全文获取类型
收费全文 | 307篇 |
免费 | 27篇 |
国内免费 | 46篇 |
专业分类
林业 | 26篇 |
农学 | 35篇 |
基础科学 | 30篇 |
89篇 | |
综合类 | 154篇 |
农作物 | 6篇 |
水产渔业 | 8篇 |
畜牧兽医 | 15篇 |
园艺 | 6篇 |
植物保护 | 11篇 |
出版年
2024年 | 10篇 |
2023年 | 24篇 |
2022年 | 18篇 |
2021年 | 23篇 |
2020年 | 20篇 |
2019年 | 23篇 |
2018年 | 10篇 |
2017年 | 22篇 |
2016年 | 26篇 |
2015年 | 15篇 |
2014年 | 18篇 |
2013年 | 20篇 |
2012年 | 20篇 |
2011年 | 22篇 |
2010年 | 9篇 |
2009年 | 12篇 |
2008年 | 7篇 |
2007年 | 16篇 |
2006年 | 5篇 |
2005年 | 5篇 |
2004年 | 3篇 |
2002年 | 3篇 |
2001年 | 7篇 |
2000年 | 1篇 |
1999年 | 7篇 |
1998年 | 3篇 |
1997年 | 7篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 3篇 |
排序方式: 共有380条查询结果,搜索用时 15 毫秒
1.
矿区生态是陆地生态系统的重要组成部分,准确监测矿区生态对保护生态环境、维持生态平衡具有重要意义。遥感技术为矿区生态监测提供了有效手段,针对遥感生态指数(remote sensing ecological index,RSEI)在矿区生态监测中存在监测精度低、针对性弱和指标权重空间上均一化问题,该研究对RSEI进行了改进。首先,考虑矿区特殊的生态成因,在绿度、热度、湿度、干度的基础上加入煤尘污染因子构成矿区遥感生态指数;然后,利用地理加权主成分分析法确定各指标的空间权重,构建了地理加权遥感生态指数(geographically weighted-remote sensing ecological index,GW-RSEI);最后,以山西省大同煤田为例,基于多期遥感影像对GW-RSEI在矿区生态监测中的有效性、适用性进行了验证。结果表明:GW-RSEI能准确捕捉矿区大气中的煤尘污染,从整体和局部尺度实现了矿区生态的精准监测,有效提高了矿区生态监测的精度;地理加权主成分分析法能够明确表征矿区生态的空间异质性和生态环境变化的空间连续性;2000—2020年大同煤田的GW-RSEI均值分别为0.51、0.48、0.46、0.59、0.56,整体生态环境经历了先恶化后改善的过程,其东南部生态环境变化趋势与整体一致,而西北部生态环境呈现先改善后恶化的变化趋势。研究成果为准确监测矿区生态提供了一种更加科学、有效的方法。 相似文献
2.
头足类是最具开发潜力的渔业种群之一,然而其资源易受环境变化影响,复杂的交互作用致使二者空间关系呈现非均一性。中国枪乌贼 (Uroteuthis chinensis) 是南海北部近海重要的经济物种,且在渔业群落结构中占据优势种地位,故正确理解与掌握该物种资源-环境关系的空间特征,有助于该资源的保护与利用。基于南海北部近海2014年夏季的渔业资源调查数据,构建了地理权重回归模型 (Geographical weighted regression, GWR),探索该海域中国枪乌贼的资源分布与海洋环境关系的空间特征,阐述主要影响因子。模型评价指标结果表明,GWR的最小赤池信息准则 (Akaike Information Criterion, AIC) 和校正决定系数 (Adjusted R-Squared, Uroteuthis chinensis is an important economic species in the offshore waters of northern South China Sea, occuping a dominant position in the fishery community structure. Therefore, understanding the spatial characteristics of the resource-environment relationship is beneficial to its development, utilization and protection. Based on the fishery resources survey data in the offshore waters of northern South China Sea in summer of 2014, we established a geographically weighted regression (GWR) model to explore the spatial characteristics of the relationship between the resource distribution of U. chinensis and the marine environment in this area, and to reveal the main influencing factors. The results of model evaluation indexes show that the minimum Akaike information criterion (AIC) and adjusted R-Square (Zea mays L.) inbred line B73, and calculated the gene expression level of the whole genome. Through filtering out the genes with low expression level we finally got 22,426 genes with high expression level to construct the gene expression matrix. We utilized the different tissues as the trait to construct the trait matrix. The weighted gene co-expression network analysis packages of R software was used to perform the co-expression network analysis, and 20 co-expression modules were identified. We finally obtained 14 tissue specific modules which were highly correlated with traits (r > 0.65). The enrichment analysis tool Agrigo was taken to perform the GO enrichment of the tissue specific module genes, all the 14 tissues could be enriched in GO terms. Flowering is one of the important agronomic traits in the life cycle of maize controlled by external environment signals and genetic factors. Maize flowering not only represents the transition from the vegetative growth to reproductive growth, also relates to grain yield, plant height and resistance. In our research, we detected eight tissue specific modules, which could be obtained within flowering time related pathways. In addition, 17 flowering genes which have been reported in the literatures were assigned to the co-expression modules, and mainly assigned to the Blue and Darkmagenta modules. Therefore, we focused on the network of Blue and Darkmagenta modules. Our research calculated the gene expression abundances, and detected several flowering time related modules, which will contribute to revealing the genetic mechanism of maize flowering time regulation. 相似文献
3.
In order to study the influence on water temperature raise of river water source heat pump tail water discharged in different methods, the real sensor network is established by using digital temperature sensors. The simulation experiments of different discharging methods of river water source heat pump are carried out, including submerged-type discharge, surface-type discharge and jet-type discharge with 12 effluent ways. By using weighted average method, the preferred values of such factors as the average temperature raise,the temperature raise variance, the biggest temperature raise value, and the number of temperature measure points above the temperature raise average value are calculated. Moreover, the experiment results are analyzed by the three-dimensional figures of water temperature raise, which shows that jet-type discharge is better than submerged-type discharge and surface-type discharge,and the double-port way is better than single-port way. In addition, the double-port way along with the current in surface-type discharge method is the one that exerts least influence on river water temperature raise. 相似文献
4.
5.
为探索适用于海南岛日最低、最高气温空间插值的方法,研究以经度、纬度、海拔、坡度、坡向、海陆距离、NDVI等为环境变量,采用多元线性回归(multiple linear regression,MLR)、地理加权回归(geographically weighted regression,GWRK)、多元线性回归克里格(multiple linear regression-Kiging,MLRK)和地理加权回归克里格(geographically weighted regression-Kriging,GWRK)等4种方法对海南岛2016年1月1日—6月30日的日最低、最高气温进行了插值。结果表明:4种方法对日最低气温插值的总的平均绝对误差:MLRGWRGWRKMLRK,但GWR、GWRK、MLRK对日最低气温插值的总的平均绝对误差十分接近,对日最高气温有相同的规律。MLRK对日最低、最高气温的总体平均绝对误差分别为0.50℃和0.73℃。GWRK、MLRK对逐日最低气温插值的平均绝对误差也十分接近,对日最高气温也有相同的规律。无论是对日最低气温还是对日最高气温,MLRK、GWRK插值空间分布的主要差异均在站点稀疏的山区。因此,在海南岛,宜采用多元回归克里格(MLRK)对日最低、最高气温进行空间插值。 相似文献