首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dietary fiber, resistant to host-mediated digestion in the small intestine due to lack of endogenous enzymes, impacts many facets of animal health and is associated with gut development especially in young monogastrics. Furthermore, it can be used as in-feed antibiotic alternative. Chicory (Cichorium intybus L.) forage with high content of pectin (uronic acids as building blocks) is a novel class of dietary fiber that is chemically different from cereal grains (with high content of arabinoxylans). In the present study, we investigated effects of dietary inclusion of chicory forage on digestibility, gut morphology and microbiota in broilers and young pigs. In the chicken experiment, 160 1-d old broiler chicks were fed 3 nutritionally balanced diets for 30 d including a cereal-based diet and 2 diets with part of the cereals substituted with 60 and 120 g/k9 chicory forage (CF60 and CF120], whereas in the pig experiment, 18 seven-wk old Yorkshire pigs were fed 3 diets for 18 d including a cereal-based diet and 2 diets with 80 and 160 g/kg chicory forage inclusion (CF80 and CF160). Our results showed that young pigs were capable to utilize chicory forage well with higher total tract apparent digestibility (TTAD) of all fiber fractions, particularly uronic acid, compared with the control (P 〈 0.01). In contrast, a decreased TTAD of all fiber fractions was observed in chickens fed on diet CF120 (P 〈 0.05). Moreover, diet induced changes in gut morphology were observed in the large intestine of chickens. The alteration of cecal mucosal thickness was further positively correlated with TTAD of non-starch polysaccharides (NSP) and its constituent sugars (P 〈 0.05). In addition, in pigs, terminal restriction fragment length polymorphism (T-RFLP) analysis of intestinal microbiota revealed substantial dietary effects (cereal control diet vs. chicory forage inclusion) on the relative abundance of 2 dominant bacterial phylotypes (Prevotella sp. vs. Roseburia sp.) respective  相似文献   

2.
The objective of this study was to determine the effect of offering animals a multiforage choice (MF) of fresh herbages on dry matter intake (DMI), live weight gain, and animal welfare, in comparison with a monotonous diet of ryegrass (Lolium perenne L.). Twenty ram lambs (30.5 ± 0.9 kg initial live weight; mean ± SEM), were randomly allocated to either a diet consisting of diverse MF choice or a single forage ryegrass (SF) diet (n = 10 per treatment) for 35 d. Both diets were fed ad libitum; however, the MF diet was composed of set dry matter ratios of 24% chicory (Cichorium intybus L.), 30% lucerne (Medicago sativa L.), 25% plantain (Plantago lanceolata L.), and 21% ryegrass. The DMI of the MF lambs was 48% greater (P < 0.01) and the within animal day-to-day coefficient of variation (CV) of intake was 26% lower (P < 0.01) than the SF lambs. The average daily gain (ADG) of lambs offered the MF diet was 92% greater (P < 0.01) than the lambs offered the SF diet. The within-animal day-to-day CV of intake was negatively related to ADG (r = −0.59; P < 0.01). The MF lamb’s urinary N concentration was 30% lower (P < 0.01) than that of the SF lambs. The SF lambs spent more time (P < 0.05) exhibiting stereotypic behaviors in the afternoon and spent more time observing other animals than the MF. Overall, allocating an MF choice of fresh herbages as opposed to a single forage diet of ryegrass increases DMI and thereby animal performance, while potentially reducing urinary N excretion.  相似文献   

3.

Background

Limited availability of fish meal and whey protein concentrate increases overall feed costs. Availability of increased number of supplemental amino acids including Lys, Met, Thr, Trp, Val, and Ile allows replacing expensive protein supplements to reduce feed costs. This study was to evaluate the effect of replacing fish meal and/or whey protein concentrate in nursery diets with 6 supplemental amino acids on growth performance and gut health of post-weaning pigs. Treatments were 1) FM-WPC: diet with fish meal (FM) and whey protein concentrate (WPC); 2) FM-AA: diet with FM and crystalline amino acids (L-Lys, L-Thr, L-Trp, DL-Met, L-Val, and L-Ile); 3) WPC-AA: diet with WPC and crystalline amino acid; and 4) AA: diet with crystalline amino acid.

Results

Pigs in FM-AA, WPC-AA, and AA had greater (P < 0.05) ADG and gain:feed than pigs in FM-WPC during wk 1 (phase 1). Plasma insulin concentration of pigs in AA tended to be greater (P = 0.064) than that of FM-WPC at the end of wk 1(phase 1). Plasma concentrations of IgG in AA was lower (P < 0.05) compared with WPC-AA and FW, and FM-AA had lower (P < 0.05) IgG concentration than WPC-AA at the end of wk 1 (phase 1). Concentration of acetate in cecum digesta in FM-AA tended to be greater (P = 0.054) than that of FM-WPC and WPC-AA. Concentration of isovalerate in cecum digesta of pigs in FM-AA was greater (P < 0.05) than that of FW and WPC-AA.

Conclusions

This study indicates that use of 6 supplemental amino acids can replace fish meal and/or whey protein concentrate without adverse effects on growth performance, immune status, and gut health of pigs at d 21 to 49 of age. Positive response with the use of 6 supplemental amino acids in growth during the first week of post-weaning may due to increased plasma insulin potentially improving uptake of nutrients for protein synthesis and energy utilization. The replacement of fish meal and/or whey protein concentrate with 6 supplemental amino acids could decrease the crude protein level in nursery diets, and potentially lead to substantial cost savings in expensive nursery diets.  相似文献   

4.
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs.  相似文献   

5.
Live yeast (Saccharomyces cerevisiae) constitutes an effective additive for animal production; its probiotic effect may be related to the concentrate-to-forage ratio (CTFR). The objective of this study was to assess the effects of S. cerevisiae (SC) on fiber degradation and rumen microbial populations in steers fed diets with different levels of dietary concentrate. Ten Simmental × Local crossbred steers (450 ± 50 kg BW) were assigned to a control group or an SC group. Both groups were fed the same basal diet but the SC group received SC supplementation (8 × 109 cfu/h/d through the ruminal fistula) following a two-period crossover design. Each period consisted of four phases, each of which lasted 17 d: 10 d for dietary adaptation, 6 d for degradation study, and 1 d for rumen sample collection. From the 1st to the 4th phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e., 30:70, 50:50, 70:30, and 90:10. The kinetics of dry matter and fiber degradation of alfalfa pellets were evaluated; the rumen microbial populations were detected using real-time PCR. The results revealed no significant (P > 0.05) interactions between dietary CTFR and SC for most parameters. Dietary CTFR had a significant effect (P < 0.01) on degradation characteristics of alfalfa pellets and the copies of rumen microorganism; the increasing concentrate level resulted in linear, quadratic or cubic variation trend for these parameters. SC supplementation significantly (P < 0.05) affected dry matter (DM) and neutral detergent fiber (NDF) degradation rates (cDM, cNDF) and NDF effective degradability (EDNDF). Compared with the control group, there was an increasing trend of rumen fungi and protozoa in SC group (P < 0.1); copies of total bacteria in SC group were significantly higher (P < 0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P < 0.05) but percentage of Selenomonas ruminantium was significantly higher (P < 0.05) in the SC group. In a word, dietary CTFR had a significant effect on degradation characteristics of forage and rumen microbial population. S. cerevisiae had positive effects on DM and NDF degradation rate or effective degradability of forage; S. cerevisiae increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced starch-degrading and lactate-producing bacteria.  相似文献   

6.
An experiment was conducted to evaluate the effects of including canola meal (CM) in diets for weaning pigs challenged with a F18 strain of Escherichia coli on growth performance and gut health. A total of 36 individually housed weaned pigs (initial body weight [BW] = 6.22 kg) were randomly allotted to one of the three diets (12 pigs/diet). The three diets were corn–soybean meal (SBM)-based basal diet (control diet) and the basal diet with 0.3% zinc oxide, 0.2% chlortetracycline, and 0.2% tiamulin (antibiotic diet) or with 20% CM diet. The diets were fed in two phases: Phase 1: days 0 to 7 and Phase 2: days 7 to 20. All pigs were given an oral dose of 2 × 109 CFU of F18 strain of E. coli on day 7. Fecal score was assessed daily throughout the trial. Dietary antibiotics increased (P < 0.05) overall average daily gain (ADG) and average daily feed intake (ADFI) compared by 48% and 47%, respectively. Dietary CM increased (P < 0.05) overall ADG and ADFI by 22% and 23%, respectively; but the ADG and ADFI values for CM-containing diet did not reach those for the antibiotics-containing diet. Dietary antibiotics reduced (P < 0.05) fecal score; however, dietary CM unaffected fecal score. Dietary antibiotics decreased (P < 0.05) liver weight per unit live BW by 16% at day 20, whereas dietary CM did not affect liver weight per unit live BW (29.2 vs. 28.6). Also, dietary antibiotics increased (P < 0.05) serum triiodothyronine and tetraiodothyronine levels for day 14, whereas dietary CM did not affect the serum level of these hormones. Dietary antibiotics reduced (P < 0.05) the number white blood cells and neutrophils by 38% and 43% at day 20, respectively, whereas dietary CM tended to reduce (P = 0.09) the number white blood cells by 19% at day 20. The number white blood cells for CM diet tended to be greater (P < 0.10) than that for antibiotics diet. The dietary antibiotics decreased (P < 0.05) the concentration of individual volatile fatty acids and hence of total volatile fatty acid in cecum by 61% at day 20, whereas dietary CM decreased (P < 0.05) cecal butyric acid concentration by 61% and tended to reduce (P < 0.10) total volatile fatty acid concentration by 30% at day 20. In conclusion, the dietary inclusion of 20% CM improved ADG and tended to reduce white blood cell counts. Thus, inclusion of CM in antibiotics-free corn-SBM-based diets for weaned pigs that are challenged with F18 strain of E. coli can result in their improved performance partly through a reduction of the inflammatory response.  相似文献   

7.
The objective of this study was to investigate the effects of total dietary fiber level on nutrient digestibility and the relationship between apparent total tract digestibility of total dietary fiber, and soluble dietary fiber, insoluble dietary fiber and available energy. Sugar beet pulp was as the only fiber source. The experiment was designed as a 6 × 6 Latin square with an adaptation period of 7 d followed by a 5-d total collection of feces and urine. Feed intake tended to decrease (P =0.10) as total dietary fiber level increased. The apparent total tract digestibility of dry matter, crude protein and gross energy decreased (P <0.01) when total dietary fiber increased but the digestibility of soluble dietary fiber and insoluble dietary fiber increased (P <0.01). The digestible energy and metabolizable energy content of diets decreased (P <0.01) as the total dietary fiber increased.  相似文献   

8.
The purpose of the current study was to assess the effects of substituting corn with ground brown rice on growth performance, immune status, and gut microbiota in weanling pigs. Seventy-two weanling pigs (28 d old with 6.78 ± 0.94 kg body weight [BW]) were randomly allotted to two dietary treatments with six pens and six pigs (three barrows and gilts) per pen within a randomized complete block design. The control pigs were fed a typical diet for weanling pigs based on corn and soybean meal diet (control diet: CON), and the other pigs were fed a formulated diet with 100% replacement of corn with ground brown rice for 35d (treatment diet: GBR). Growth performance, immune status, and gut microbiota of weanling pigs were measured. The substitution of corn with GBR did not affect growth performance or diarrhea frequency. Additionally, there were no differences in white blood cell number, hematocrit, cortisol, C-reactive protein, and serum tumor necrosis factor-alpha levels between pigs fed CON or GBR for the first 2 wk after weaning. However, weanling pigs fed GBR had lower (P < 0.05) serum transforming growth factor-beta 1 level than those fed CON. Furthermore, weanling pigs fed GBR had increased (P < 0.05) relative abundance of phylum Firmicutes and genus Lactobacillus and Streptococcus and decreased (P < 0.05) relative abundance of phylum Bacteroidetes and genus Clostridium and Prevotella in the gut microbiota compared with those fed CON. In conclusion, there was no significant difference in growth performance when corn was replaced with ground brown rice in diets for weanling pigs. Furthermore, the substitution of corn with ground brown rice in weaning diet modulated immune status and gut microbiota of pigs by increasing beneficial microbial communities and reducing harmful microbial communities. Overall, ground brown rice-based diet is a potential alternative to corn-based diet without negative effects on growth performance, immune status, and gut microbiota changes of weanling pigs.  相似文献   

9.

Background

To compare the nutritional value and digestibility of five quality protein maize (QPM) hybrids to that of white and yellow maize, two experiments were carried out in growing pigs. In experiment 1, the energy metabolizability and the nitrogen balance of growing pigs fed one of five QPM hybrid diets were compared against those of pigs fed white or yellow maize. In experiment 2, the apparent and standardized ileal digestibility (AID and SID, respectively) of proteins and amino acids from the five QPM hybrids were compared against those obtained from pigs fed white and yellow maize. In both experiments, the comparisons were conducted using contrasts.

Results

The dry matter and nitrogen intakes were higher in the pigs fed the QPM hybrids (P < 0.05) than in the pigs fed white or yellow maize. Energy digestibility (P < 0.001) and metabolizability (P < 0.01) were higher in the pigs fed the white and yellow maize diets than in those fed the QPM diets. The AID of lysine was higher (P < 0.01) in the QPM diets than in the white and yellow maize. The AIDs of leucine, isoleucine, valine, phenylalanine, and methionine were lower in the QPM diets than those of maize (white and yellow) (all P < 0.05). Maize (white and yellow) had greater SIDs of leucine, isoleucine, valine, phenylalanine, glutamic acid, serine, alanine, tyrosine, and proline (P < 0.05).

Conclusions

Based on these results, it was concluded that QPM had a lower metabolizable energy content and a higher amount of digestible lysine than normal maize.  相似文献   

10.
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA–) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA– in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA– (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA– pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA– fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA– (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.  相似文献   

11.
Although pork producers typically aim to optimize growth rates, occasionally it is necessary to slow growth, such as when harvest facility capacity is limited. In finishing pigs, numerous dietary strategies can be used to slow growth so pigs are at optimal slaughter body weights when harvest facility capacity and/or access is restored. However, the impact of these diets on pork carcass quality is largely unknown. Thus, this study aimed to evaluate the efficacy of dietary strategies to slow growth in late finishing pigs and evaluate their effects on carcass composition and pork quality. Mixed-sex pigs (n = 897; 125 ± 2 kg BW) were randomly allotted across 48 pens and assigned to 1 of 6 dietary treatments (n = 8 pens/treatment): (1) Control diet representative of a typical finisher diet (CON); (2) diet containing 3% calcium chloride (CaCl2); (3) diet containing 97% corn and no soybean meal (Corn); (4) diet deficient in isoleucine (LowIle); (5) diet containing 15% neutral detergent fiber (NDF) from soybean hulls (15% NDF); and (6) diet containing 20% NDF from soybean hulls (20% NDF). Over 42 d, pen body weights and feed disappearance were collected. Pigs were harvested in 3 groups (14, 28, and 42 d on feed) and carcass data collected. From the harvest group, 1 loin was collected from 120 randomly selected carcasses (20 loins/treatment) to evaluate pork quality traits. Overall, ADG was reduced in CaCl2, Corn, and 20% NDF pigs compared with CON pigs (P < 0.001). However, ADFI was only reduced in CaCl2 and 20% NDF pigs compared with CON (P < 0.001). Feed efficiency was reduced in CaCl2 and Corn pigs compared with CON (P < 0.001). Hot carcass weights were reduced in CaCl2 pigs at all harvest dates (P < 0.001) and were reduced in Corn and 20% NDF pigs at days 28 and 42 compared with CON pigs (P < 0.001). In general, CaCl2 and 20% NDF diets resulted in leaner carcasses, whereas the Corn diet increased backfat by 42 d on test (P < 0.05). Loin pH was reduced and star probe increased in CaCl2 pigs compared with CON pigs (P < 0.05); no treatments differed from CON pigs regarding drip loss, cook loss, color, firmness, or marbling (P ≥ 0.117). Overall, these data indicate that several dietary strategies can slow finishing pig growth without evidence of behavioral vices. However, changes to carcass composition and quality were also observed, indicating quality should be taken into consideration when choosing diets to slow growth.  相似文献   

12.
Currently, a wide array of plant preparations exerting health‐promoting properties are commonly used as feed additives. Among them, Cichorium intybus L. have gained considerable attention as a source of compounds showing prebiotic character. Large body of evidence suggests that products of prebiotic fermentation (short‐chain fatty acids) may influence the expression of genes encoding liver enzymes involved in the regulation of energetic metabolism. Given the above, the present study was aimed at estimating the influence of a diet supplemented with chicory root or water extract of chicory inulin on liver proteome in growing pigs. The study was performed on 24 castrated male piglets (PIC × Penarlan P76). Animals were assigned to three equal groups (n = 8) and fed cereal‐based isoenergetic diets: control and supplemented with 2% of inulin extract from chicory root or 4% of dried chicory root. Liver proteins were separated using two‐dimensional electrophoresis, followed by the identification of statistically valid protein spots with the aid of MALDI‐TOF mass spectrometry. Both experimental factors significantly modulated the expression of liver proteins associated with energetic metabolism, particularly those involved in cholesterol and triglyceride metabolism. Additionally, both dietary additives induced increased expression of proteins involved in hepatocyte protection against oxidative stress. In the present study, we have shown for the first time that diet supplementation with dried chicory root or inulin caused significant changes in the expression of liver cytoskeletal proteins. Close attention should be paid to the downregulation of cytokeratin 18, hepatic acute phase protein that can enhance the anti‐inflammatory properties of inulin‐type fructans.  相似文献   

13.
14.
This study evaluated the potential of mulberry leaf powder as an unconventional feed material for finishing pigs by assessing the growth performance, antioxidative properties, fatty acid profile, and lipid metabolism in 180 Xiangcun black pigs. Pigs with an initial body weight (BW) of 71.64 ± 1.46 kg were randomly assigned to 5 treatment groups, including the control diet and 4 experimental diets. The corn, soybean meal, and wheat bran in the control diet were partly replaced by 3%, 6%, 9%, or 12% mulberry leaf powder in experimental diets. There were 6 replicates (pens) of 6 pigs per replicate in each treatment. Blood and muscle samples were collected after the 50-day feed experiment. Compared with the control group, the 3%, 6%, and 9% mulberry diets had no adverse effect (P > 0.05) on the growth performance of pigs. The serum glutathione peroxidase activity and glutathione concentration increased linearly (P < 0.05) with the increase in dietary mulberry inclusion. There was no significant difference in the relative expression levels of antioxidant-related genes in muscle tissue between the control and mulberry groups. Inclusion of dietary mulberry powder increased (P < 0.05) the content of polyunsaturated fatty acids, especially in the longissimus dorsi (LD) muscle, up-regulated (P < 0.05) the relative mRNA expression level of uncoupling protein-3 in muscle tissue, but down-regulated (P < 0.05) the relative mRNA expression levels of hormone-sensitive lipase, acetyl CoA carboxylase α, lipoprotein lipase, and peroxisome proliferator-activated receptor γ in LD in a linear pattern. The nuclear respiratory factor 2 expression level in the LD muscle of pigs fed the 9% mulberry diet was higher (P < 0.01) than that in the other mulberry groups and control group. The inclusion of less than 12% dietary mulberry did not detrimentally affect the growth performance of Xiangcun black pigs, but enhanced the serum antioxidant property, increased the polyunsaturated fatty acid content, and inhibited lipid oxidation by regulating gene expression levels of lipid metabolism and mitochondrial uncoupling protein in muscle tissue. Mulberry leaves can be utilized as a forage crop in the diet of finishing pigs.  相似文献   

15.
An experiment was conducted to test the hypothesis that reducing crude protein (CP) in starter diets for pigs reduces post-weaning diarrhea and improves intestinal health. In total, 180 weanling pigs were allotted to 3 diets containing 22, 19, or 16% CP. Fecal scores were visually assessed every other day. Blood samples were collected from 1 pig per pen on days 1, 6, 13, 20, and 27, and 1 pig per pen was euthanized on day 12. Results indicated that reducing dietary CP reduced (P < 0.01) overall average daily gain, gain to feed ratio, final body weight, and fecal scores of pigs. Pigs fed the 16% CP diet had reduced (P < 0.01) serum albumin compared with pigs fed other diets. Blood urea nitrogen, haptoglobin, interleukin-1β, and interleukin-6 concentrations in serum were greatest (P < 0.01) on day 13, whereas tumor necrosis factor-α and interleukin-10 concentrations were greatest (P < 0.01) on day 6. Villus height in the jejunum increased (P < 0.05) and crypt depth in the ileum was reduced (P < 0.01) if the 19% CP diet was fed to pigs compared with the 22% CP diet. A reduction (P < 0.05) in mRNA abundance of interferon-γ, chemokine ligand 10, occludin, trefoil factor-2, trefoil factor-3, and mucin 2 was observed when pigs were fed diets with 16% CP. In conclusion, reducing CP in diets for weanling pigs reduces fecal score and expression of genes associated with inflammation.  相似文献   

16.
We recently showed that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs. It is not known if ST-challenged pigs will benefit from a longer adaptation period to FAA. The objective of this study was to evaluate the effects of different adaptation periods to diets containing FAA above requirements for growth on performance and immune response of weaned pigs subsequently challenged with ST. A total of 32 mixed-sex weanling pigs (11.6 ± 0.3 kg) were randomly assigned to 1 of 4 dietary treatments, being a basal amino acid (AA) profile fed throughout the experimental period (FAA−) or a functional AA profile (FAA+; Thr, Met, and Trp at 120% of requirements) fed only in the postinoculation (FAA+0), for 1 wk pre- and postinoculation (FAA+1), or throughout the experimental period (FAA+2). After a 14-d adaptation period, pigs were inoculated with ST (2.15 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, score for ST shedding in feces and intestinal colonization, and fecal and digesta myeloperoxidase (MPO) were measured pre- and postinoculation. Postinoculation body temperature and fecal score, serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and fecal MPO were increased while serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) were reduced compared to pre-inoculation (P < 0.05). Average daily gain and G:F were greater in FAA+2 pigs compared to FAA− pigs (P < 0.05). Serum albumin was higher in FAA+2 and FAA+1 compared to FAA+0 and FAA− pigs (P < 0.05) while FAA+2 pigs had lower haptoglobin compared to FAA− (P < 0.05). Plasma SOD was increased and GSH:GSSG was decreased in FAA− pigs compared to the other treatments (P < 0.05). Score for ST shedding in feces was progressively lower from d 1 to 6 regardless of treatment (P < 0.05) and was lower in FAA+2 pigs compared to FAA− and FAA+0 (P < 0.05). Counts of ST in colon digesta were higher in FAA− and FAA+0 pigs compared to FAA+2 (P < 0.05). Fecal and colonic digesta MPO were lower in FAA+2 and FAA+1 pigs compared to FAA− (P < 0.05). These results demonstrate a positive effect of a longer adaptation period to FAA-supplemented diets on performance and immune status of weaned pigs challenged with Salmonella.  相似文献   

17.

Background

The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment. This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance, carcass traits, meat quality, and plasma metabolites of pigs of different genotypes.

Methods

Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups (Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio; n = 24 per treatment) in a 2 × 2 factorial arrangement. Blood and muscle samples were collected at the end of the nursery, growing, and finishing phases.

Results

We observed significant interactions (P < 0.05) between breed and diet for total fat percentage, intramuscular fat (IMF) content, protein content in biceps femoris (BF) muscle, and plasma urea nitrogen (UN) concentration in the nursery phase; for average daily gain (ADG), average daily feed intake (ADFI), dry matter, IMF content in psoas major (PM) muscle, and plasma total protein and albumin concentrations in the growing phase; and for drip loss and plasma UN concentration in the finishing phase. Breed influenced (P < 0.05) growth performance, carcass traits, and meat quality, but not plasma metabolites. Throughout the trial, Landrace pigs showed significantly higher (P < 0.05) ADG, ADFI, dressing percentage, lean mass rate, and loin-eye area than did Bama mini-pigs, but significantly lower (P < 0.05) feed/gain ratio, fat percentage, backfat thickness, and IMF content. Dietary protein/energy ratio influenced the pH value, chemical composition of BF and PM muscles, and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase, and plasma concentration of UN.

Conclusions

Compared with Landrace pigs, Bama mini-pigs showed slower growth and lower carcass performance, but had better meat quality. Moreover, unlike Landrace pigs, the dietary protein/energy ratio did not affect the growth performance of Bama mini-pigs. These results suggest that, in swine production, low dietary protein/energy ratio may be useful for reducing feed costs and minimizing the adverse effects of ammonia release into the environment.

Electronic supplementary material

The online version of this article (doi:10.1186/s40104-015-0036-x) contains supplementary material, which is available to authorized users.  相似文献   

18.
Background: The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community(microbiome) in newly weaned(35 days of age) piglets.The piglets were fed a cereal-based diet without(B) and with inclusion(80 and 160 g/kg air-dry forage) of vegetative shoots of chicory(C) and leaves of ribwort(R) forage in a 35-day growth trial. Fecal samples were collected at the start(D0), 17(D17) and 35(D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphism(T-RFLP). 454-FLX pyrosequencing of 16 S r RNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP.Results: The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema,Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose.Conclusion: This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning.  相似文献   

19.

Background

Pine bark is a rich source of phytochemical compounds including tannins, phenolic acids, anthocyanins, and fatty acids. These phytochemicals have potential to significantly impact on animal health and animal production. The goal of this work is to measure the effects of tannins in ground pine bark as a partial feed replacement on feed intake, dietary apparent digestibility, nitrogen balance, and mineral retention in meat goats.

Results

Eighteen Kiko cross goats (initial BW = 31.8 ± 1.49 kg) were randomly assigned to three treatment groups (n = 6). Dietary treatments were tested: control (0 % pine bark powder (PB) and 30 % wheat straw (WS)); 15 % PB and 15 % WS, and 30 % PB and 0 % WS. Although dry matter (DM) intake and digestibility were not affected (P > 0.10) by feeding PB, neutral detergent fiber (linear; P = 0.01), acid detergent fiber (linear; P = 0.001) and lignin digestibility (linear; P = 0.01) decreased, and crude protein (CP) digestibility tended to decrease (P = 0.09) as PB increased in the diet, apparent retention of Ca (P = 0.09), P (P = 0.03), Mg (P = 0.01), Mn (P = 0.01), Zn (P = 0.01) and Fe (P = 0.09) also increased linearly. Nitrogen intake and fecal N excretion were not affected (P > 0.05) by addition of PB in the diet, but N balance in the body was quadratically increased (P < 0.01) in the 15 % PB diet compared to other diets. This may be due to more rumen escape protein and less excreted N in the urine with the 15 % PB diet. The study showed that a moderate level of tannin-containing pine bark supplementation could improve gastrointestinal nitrogen balance with the aim of improving animal performance.

Conclusion

These results suggest that tannin-containing PB has negative impact on fiber, lignin, and protein digestibility, but positively impacted on N-balance.  相似文献   

20.

Background

This experiment was conducted to determine the nutritive value of corn from the north of China for growing pigs. The experiment examined corn variety (LS1, LS2, LS3 and LS4) grown in one location, drying method (sun dried and artificially dried) and different drying temperatures. Corn harvested at 20-25% moisture was dried to about 12% moisture by sun drying and artificially drying at 80, 100, or 120°C in a fluidized bed dryer. Ninety-six barrows (average BW of 33.4 ± 2.7 kg) were housed in individual metabolism crates to facilitate separate collection of feces and urine. A five-day collection period followed a seven-day diet acclimation period.

Results

The results indicated that variety significantly influenced (P < 0.01) the 1,000 kernel weight of corn but not the bulk weight. Variety also influenced the available energy content (digestible energy of dry matter, P < 0.01; metabolisable energy of dry matter, P < 0.01) and digestibility of organic matter (P < 0.01), as well as dry matter (P < 0.01) and gross energy (GE) content (P < 0.02). The drying method of corn significantly influenced the 1,000 kernel weight (P < 0.01), bulk weight (P < 0.01) and digestibility of ether extract (EE) (P < 0.01). No effect of drying temperature on the digestibility of organic matter, dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and gross energy was observed, but gelatinization (P < 0.05) and test weight (P < 0.01) decreased with an increase in temperature.

Conclusions

Variety has a significant impact on the nutritive value of corn for growing pigs, and greater attention needs to be paid to these influences in the assignment of the nutritive value of corn given to growing pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号