全文获取类型
收费全文 | 111篇 |
免费 | 3篇 |
国内免费 | 37篇 |
专业分类
林业 | 4篇 |
农学 | 2篇 |
基础科学 | 61篇 |
39篇 | |
综合类 | 40篇 |
农作物 | 2篇 |
水产渔业 | 2篇 |
畜牧兽医 | 1篇 |
出版年
2024年 | 8篇 |
2023年 | 18篇 |
2022年 | 24篇 |
2021年 | 33篇 |
2020年 | 14篇 |
2019年 | 10篇 |
2018年 | 7篇 |
2017年 | 2篇 |
2013年 | 2篇 |
2012年 | 4篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2000年 | 1篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
排序方式: 共有151条查询结果,搜索用时 0 毫秒
1.
小白菜是中国种植面积较广、深受大众喜爱的蔬菜,但真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YOLOPC小白菜虫害识别模型。首先,引入CBAM(Convolutional Block Attention Module)注意力机制,将其放在CBS(卷积层Convolution+归一化层Batch normalization+激活函数层SILU)的输入端构成CBAM-CBS的结构,动态调整特征图中各个通道和空间位置的权重;使用上采样和1×1卷积操作来调整特征图的尺寸和通道数,实现不同层次特征的融合,增强模型的特征表示能力。同时,改进损失函数,使其更适合边界框回归的准确性需求;利用空洞卷积的优势提高网络的感受野范围,使模型能够更好地理解图像的上下文信息。试验结果表明,与改进前的YOLOv5s模型相比,YOLOPC模型对小白菜小菜蛾和潜叶蝇虫害检测的平均精度(mean Average Precision, mAP)达到91.40%,提高了12.9个百分点;每秒传输帧数(Frame Per Second, FPS)为58.82帧/s,增加了11.2帧/s,增加幅度达23.53个百分点;参数量仅为14.4 MB,降低了25.78个百分点。与经典的目标检测算法SSD、Faster R-CNN、YOLOv3、YOLOv7和YOLOv8相比,YOLOPC模型的平均精度分别高出20.1、24.6、14、13.4和13.3个百分点,此外,其准确率、召回率、帧速率和参数量均展现出显著优势。该模型可为复杂背景下小白菜虫害的快速准确检测提供技术支持。 相似文献
2.
投喂作为水产养殖过程中的一个关键环节,饵料的投喂量直接影响水产品的质量和养殖成本。然而,目前的投喂方法包括人工投喂和机器定时定量投喂,大多依靠人工经验,很难实现精准投喂。本文基于改进的ResNet34识别鱼群不同的饱腹程度。根据鱼群在不同饱腹阶段表现的摄食行为创建了含有5种不同饱腹程度的数据集,并采用数据增强操作对图像进行预处理。其次在原始模型ResNet34的基础上,本文提出使用坐标注意力机制,使模型在对图像进行特征提取的过程中能够做到专注于更大区域范围。并且使用深度可分离卷积的方式来代替传统卷积,减少模型参数量。为了评估改进的有效性,分析了改进后的模型在鱼群饱腹程度数据集上的性能,并将其与原模型ResNet34、AlexNet、VGG16、MobileNet-v2、GoogLeNet等经典卷积神经网络架构进行比较。综合实验结果表明,该模型相较于原模型参数量减少46.7%,准确率达到93.4%,相较于原模型提升3.4个百分点,同时改进后的模型在准确率、精确度、召回率等方面也都优于其他卷积神经网络。综上所述,本模型实现了性能与参数量之间的良好平衡,为后续模型在实际养殖环境中的部署并指导养殖户改善和制定投喂策略提供了可能。 相似文献
3.
Sarah Pemberton Thomas F. Odom Keren E. Dittmer Matthew A. Kopke Jonathan C. Marshall Valerie J. Poirier Mark C. Owen 《Veterinary radiology & ultrasound》2020,61(2):147-156
Hypoattenuating ocular lenses on CT have been described with cataract formation in humans, however published studies are currently lacking regarding this finding in veterinary patients. The purpose of this retrospective and prospective study was to describe the varying CT appearances of the ocular lens in vivo, and investigate the causes for CT density variations in a population of cats and dogs. A total of 102 canine and feline patients with CT of the head acquired at the authors’ hospital between May 2011 and March 2019 were included. A bilateral hypoattenuating halo surrounding an isoattenuating to mildly hypoattenuating core was described in the ocular lens center of every cat in which a Philips brand proprietary image construction filter was used. A similar but more varied hypoattenuating region was noted in the lenses of 45.8% of dogs where the same filter was applied, as well as 43.8% of dogs with a second, similar filter. Ophthalmic examination of three live cats and one dog with hypoattenuating lenses demonstrated normal lens translucency, excluding the presence of cataract. The effect of different proprietary filters on lens appearance was also described in three fresh cadavers with normal lenses identified on ophthalmic, macroscopic, and microscopic examination. Etiology of the hypoattenuating areas within the ocular lens was not conclusively determined. Recognition that such a variant may be seen in the absence of cataract is important, in order to prevent misdiagnosis. 相似文献
4.
农田障碍物的精确识别是无人农业车辆必不可少的关键技术之一。针对果园环境复杂难以准确检测出障碍物信息的问题,提出了一种改进单次多重检测器(Single shot multibox detector,SSD)深度学习目标检测方法,对田间障碍物中的行人进行识别。使用轻量化网络MobileNetV2作为SSD模型中的基础网络,以减少提取图像特征过程中所花费的时间及运算量,辅助网络层以反向残差结构结合空洞卷积作为基础结构进行位置预测,在综合多尺度特征的同时避免下采样操作带来的信息损失,基于Tensorflow深度学习框架,在卡耐基梅隆大学国家机器人工程中心的果园行人检测开放数据集上进行不同运动状态(运动、静止)、不同姿态(正常、非正常)和不同目标面积(大、中、小)的田间行人识别精度和识别速度的对比试验。试验表明,当IOU阀值为0. 4时,改进的SSD模型田间行人检测模型的平均准确率和召回率分别达到了97. 46%和91. 65%,高于改进前SSD模型的96. 87%和88. 51%,并且参数量减少至原来的1/7,检测速度提高了187. 5%,检测速度为62. 50帧/s,模型具有较好的鲁棒性,可以较好地实现田间环境下行人的检测,为无人农机的避障决策提供依据。 相似文献
5.
6.
为保证山地果园索道安全稳定运行,并在网络环境较差的山地果园实现对索道驱动系统轴承故障诊断,该研究提出了一种一维端对端轻量化CNN检测方法1D-MRL-CNN(one-dimensional mountain ropeways lightweight convolutional neural network ),直接对采集到的一维振动信号进行检测。基于残差结构(residual structure)和深度可分离卷积(deep separable convolution),引入BN(batch normalization)层,在保证检测精度的同时大幅度降低模型的参数量和复杂度,并提升鲁棒性和泛化能力,适用于索道的变负荷工作状态;采用改进stem block模块、h_swish激活函数并在主体模块最后一层添加通道注意力机制(squeeze and excitation, SE),提高网络模型的特征提取能力。为了验证模型的综合性能、变负荷工况下的稳定性以及抗噪声干扰性能,利用帕德博恩(paderborn university, PU)和凯斯西储(case western reserve university, CWRU)数据集进行试验验证。PU数据集试验结果表明,该方法故障分类准确率达99.43%,相比同类最优网络分类准确率提高0.97个百分点;参数量为83.44 kB,分别是Resnet18、VGG16、MobileNetV3-large和ShuffleNetV1模型的2.19%、0.81%、2.84%和3.31%。CWRU数据集试验结果表明,该方法在变负荷工况下的平均准确率达96.70%,比Resnet18、WDCNN和MobileNetV3-large网络分别高9.1、4.7和10.5个百分点;在4种噪声工况下的平均识别准确率达99.14%,比Resnet18、WDCNN和MobileNetV3-large网络分别高4.74、1.24和5.51个百分点。最后通过自建数据集对模型的实际工况故障分类效果进行验证,1 400个样本中仅有2个故障样本预测错误,准确率达99.86%。本研究的网络模型参数量小、准确率高,在变负荷和有噪声的工况下鲁棒性较高,适用于山地果园运输索道的轴承故障检测。 相似文献
7.
为实现夜间树上金蝉若虫的快速准确检测,该研究以自然环境图像数据集为研究对象,结合近距离实际应用场景,考虑到嵌入式系统的模型小型化和计算过程轻量化,在保持精度指标基本不变的前提下,基于适度削减模型深度、宽度的思路对已有目标检测网络MobileNet-SSD提出改进。具体措施包括:删除骨干网络末端的小尺寸特征图卷积层,逐级裁剪模型整体宽度、适当增加中高层卷积深度,在目标检测的分类层和预测框的回归层中使用深度可分离卷积代替传统3×3卷积等措施,先后获取3种改进的精简模型以进行比较。夜间图像测试结果表明,在基本保持网络性能的前提下,改进后的模型大小及计算量均呈现大幅减小,其中最优模型大小从原MobileNet-SSD的15.22 MB减少到1.51 MB,模型的浮点运算量也由原先的1.13×109减少到1.26×108,其平均准确率达90.46%,平均交并比达83.52%,F1分数达92.35%,GPU上的检测速度达179.3帧/s,CPU上的检测速度达到6.49帧/s,与改进前的模型相比具有更好的综合性能,白天图像的试验结果也显示出较好的泛化性能。该文提出的改进模型在大幅减少模型大小及其计算量的同时使模型性能保持在一个较高的水平,更适合部署在移动终端等资源受限设备上,可为金蝉的人工养殖提供有益参考。 相似文献
8.
基于卷积神经网络的空心村高分影像建筑物检测方法 总被引:1,自引:0,他引:1
基于卷积神经网络(CNN)提出了一种适用于空心村高分影像的建筑物自动检测方法,该方法利用多尺度显著性检测来获取包含建筑物信息的显著性区域,然后通过滑动窗口获取显著性区域内目标样本块,再将这些样本块输入训练好的CNN并结合SVM来实现分类。为检验方法有效性,选取高分影像进行实验,结果表明,显著性检测能够有效地获取主要目标,减弱其他无关目标的影响,降低数据冗余;卷积神经网络能够自动学习高层次的特征,基于CNN对高分影像进行建筑物检测,分类准确度可以达到97.6%,表明该方法具有较好的鲁棒性和有效性。 相似文献
9.
为实现加工车间刺梨果实的快速识别,提出一种基于改进的RetinaNet刺梨果实图像的识别方法。基于RetinaNet的模型,对RetinaNet框架中Focal loss的bias进行改进,使其能根据不同的情况控制bias的取值,再运用维度聚类算法找出Anchor的较好尺寸并匹配到相对应的特征层,对卷积神经网络结构进行优化。通过改进RetinaNet目标检测算法对7426幅刺梨果实图像进行检测识别,并与原始RetinaNet目标检测算法对比。试验结果表明:改进的RetinaNet网络模型识别方法对6类刺梨果实的识别率分别为99.47%、91.42%、96.92%、90.92%、96.89%和93.53%,平均识别率为94.86%;相对于原始RetinaNet目标检测算法,改进算法的识别准确率提高4.21%,单个刺梨果实检测时间由60.99 ms缩减到57.91 ms,检测时间缩短5.05%。本文改进算法对加工车间刺梨果实的识别具有较高的正确率和实用性。 相似文献
10.
机器视觉因具有检测速度快、稳定性高及成本低等优点,已发展成为禽蛋无损检测领域主流检测手段。使用该技术对禽蛋进行无损检测时,需要依赖大量禽蛋图像作为数据支撑才能取得较好的检测效果。由于养殖安全等限制,禽蛋图像数据的采集成本较高,针对该问题,提出了一种适应于小样本禽蛋图像检测的原型网络(Prototypical network)。该网络利用引入注意力机制的逆残差结构搭建的卷积神经网络将不同类别的禽蛋图像映射至嵌入空间,并利用欧氏距离度量测试禽蛋图像在嵌入空间的类别,从而完成禽蛋图像的分类。本文利用该网络分别验证了小样本条件下受精蛋与无精蛋、双黄蛋与单黄蛋及裂纹蛋与正常蛋的分类检测效果,其检测精度分别为95%、98%、88%。试验结果表明本文方法能够有效地解决禽蛋图像检测中样本不足的问题,为禽蛋图像无损检测研究提供了新的思路。 相似文献