i.e., from 34.8 to 52.5 min, than the 67–170 min HRT typical of the large tanks built before 2013. In addition, flow per unit of feed load in land-based tanks that began operating before 2010 were lower (19–30 m3 flow/kg feed) than in tanks that began operating later (33–40 m3 flow/kg feed). In comparison, the floating tank operates at a maximum daily tank flow to feed load of 160 m3 flow/kg feed, which is the least intensive of all tanks surveyed. Survey results suggest that the recently built tanks have been designed to operate at a reduced metabolic loading per unit of flow, a tendency that would improve water quality throughout the culture tank, all else equal. This trend is possible due to the ever increasing application of water recirculating systems.  相似文献   
10.
The food grade agar in India has been almost exclusively obtained from Gracilaria edulis, but the industrial production overwhelmingly relies on exploitation of natural resources. United Nations efforts through Food and Agriculture Organization under Bay of Bengal Program highlighted the necessity of undertaking commercial farming of this species along Indian coast for socio-economic benefits. The pilot-scale experiments established viability of large-scale cultivation by floating raft method. Nevertheless, drastic reduction in yield and quality during summer months due to enhanced sedimentation and severe epiphytism is found to be a major hindrance. Altering the positioning of rafts from horizontal to vertical alignment improved the growth and yield under open sea condition at two different locations along south east coast of India. The average yield in horizontal raft was found to be 3.08 ± 0.61 kg fr wt raft−1 with corresponding DGR of 1.87 ± 0.63% day−1 while same in case of vertical rafts was 13.76 ± 3.86 kg fr wt raft−1 and 5.00 ± 0.5% day−1 in Gulf of Mannar under 45 days growth cycle. The corresponding values along Palk Bay were 2.98 ± 0.52 g fr wt raft−1 and 1.38 ± 0.42% day−1 for horizontal raft and 13.02 ± 6.06 kg fr wt raft−1 and 4.14 ± 1.18% day−1 for vertical raft. ANOVA clearly indicated that raft position significantly influenced the biomass yield and DGR at Palk Bay (F = 75.77; F = 112.81) as well as Gulf of Mannar (F = 27.21; F = 59.16) at p = 0.001. The increment of 1.9–2.6% in fresh weight of individual frond was reported in vertically aligned rafts. The computational fluid dynamics (CFD) based unsteady numerical simulations have confirmed that vertical alignment of raft facilitates relatively free movement of water due to which sedimentation and epiphytism are either minimised or eliminated. Thus these studies can help us to deduce important conclusions pertaining to management of sustained commercial cultivation of this alga in Indian waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号