排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
基于拖拉机作业轨迹的农田面积测量 总被引:2,自引:1,他引:2
为了精确测量拖拉机在农田作业时的作业面积,以评价拖拉机的作业效率。该文选用双星定位(GPS卫星和伽利略卫星)接收机采集定位数据,采用自适应卡尔曼滤波算法提高接收机单点定位精度,利用高斯投影算法将GPS接收机采集经纬度转化成平面坐标来计算面积。选用回耕法、梭形耕法、套耕法3种方法旋耕地块,利用安装拖拉机上的GPS识别出作业轨迹,利用图像处理计算3种方法的有效作业面积、实际作业面积和重漏耕面积。试验表明:卡尔曼滤波提高了GPS单点定位精度;面积测量相对误差为2.09%;地块1(回耕法)漏耕率为14.29%,重耕率为6.19%,地块2(梭形耕法)漏耕率为10.72%,重耕率为5.54%,地块3(套耕法)漏耕率为1.80%,重耕率为6.82%。随测量面积增加,测量精度越高;套耕法效率最高,梭形耕法其次;回耕法的漏耕率最大,作业效率最低。 相似文献
2.
[目的]拖拉机在田间转向过程状态多变且环境恶劣,对转向系统控制精度和算法适应能力要求较高,故研究设计变论域两级模糊PID控制方法在拖拉机电液转向系统上的应用.[方法]在分析了电液转向系统的结构原理的基础上,建立了其主要组成部分数学模型,然后将变论域两级模糊PID方法(VFFPID)引入到控制器设计中,进行蛇形跟随性、转向响应性仿真试验,并同时与模糊PID控制算法(FPID)和基于函数型变论域模糊PID算法(XFPID)作对比分析.[结果]蛇形跟随性试验结果表明:拖拉机电液转向系统在VFFPID的控制下,转向油缸位移最大误差只有±1.43 mm,比FPID降低了49.5%,比XFPID降低了40.7%.响应性试验结果表明:在VFFPID控制下,转向油缸执行响应时间为0.123 1 s,比FPID缩短了17.8%;转向油缸位移平均误差为0.121 9 mm,是XFPID的28.3%.[结论]拖拉机电液转向在VFFPID的控制下油缸位移最大误差、平均误差更小,执行响应时间更短,具有更好的跟随性和控制精度. 相似文献
3.
拖拉机线控液压转向系统的联合仿真 总被引:2,自引:0,他引:2
随着农业机械的智能化、自动化程度不断提高,线控转向技术在拖拉机等农用车辆上的应用得到了重视和研究,为了指导拖拉机线控液压转向的研究,缩短开发周期。本文在分析线控液压转向系统的控制算法与结构的基础上,建立其联合仿真模型。基于AMESim软件平台建立液压系统模型,以及整车模型;利用Simulink分别建立模糊免疫PID、模糊PID、常规PID的控制器模型,通过Visual C++6.0实现接口通讯,完成了传动比为1时的转角响应、转角跟随的联合仿真,以及在拖拉机车速15 km/h,方向盘转角180°,传动比为9时的横摆角速度响应、质心侧偏角响应等联合仿真。模糊免疫PID控制可以获得0.272 s的阶跃响应时间、1.182°的跟随误差、3%的横摆角速度响应超调量、0.85°/s的质心侧偏角响应稳态值,均优于常规PID与模糊PID。联合仿真具有较强的参考价值,模糊免疫PID控制应用于线控液压转向系统可以获得理想的控制效果。 相似文献
4.
基于CAD建立了FSAE"宁远02"赛车的二维三视图模型,获得了前悬架的关键硬点坐标,在ADAMS中建立了前悬架多刚体动力学模型并进行了平行轮跳仿真,通过分析仿真结果,对前轮外倾角、主销后倾角、前束、主销内倾角为优化目标,运用了ADAMS/Insight,采用二水平部分因子实验设计方法,对影响前轮定位参数因素进行灵敏度分析,优化了灵敏度较高的因素。优化后前轮定位参数随轮跳的变化得到了改善,有利于提高整车的操纵稳定性。 相似文献
5.
轮式拖拉机线控液压转向系统路感特性与评价 总被引:1,自引:3,他引:1
针对路感特性是线控转向技术的难点之一,设计与评价了轮式拖拉机线控液压转向系统的路感特性。分析了路感的评价指标、产生机理及拖拉机等农用车辆行车环境差异大的特殊性;实测了拖拉机在旱地、土路、水泥路、沥青路等路面上的原地转向与行驶时的转向阻力,以指导设计模式化路感特性与模式识别系统。农田作业模式侧重于路感的轻便性,驾驶员作用在方向盘上的切向力为2~10.127 N,车速低于11 km/h;非农田作业模式侧重于路感的真实度,切向力范围为2.5~52.5 N,车速低于30 km/h。完成了路感的主观评价,评价结果表明模式化路感特性可以令驾驶员满意。设计的模式化路感可以有效改善拖拉机的驾驶感觉,推动线控液压转向系统的发展。 相似文献
6.
拖拉机线控液压转向系统采用的单杆液压缸具有非对称性,为了提高转向系统的控制精度,提出了双通道PID(proportional integral derivative)控制方法,对液压缸活塞杆伸出和缩回的运动进行分通道控制。基于Sim Hydraulics模块建立线控液压转向系统的物理模型,对转向轮的跟随响应、阶跃响应进行仿真试验;同时搭建了线控液压转向系统试验台,进行台架试验,从而分析双通道PID控制对转向系统的影响。仿真试验得出双通道PID控制的跟随误差为0.473°、响应时间为0.273 s,且左、右转向跟随误差基本一致,均优于单通道PID控制,台架试验结果与仿真试验的效果一致。结果表明,线控液压转向系统在双通道PID控制下响应快,跟随误差更小,具有良好的跟随性和较高的控制精度。 相似文献
7.
基于ANSYS Workbench的FSAE车架有限元分析 总被引:1,自引:0,他引:1
利用有限元方法对FSAE赛车车架进行静态强度以及运动学模态分析,运用三维软件CATIA建立车架CAD模型,通过工程分析软件ANSYS对其进行静态强度和模态分析,获得车架在不同工况下的变形量和强度载荷及不同阶数的固有频率和振型,检验车架的结构是否合理,并为其改进提供依据。 相似文献
8.
拖拉机线控液压转向路感特性设计 总被引:1,自引:0,他引:1
在分析拖拉机转向路感特性的基础上,采用转向油缸活塞杆受力和车速两个参数变量作为转向路感的信息来源,根据线控液压转向系统对转向路感特性的要求,选择了较为理想的曲线型转向路感特性曲线方案;分析了转向路感、转向油缸活塞杆受力及其与车速的关系;并采用试验测试方法,对全液压转向式拖拉机在泥土软地面条件下进行转向测试,得出了在所给定的不同车速下所对应的油缸活塞杆受力的最大值,并据此拟合出车速感应曲线,得出曲线型转向路感特性曲线图。结果表明,所设计的曲线型转向路感特性能很好地协调转向轻便性和路感之间的矛盾。 相似文献
9.
拖拉机线控液压转向系统设计及样车性能试验 总被引:1,自引:2,他引:1
拖拉机的转向系统是保证行驶安全、高效作业的关键机构,针对传统的全液压转向系统在转向过程中易发生转向沉重,甚至失灵等状况,该文提出一种拖拉机线控液压转向系统。论文首先对拖拉机线控液压转向系统进行总体设计,基于MATLAB软件的Simulink/Simhydraulic模块对线控液压转向系统进行动态建模和仿真分析,根据分析数据完成试验样车改装,利用改装样车分别进行转向系统的静态随机转动试验、蛇形试验、双纽线试验、稳态回转试验以及转向瞬态响应试验。通过试验分析得到线控液压转向系统在5个试验中理论与实际转向轮转角平均误差分别为1.58?,0.79?,1.09?,0.69?,0.47?。试验结果表明线控液压转向系统的理论与实际转角曲线吻合度更高,误差均低于全液压系统,转向误差精度有大幅度提高,性能更理想。拖拉机线控转向系统综合了液压和线控技术优点,在保证大动力输出的同时,又具有转向灵活,方便安装等特点,可为拖拉机线控转向系统推广应用提供参考。 相似文献
10.
路面行驶工况下拖拉机驱动轮滑转率的测试与分析 总被引:2,自引:0,他引:2
为测试拖拉机经常行驶的水泥路面、石子路面、软土路面工况驱动轮滑转率的变化情况,采用GPS法、雷达法、最小轮速法3种方法对拖拉机的行驶速度进行测试,驱动轮的轮速采用编码器进行测量;利用PCI1740数据采集卡采集各传感器信号,采用图形化编程软件Labview编程来实现数据的实时显示和存储,测试不同车速、不同路面行驶工况下拖拉机驱动轮滑转率。结果表明:软土路面上的打滑程度最大,水泥路面上打滑程度最低;在低速(一档、二档)时,拖拉机的滑转率为9.0%~13.6%;在高速(三档、四档)时,拖拉机的滑转率为3.26%~6.27%。GPS法测试时不受路面情况的影响,雷达法适合路面情况较好的环境,最小轮速法适合车速较高的时候;拖拉机的滑转率随着车速的增加呈减小的趋势。 相似文献
1