首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES: To determine pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after a single i.v. and i.m. administration of enrofloxacin and tissue residues after serial daily i.m. administration of enrofloxacin in pigs. ANIMALS: 20 healthy male pigs. PROCEDURE: 8 pigs were used in a crossover design to investigate pharmacokinetics of enrofloxacin after a single i.v. and i.m. administration (2.5 mg/kg of body weight). Twelve pigs were used to study tissue residues; they were given daily doses of enrofloxacin (2.5 mg/kg, i.m. for 3 days). Plasma and tissue concentrations of enrofloxacin and ciprofloxacin were determined. Residues of enrofloxacin and ciprofloxacin were measured in fat, kidney, liver, and muscle. RESULTS: Mean (+/-SD) elimination half-life and mean residence time of enrofloxacin in plasma were 9.64+/-1.49 and 12.77+/-2.15 hours, respectively, after i.v. administration and 12.06+/-0.68 and 17.15+/-1.04 hours, respectively, after i.m. administration. Half-life at alpha phase of enrofloxacin was 0.23+/-0.05 and 1.94+/-0.70 hours for i.v. and i.m. administration, respectively. Maximal plasma concentration was 1.17 +/-0.23 microg/ml, and interval from injection until maximum concentration was 1.81+/-0.23 hours. Renal and hepatic concentrations of enrofloxacin (0.012 to 0.017 microg/g) persisted for 10 days; however, at that time, ciprofloxacin residues were not detected in other tissues. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered i.m. at a dosage of 2.5 mg/kg for 3 successive days, with a withdrawal time of 10 days, resulted in a sum of concentrations of enrofloxacin and ciprofloxacin that were less than the European Union maximal residue limit of 30 ng/g in edible tissues.  相似文献   

2.
OBJECTIVES: To determine pharmacokinetic characteristics of marbofloxacin after a single IV and oral administration and tissue residues after serial daily oral administration in chickens. ANIMALS: 40 healthy broiler chickens. PROCEDURE: Two groups of chickens (groups A and B; 8 chickens/group) were administered a single IV and oral administration of marbofloxacin (2 mg/kg). Chickens of group C (n = 24) were given serial daily doses of marbofloxacin (2 mg/kg, PO, q 24 h for 3 days). Plasma (groups A and B) and tissue concentrations (group C) of marbofloxacin and its major metabolite N-desmethyl-marbofloxacin were determined by use of high-performance liquid chromatography. Residues of marbofloxacin and N-desmethylmarbofloxacin were measured in target tissues. RESULTS: Elimination half-life and mean residence time of marbofloxacin in plasma were 5.26 and 4.36 hours after IV administration and 8.69 and 8.55 hours after oral administration, respectively. Maximal plasma concentration was 1.05 microg/ml, and interval from oral administration until maximum concentration was 1.48 hours. Oral bioavailability of marbofloxacin was 56.82%. High concentrations of marbofloxacin and N-desmethyl-marbofloxacin were found in the kidneys, liver, muscles, and skin plus fat 24 hours after the final dose of marbofloxacin; however, marbofloxacin and N-desmethyl-marbofloxacin were detected in only hepatic (27.6 and 98.7 microg/kg, respectively) and renal (39.7 and 69.1 microg/kg, respectively) tissues 72 hours after termination of marbofloxacin treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of pharmacokinetic data obtained in this study reveals that a minimal therapeutic dose of 2 mg/kg, PO, every 24 hours should be appropriate for control of most infections in chickens.  相似文献   

3.
The pharmacokinetics of amoxicillin (Amx) were determined in pigs following intravenous (IV) administration of a single dose of 15 mg/kg and a single dose of 15 mg/kg of a new oral formulation (Amx-FP containing 10% amoxicillin). Residue studies were performed to determine residues in edible tissues of healthy pigs after chronic oral administration of Amx-FP at a daily dose of 15 mg/kg for five consecutive days. After IV administration, the plasma concentration was characteristic of a two-compartment open model. The main pharmacokinetic variables were: t(1/2lambda(n)), MRT=90.1 min, V(darea)=0.81 L/kg and Cl(b)=3.9 mL/kg/min. After single oral administration the main pharmacokinetic variables were: C(max)=758 mug/L, t(max)=347 min and Cl(b/f)=3.7 mL/kg/min for Amx-FP. The oral bioavailability (F) was calculated at 11% for Amx-FP. Based on maximum residue levels (MRL) for AMX in pigs established at 50 microg/kg for all tissues, the withdrawal times of AMX in muscle and skin plus fat were estimated (95% tolerance limit and 95% confidence) to fall below the MRL after a withdrawal period of seven days. Levels of AMX in the liver and kidneys were estimated to fall below the MRL after a withdrawal period of four days.  相似文献   

4.
The pharmacokinetics and systemic bioavailability of amoxycillin were investigated in clinically healthy, broiler chickens (n = 10 per group) after single intravenous (i.v.), intramuscular (i.m.), and oral administrations at a dose of 10 mg/kg body weight. The plasma concentrations of amoxycillin were determined using high-performance liquid chromatography (HPLC) and the data were subjected to compartmental and non-compartmental kinetic analyses. Following single i.v. injection, all plasma amoxycillin data were described by a two compartment-open model. The elimination half-lives of amoxycillin were 1.07 h, 1.09 h and 1.13 h after single i.v., i.m. and oral administration, respectively. The total body clearance (Cl(B)) of amoxycillin was 0.80 (L/h)/kg and the volume of distribution calculated as V(d(area)) was 1.12 L/kg, respectively after i.v. administration. Substantial differences in the resultant kinetic data were obtained by comparing the plasma concentration profiles after i.m. injection with that after oral administration. The systemic i.m. bioavailability of amoxycillin was higher (77.21%) than after oral (60.92%) dosing. In vitro, the mean plasma protein binding of amoxycillin amounted to 8.27%. Owing to high clearance of amoxycillin in birds in our study, a plasma level was maintained above 0.25 microg/ml for only 6 h after i.m. and oral routes of administration and consequently frequent dosing may be necessary daily.  相似文献   

5.
The pharmacokinetic properties of ciprofloxacin and its metabolites were determined in healthy chickens after single i.v. and oral dosage of 8 mg ciprofloxacin kg(-1) bodyweight. After i.v. and oral administration, the plasma concentration-time graph was characteristic of a two-compartment open model. Mean (SD) elimination half-life and mean residence time of ciprofloxacin in plasma were 8.84 (2.13) and 8.54 (1.64) hours, respectively, after i.v. administration and 11.89 (1.95) and 13.32 (2.65) hours, respectively, after oral administration. Mean maximal plasma concentration of ciprofloxacin was 2.63 (0.20) microg ml(-1), and the interval from oral administration until maximum concentration was 0.36 (0.07) hours. The mean oral bioavailability of ciprofloxacin was found to be 69.12 (6.95) per cent. Ciprofloxacin was mainly converted to oxociprofloxacin and desethyleneciprofloxacin. Considerable kidney, liver, muscle and skin + fat tissue concentrations of ciprofloxacin and its metabolites oxociprofloxacin and desethyleneciprofloxacin were found when ciprofloxacin was administered orally (8 mg kg(-1) on 3 successive days). It was estimated that mean tissue concentrations of ciprofloxacin and its metabolites ranging between 0.011 to 0.75 microg g(-1) persisted for 5 days.  相似文献   

6.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

7.
OBJECTIVE: To determine pharmacokinetics and metabolic patterns of fenbendazole after IV and oral administration to pigs. ANIMALS: 4 mixed-breed female pigs weighing 32 to 45 kg. PROCEDURE: Fenbendazole was administered IV at a dose of 1 mg/kg. One week later, it was administered orally at a dose of 5 mg/kg. Blood samples were collected for up to 72 hours after administration, and plasma concentrations of fenbendazole, oxfendazole, and fenbendazole sulfone were determined by use of high-pressure liquid chromatography. Plasma pharmacokinetics were determined by use of noncompartmental methods. RESULTS: Body clearance of fenbendazole after IV administration was 1.36 L/h/kg, volume of distribution at steady state was 3.35 L/kg, and mean residence time was 2.63 hours. After oral administration, peak plasma concentration of fenbendazole was 0.07 microg/ml, time to peak plasma concentration was 3.75 hours, and mean residence time was 15.15 hours. Bioavailability of fenbendazole was 27.1%. Oxfendazole was the major plasma metabolite, accounting for two-thirds of the total area under the plasma concentration versus time curve after IV and oral administration. Fenbendazole accounted for 8.4% of the total AUC after IV administration and 4.5% after oral administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that fenbendazole was rapidly eliminated from plasma of pigs. The drug was rapidly absorbed after oral administration, but systemic bioavailability was low.  相似文献   

8.
The depletion of tylosin from edible pig tissues was studied following 5 days of intramuscular (i.m.) administration of 10 mg/kg of tylosin to 16 crossbreed pigs. Animals were slaughtered at intervals after treatment and samples of muscle, kidney, liver, skin+fat, and injection site were collected and analysed by high-performance liquid chromatography (HPLC). Seven days after the completion of treatment, the concentration of tylosin in kidney, skin+fat, and at the injection site was higher than the European Union maximal residue limit (MRL) of 100 microg/kg. Tylosin residues in all tissues were below the quantification limit (50 microg/kg) at 10 and 14 days post-treatment.  相似文献   

9.
The pharmacokinetics of amoxycillin was studied in nine male beagle dogs under healthy and febrile conditions. In Period 1, dogs received 20 mg/kg of an oral suspension of amoxycillin. Intravenous doses of saline, 2 and 20 microg/kg of endotoxin (LPS from Escherichia coli serotype) were administered to dogs (three per group) prior to administration of 20 mg/kg of amoxycillin in Period 2. Rectal temperature and behavioral changes were recorded and blood samples were collected over 12 h for pharmacokinetic analysis. Amoxycillin was assessed in plasma using liquid chromatography coupled with mass spectrometry. Plasma concentrations were analysed using a one-compartment model with lag-time for absorption using an iterative two-stage method. As compared with control groups, amoxycillin clearance decreased significantly with preliminary treatments of 2 microg/kg endotoxin (0.209 vs. 0.140 L/h kg, P < 0.05) and 20 microg/kg endotoxin (0.214 vs. 0.075 L/h kg, P < 0.05). As a result of this, the area under curve for the 2 and 20 microg/kg endotoxin groups increased significantly 100.4 vs. 149.4 microg h/mL (P < 0.05) and 99.2 vs. 277.7 microg h/mL (P < 0.05), respectively. Other drugs currently used for the treatment of fever and septic shock should be re-evaluated using a febrile animal model to avoid improper dose administration.  相似文献   

10.
1. The pharmacokinetics of pefloxacin and its active metabolite norfloxacin were investigated in chickens after a single oral administration of pefloxacin at a dosage of 10 mg/kg. To characterise the residue pattern, another group of chickens was given 10 mg of pefloxacin/kg body once daily for 4 d by oral route; the tissue concentrations of pefloxacin and norfloxacin were determined at 1, 5 and 10 d after the last administration of the drug. 2. The concentrations of pefloxacin and norfloxacin in plasma and tissues were determined by HPLC assay. The limit of detection for pefloxacin and norfloxacin was 0.03 microg/ml in plasma or microg/g in tissue. 3. The plasma concentration-time data for pefloxacin and norfloxacin were characteristic of a one-compartment open model. The elimination half-life, maximum plasma drug concentration, time to reach maximum plasma drug concentration and mean residence time of pefloxacin were 8.74 +/- 1.48 h, 3.78 +/- 0.23 microg/ml, 3.33 +/- 0.21 h and 14.32 +/- 1.94 h, respectively, whereas the respective values of these variables for norfloxacin were 5.66 +/- 0.81 h, 0.80 +/- 0.07 microg/ml, 3.67 +/- 0.21 h and 14.44 +/- 0.97 h. 4. Pefloxacin was metabolised to norfloxacin to the extent of 22%. 5. The concentrations of pefloxacin (microg/g) 24 h after the fourth dose of the drug declined in the following order: liver (3.20 +/- 0.40) > muscle (1.42 +/- 0.18) > kidney (0.69 +/- 0.04) > skin and fat (0.06 +/- 0.02). Norfloxacin was also detectable in all the tissues analysed except muscle. No drug and/or its metabolite was detectable in tissues except skin and fat 5 d after the last administration. The concentrations of pefloxacin and norfloxacin in skin and fat 10 d after the last dose of pefloxacin were 0.04 +/- 0.02 and 0.03 +/- 0.01 microg/g, respectively.  相似文献   

11.
Digoxin was administered orally and intravenously to seven healthy adult mares and geldings in two separate trials. At a dose of 44 microgram digoxin/kg body weight, the oral study was characterized by an absorption phase with a mean (+/- 1 standard deviation) peak serum digoxin concentration of 2.21 ng/ml (+/- 0.45) at a mean of 2.29 h (+/- 1.52) after administration. A second rise in serum digoxin concentration started about 6-8 h after administration and extended to about 20 h after administration. The mean bioavailability (F) was 23.38% (+/- 5.96). At a dose of 22 microgram digoxin/kg body weight, the intravenous study was characterized by a two-compartment model with the following mean pharmacokinetic measurements: distribution rate constant (alpha), 1.391 h-1 (+/- 0.1909); zero-time serum digoxin concentration determined from the distribution phase (A), 21.247 ng/ml (+/- 5.6614); elimination rate constant (beta), 0.0409 h-1 (+/- 0.0069); zero-time serum digoxin concentration determined from the elimination phase (B), 3.82 ng/ml (+/- 0.433); apparent specific volume of distribution uncorrected for protein binding (Vd beta), 5.003 l/kg (+/- 0.5177). The mean beta corresponded to a biological half-life (T1/2 beta) of 16.9 h. Based upon results of this study, theoretically achievable steady-state serum digoxin concentrations were calculated for maintenance doses given by oral and intravenous routes of administration with appropriate two-compartment, multiple-dose formulae. Loading doses were also calculated for each route. It is the opinion of the authors that the oral route of administration of digoxin is effective in the horse and may preclude the potential risks posed by the high serum digoxin concentrations immediately following intravenous administration.  相似文献   

12.
Polyriboinosinic-polyribocytidylic acid (poly [rI.rC]) was administered intravenously to 11 cattle and 13 goats in doses of 0.25 to 4.0, and 1.0 to 5.0 mg/kg, respectively. Subsequent exposure of these and untreated control animals to foot and mouth disease virus (FMDV) failed to demonstrate any differences in either the course or severity of the disease. Serum interferon was detected in cattle one hour after the intravenous administration of poly (rI.rC).

Six pigs given 4, 20, or 100 mg/kg of itaconic-acrylic acid copolymer (IAA, HMW) intraperitoneally reacted clinically the same as six untreated control pigs after contact exposure to FMDV.

Three pigs given 50, 100, or 200 mg/kg of divinyl ether-maleic anhydride copolymer (DVE/MA, pyran) intraperitoneally similarly failed to show any difference in clinical reaction from three untreated control pigs after intranasal instillation of FMDV. Three pigs given 100, 200 or 400 mg/kg of DVE/MA intraperitoneally developed rapid diffuse peritonitis causing the death of one in 48 hours.

  相似文献   

13.
Pharmacokinetics of sarafloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of 5 (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analysed by a noncompartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t1/2beta) were 3.37 +/- 0.46, 4.66 +/- 1.34, 7.20 +/- 1.92 (pigs) and 2.53 +/- 0.82, 6.81 +/- 2.04, 3.89 +/- 1.19 h (broilers), respectively. After i.m. and p.o. doses, bioavailabilities (F) were 81.8 +/- 9.8 and 42.6 +/- 8.2% (pigs) and 72.1 +/- 8.1 and 59.6 +/- 13.8% (broilers), respectively. Steady-state distribution volumes (Vd(ss)) of 1.92 +/- 0.27 and 3.40 +/- 1.26 L/kg and total body clearances (ClB) of 0.51 +/- 0.03 and 1.20 +/- 0.20 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), mean residence times (MRT), and mean absorption times (MAT) were also determined. Sarafloxacin was demonstrated to be more rapidly absorbed, more extensively distributed, and more quickly eliminated in broilers than in pigs. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 10 mg/kg given intramuscularly every 12 h in pigs, or administered orally every 8 h in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC90 are <0.25 microg/mL.  相似文献   

14.
The pharmacokinetic properties of amoxycillin, and its penetration into respiratory tract tissues (alveolar macrophages, bronchial secretions, bronchial mucosa, lung tissue and lymph nodes), were determined in 20 healthy female pigs weighing 29 to 55 kg, after a single intravenous dose of 8·6 mg kg −1 bodyweight. Following intravenous administration the plasma concentration-time curves were best described by a three-compartment open model. The elimination half-life and the mean residence time were 2·5 and 1.4 hours, respectively. The volume of distribution at steady state was 0·52 litres kg −1, and the body clearance was 0·40 litres hour−1 kg−1. In all structures (except alveolar macrophages) amoxycillin concentration peaked at the first sampling point, one hour after drug administration. The tissue to plasma ratio (based on AUC values) were 0·33 for bronchial secretions, 0·37 for bronchial mucosa, 0·39 for lung tissue and 0·68 for lymph nodes. Traces of amoxycillin were found in alveolar macrophages, but the concentrations were below the limit of quantification. The concentration of amoxycillin in secretions and tissue decreased by a slower rate than the concentration in plasma, resulting in increasing secretion- and tissue-to-plasma concentration ratios.  相似文献   

15.
OBJECTIVE: To determine the pharmacokinetics of carvedilol administered IV and orally and determine the dose of carvedilol required to maintain plasma concentrations associated with anticipated therapeutic efficacy when administered orally to dogs. ANIMALS: 8 healthy dogs. PROCEDURES: Blood samples were collected for 24 hours after single doses of carvedilol were administered IV (175 microg/kg) or PO (1.5 mg/kg) by use of a crossover nonrandomized design. Carvedilol concentrations were detected in plasma by use of high-performance liquid chromatography. Plasma drug concentration versus time curves were subjected to noncompartmental pharmacokinetic analysis. RESULTS: The median peak concentration (extrapolated) of carvedilol after IV administration was 476 ng/mL (range, 203 to 1,920 ng/mL), elimination half-life (t(1/2)) was 282 minutes (range, 19 to 1,021 minutes), and mean residence time (MRT) was 360 minutes (range, 19 to 819 minutes). Volume of distribution at steady state was 2.0 L/kg (range, 0.7 to 4.3 L/kg). After oral administration of carvedilol, the median peak concentration was 24 microg/mL (range, 9 to 173 microg/mL), time to maximum concentration was 90 minutes (range, 60 to 180 minutes), t(1/2) was 82 minutes (range, 64 to 138 minutes), and MRT was 182 minutes (range, 112 to 254 minutes). Median bioavailability after oral administration of carvedilol was 2.1% (range, 0.4% to 54%). CONCLUSIONS AND CLINICAL RELEVANCE: Although results suggested a 3-hour dosing interval on the basis of MRT, pharmacodynamic studies investigating the duration of beta-adrenoreceptor blockade provide a more accurate basis for determining the dosing interval of carvedilol.  相似文献   

16.
OBJECTIVE: To determine the pharmacokinetics of tilmicosin after oral administration of a single dose of tilmicosin base in swine. ANIMALS: 10 healthy swine. PROCEDURE: Tilmicosin base was administered via stomach tube at a single dose of 20 mg/kg (n = 5) or 40 mg/kg (5). Blood samples were obtained from a jugular vein immediately before and at 10, 20, and 30 minutes and 1, 2, 3, 4, 6, 8, 12, 24, 36, 48, 72, 96, and 120 hours after administration of tilmicosin. Tilmicosin concentrations in serum were quantified by use of a high-performance liquid chromatography procedure with UV light. Data for tilmicosin concentrations versus time were analyzed by use of compartmental and noncompartmental methods. RESULTS: Tilmicosin concentrations in serum decreased in a biexponential manner after oral administration. Mean +/- SD values for absorption half-lives were 1.49 +/- 0.23 hours and 1.64 +/- 0.40 hours, distribution half-lives were 2.96 +/- 0.58 hours and 3.20 +/- 0.76 hours, elimination half-lives were 25.26 +/- 8.25 and 20.69 +/- 5.07 hours, peak concentrations were 1.19 +/- 0.30 microg/mL and 2.03 +/- 0.28 microg/mL, and time to peak concentrations was 3.12 +/- 0.50 hours and 3.48 +/- 0.77 hours after oral administration of tilmicosin base at a single dose of 20 or 40 mg/kg, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: In swine, tilmicosin was rapidly absorbed and slowly eliminated after oral administration of a single dose of tilmicosin base powder.  相似文献   

17.
OBJECTIVE: To determine the pharmacokinetics of praziquantel following single and multiple oral dosing in loggerhead sea turtles. ANIMALS: 12 healthy juvenile loggerhead sea turtles. PROCEDURE: Praziquantel was administered orally as a single dose (25 and 50 mg/kg) to 2 groups of turtles; a multiple-dose study was then performed in which 6 turtles received 3 doses of praziquantel (25 mg/kg, PO) at 3-hour intervals. Blood samples were collected from all turtles before and at intervals after drug administration for assessment of plasma praziquantel concentrations. Pharmacokinetic analyses included maximum observed plasma concentration (Cmax), time to maximum concentration (Tmax), area under the plasma praziquantel concentration-time curve, and mean residence time (MRTt). RESULTS: Large interanimal variability in plasma praziquantel concentrations was observed for all dosages. One turtle that received 50 mg of praziquantel/kg developed skin lesions within 48 hours of administration. After administration of 25 or 50 mg of praziquantel/kg, mean plasma concentrations were below the limit of quantification after 24 hours. In the multiple-dose group of turtles, mean plasma concentration was 90 ng/mL at the last sampling time-point (48 hours after the first of 3 doses). In the single-dose study, mean Cmax and Tmax with dose were not significantly different between doses. After administration of multiple doses of praziquantel, only MRTt was significantly increased, compared with values after administration of a single 25-mg dose. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of 25 mg of praziquantel/kg 3 times at 3-hour intervals may be appropriate for treatment of loggerhead sea turtles with spirorchidiasis.  相似文献   

18.
Rapid solvent extraction combined with a radioimmunoassay using a monoclonal antibody raised against a derivative of zeranol has been used to measure the residues of the anabolic agent zeranol in the edible tissues (muscle, liver, kidney and fat) of cattle treated with Ralgro. Calibration curves, both with and without, tissue extracts exhibit good parallelism. Regression analysis for the extraction of zeranol from tissues dosed with standard amounts of zeranol have correlation coefficients of 0.979, 0.991, 0.986 and 0.985 for muscle, liver, kidney and fat, respectively. The limits of decision defined as the mean value + 3 SD for the concentrations apparently observed (noise) in tissues from animals not treated with Ralgro were 278, 121, 373 and 110 ng/kg for muscle, fat, liver and kidney, respectively. In the tissues of 4 cows implanted with Ralgro (36 mg), and sampled 70 days after implanting, the highest concentration of zeranol in each tissue was 232 ng/kg (muscle), 391 ng/kg (liver), 287 ng/kg (kidney) and 293 ng/kg (fat), and residues were detected in all samples of fat (4), 3 kidney samples and 1 liver sample.  相似文献   

19.
When 400 micrograms ivermectin/kg was administered subcutaneously to rabbits infected with the ear mite Psoroptes cuniculi it significantly reduced the clinical score, and when 500 micrograms ivermectin/kg was administered subcutaneously to guinea pigs with mange due to Trixacaurus caviae it resulted in a clinical cure. In rabbits a subcutaneous dose of 400 micrograms/kg produced high and sustained concentrations of ivermectin in the tissues and body fluids for at least 13 days and its rate of depletion from tissues was similar to that observed in sheep and rats. The mean (+/- sem) maximum concentration in plasma was 42.0 +/- 9.7 ng/ml 37.2 +/- 5.0 hours after administration and the area under the concentration-time curve was 3543 +/- 580 ng/ml hours. After the administration of 500 micrograms ivermectin/kg to guinea pigs orally, subcutaneously or topically the drug could be detected in the plasma only after subcutaneous administration. The mean concentration 72 hours after its administration to four guinea pigs was 0.7 +/- 0.3 ng/ml.  相似文献   

20.
The pharmacokinetics of spiramycin in pigs were investigated after intravenous and oral administration. The potential therapeutically effective blood level was established after a single administration and examined in a subsidiary five day study. The rapid intravenous injection of 25 mg spiramycin/kg bodyweight produced marked salivation in all the test animals. The elimination half-life (2.3 +/- 1.2 hours) was relatively short, in accordance with the total body clearance rate (27.3 +/- 10.1 ml/minute/kg). The high volume of distribution (5.2 +/- 2.2 litres/kg) was due to the accumulation of the drug in the body tissues. The maximum plasma concentration (4.1 +/- 1.7 micrograms/ml) after oral administration of 85 to 100 mg spiramycin/kg bodyweight was reached after 3.7 +/- 0.8 hours and the half-life of the elimination phase was 6.0 +/- 2.4 hours. The oral bioavailability was 45.4 +/- 23.4 per cent. Ad libitum feeding of a diet containing 2550 mg spiramycin/kg produced a steady state concentration of 0.96 +/- 0.27 micrograms/ml. This plasma concentration would provide a potentially therapeutically effective blood concentration against Mycoplasma species, Streptococcus species and Staphylococcus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号