首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A divergent selection experiment for serum IGF-I concentration began at the Eastern Ohio Resource Development Center in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d period. Real-time ultrasound measurements of backfat thickness and longissimus muscle area were taken on d 56 and 140 of the postweaning test. Only ultrasound data from calves born from fall 1995 through spring 1999 were included in the analysis. At the time of this study, IGF-I measurements were available for 1,521 bull and heifer calves, and ultrasound data were available for 636 bull and heifer calves. Data were analyzed by multiple-trait, derivative-free, restricted maximum likelihood methods. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were 0.26 +/- 0.07, 0.32 +/- 0.08, 0.26 +/- 0.07, and 0.32 +/- 0.08, respectively. Direct heritabilities for ultrasound estimates of backfat thickness ranged from 0.17 +/- 0.11 to 0.28 +/- 0.12, whereas direct heritabilities for longissimus muscle area ranged from 0.20 +/- 0.10 to 0.36 +/- 0.12, depending on the time of measurement and the covariate used for adjustment (age vs. weight). Direct genetic correlations of IGF-I concentrations with backfat thickness at d 56 and 140 and with longissiumus muscle area at d 56 and 140 averaged 0.02, 0.20, -0.08, and 0.23, respectively, when age was used as the covariate for both IGF-I and ultrasound measurements. Corresponding genetic correlations when age was used as the covariate for IGF-I and weight was used as the covariate for ultrasound measurements were 0.05, -0.07, -0.22, and -0.04, respectively. Therefore, the positive associations of serum IGF-I concentration with backfat thickness and longissimus muscle area at d 140 seem to have been partially mediated by weight. Results of this study do not indicate strong associations of serum IGF-I concentration with fat thickness or muscling of bulls and heifers during the postweaning feedlot period.  相似文献   

2.
Carcass and growth measurements of finished crossbred steers (n = 843) and yearling ultrasound and growth measurements of purebred bulls (n = 5,654) of 11 breeds were analyzed to estimate genetic parameters. Multiple-trait restricted maximum likelihood (REML) was used to estimate heritabilities and genetic correlations between finished steer carcass measurements and yearling bull ultrasound measurements. Separate analyses were conducted to examine the effect of adjustment to three different end points: age, backfat thickness, and weight at measurement. Age-constant heritability estimates from finished steer measurements of hot carcass weight, carcass longissimus muscle area, carcass marbling score, carcass backfat, and average daily feedlot gain were 0.47, 0.45, 0.35, 0.41, and 0.30, respectively. Age-constant heritability estimates from yearling bull measurements of ultrasound longissimus muscle area, ultrasound percentage of intramuscular fat, ultrasound backfat, and average daily postweaning gain were 0.48, 0.23, 0.52, and 0.46, respectively. Similar estimates were found for backfat and weight-constant traits. Age-constant genetic correlation estimates between steer carcass longissimus muscle area and bull ultrasound longissimus muscle area, steer carcass backfat and bull ultrasound backfat, steer carcass marbling and bull ultrasound intramuscular fat, and steer average daily gain and bull average daily gain were 0.66, 0.88, 0.80, and 0.72, respectively. The strong, positive genetic correlation estimates between bull ultrasound measurements and corresponding steer carcass measurements suggest that genetic improvement for steer carcass traits can be achieved by using yearling bull ultrasound measurements as selection criteria.  相似文献   

3.
The objective of this study was to estimate parameters required for genetic evaluation of Simmental carcass merit using carcass and live animal data. Carcass weight, fat thickness, longissimus muscle area, and marbling score were available from 5,750 steers and 1,504 heifers sired by Simmental bulls. Additionally, yearling ultrasound measurements of fat thickness, longissimus muscle area, and estimated percentage of intramuscular fat were available on Simmental bulls (n = 3,409) and heifers (n = 1,503). An extended pedigree was used to construct the relationship matrix (n = 23,968) linking bulls and heifers with ultrasound data to steers and heifers with carcass data. All data were obtained from the American Simmental Association. No animal had both ultrasound and carcass data. Using an animal model and treating corresponding ultrasound and carcass traits separately, genetic parameters were estimated using restricted maximum likelihood. Heritability estimates for carcass traits were 0.48 +/- 0.06, 0.35 +/- 0.05, 0.46 +/- 0.05, and 0.54 +/- 0.05 for carcass weight, fat thickness, longissimus muscle area, and marbling score, respectively. Heritability estimates for bull (heifer) ultrasound traits were 0.53 +/- 0.07 (0.69 +/- 0.09), 0.37 +/- 0.06 (0.51 +/- 0.09), and 0.47 +/- 0.06 (0.52 +/- 0.09) for fat thickness, longissimus muscle area, and intramuscular fat percentage, respectively. Heritability of weight at scan was 0.47 +/- 0.05. Using a bivariate weight model including scan weight of bulls and heifers with carcass weight of slaughter animals, a genetic correlation of 0.77 +/- 0.10 was obtained. Models for fat thickness, longissimus muscle area, and marbling score were each trivariate, including ultrasound measurements on yearling bulls and heifers, and corresponding carcass traits of slaughter animals. Genetic correlations of carcass fat thickness with bull and heifer ultrasound fat were 0.79 +/- 0.13 and 0.83 +/- 0.12, respectively. Genetic correlations of carcass longissimus muscle area with bull and heifer ultrasound longissimus muscle area were 0.80 +/- 0.11 and 0.54 +/- 0.12, respectively. Genetic correlations of carcass marbling score with bull and heifer ultrasound intramuscular fat percentage were 0.74 +/- 0.11 and 0.69 +/- 0.13, respectively. These results provide the parameter estimates necessary for genetic evaluation of Simmental carcass merit using both data from steer and heifer carcasses, and their ultrasound indicators on yearling bulls and heifers.  相似文献   

4.
Plasma IGF-I, IGF binding protein-2 (IGFBP-2), and IGFBP-3 were quantified in growing Angus bulls (n = 56) to determine their relationship with postweaning growth and carcass ultrasound measurements. In addition, GH response to GHRH challenge (area-under-the-curve GH [AUC-GH) was determined for each bull as part of a previous study. Blood was collected by jugular venipuncture at the start of a 140-d postweaning growth performance test and at 28 d intervals for plasma IGF-I determination by RIA. Plasma IGFBP-2 and -3 content was measured at the start of the study, on d 70, and d 140 by Western ligand blotting. Individual weights and hip heights were measured every 28 d during the study and carcass longissimus muscle area, intramuscular fat percentage, and carcass backfat were estimated by ultrasound on d 140. Greater plasma IGF-I at the start of the performance test was associated with reduced postweaning ADG and increased longissimus area. Throughout the performance test period, the correlations between plasma IGF-I and hip height were consistently positive, ranging from 0.10 to 0.38, but the correlations between ADG and IGF-I varied from -0.32 to 0.31. Age-adjusted d-1 plasma IGFBP-2 was related to ADG during the performance test, explaining nearly 30% of the variation in ADG. A model combining weaning age, IGFBP-2, and AUC-GH showed a strong relationship with ADG (R2 = 0.40). Plasma IGFBP-2 and -3 were not related to carcass characteristics, and IGFBP-3 was not related to growth rates. This study provides additional evidence for the variable relationship between plasma IGF-I and growth rates in cattle. A significant positive relationship between plasma IGFBP-2, AUC-GH, and postweaning ADG warrants further investigation.  相似文献   

5.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

6.
Data (n = 1,746) collected from 1985 through 1995 on Korean Native Cattle by the National Livestock Research Institute of Korea were used to estimate genetic parameters for marbling score, dressing percentage, and longissimus muscle area, with backfat thickness, slaughter age, or slaughter weight as covariates. Estimates were obtained with REML. Model 1 included animal genetic and residual random effects. Model 2 was extended to include an uncorrelated random effect of the dam. Model 3 was based on Model 1 but also included sire x region x year-season interaction effects. Model 4 combined Models 2 and 3. All models included fixed effects for region x year-season and age of dam x sex combinations. From single-trait analyses, estimates of heritability with covariates to adjust for backfat thickness, slaughter age, and slaughter weight from Model 4 were, respectively, .10, .08, and .01 for marbling score; .09, .12, and .16 for dressing percentage; and .18, .17, and .24 for longissimus muscle area. From three-trait analyses, estimates of genetic correlations between marbling score and dressing percentage, marbling score and longissimus muscle area, and dressing percentage and longissimus muscle area were, respectively, -.99, .20, and -.11 with backfat thickness as covariate; -.88, .47, and .01 with slaughter age as covariate; and -.03, .39, and .91 with slaughter weight as covariate. Results of this study suggest that choice of covariate (backfat thickness, slaughter age, or slaughter weight) for the model seems to be important for carcass traits for Korean Native Cattle. Including sire x region x year-season interaction effects in the model for marbling score and dressing percentage may be important because whether sire x region x year-season interaction effects were in the model affected estimates of other variance components for the three carcass traits. Whether the maternal effect was in the model had little effect on estimates of other parameters. With backfat thickness and slaughter age end points, selection for increasing marbling score would be expected to result in decreasing dressing percentage for Korean Native Cattle. With slaughter weight as a covariate for end point, increased longissimus muscle area would be associated with increased dressing percentage, and increased marbling score would be related to increased longissimus muscle area. The differences in estimates associated with choice of end point, however, need further study.  相似文献   

7.
Spring-born purebred Brahman bull calves (n = 467) with known pedigrees, sired by 68 bulls in 17 private herds in Louisiana, were purchased at weaning from 1996 through 2000 to study variation in growth, carcass, and tenderness traits. After purchase, calves were processed for stocker grazing on ryegrass, fed in a south Texas feedlot, and processed in a commercial facility. Carcass data were recorded 24 h postmortem. Muscle samples and primal ribs were taken to measure calpastatin activity and shear force. An animal model was used to estimate heritability, genetic correlations, and sire EPD. Relatively high heritability estimates were found for BW at slaughter (0.59 +/- 0.16), HCW (0.57 +/- 0.15), LM area (0.50 +/- 0.16), yield grade (0.46 +/- 0.17), calpastatin enzyme activity (0.45 +/- 0.17), and carcass quality grade (0.42 +/- 0.16); moderate heritability estimates were found for hump height (0.38 +/- 0.16), marbling score (0.37 +/- 0.16), backfat thickness (0.36 +/- 0.17), feedlot ADG (0.33 +/- 0.14), 7-d shear force (0.29 +/- 0.14), and 14-d shear force (0.20 +/- 0.11); relatively low heritability estimates were found for skeletal maturity (0.10 +/- 0.10), lean maturity (0.00 +/- 0.07), and percent KPH (0.00 +/- 0.07). Most genetic correlations were between -0.50 and +0.50. Other genetic correlations were 0.74 +/- 0.27 between calpastatin activity and 7-d shear force, 0.72 +/- 0.25 between calpastatin activity and 14-d shear force, (0.90 +/- 0.30 between yield grade and 7-d shear force, and -0.82 +/- 0.27 between backfat thickness and 7-d shear force. Heritability estimates and genetic correlations for most traits were similar to estimates reported in the literature. Sire EPD ranges for carcass traits approached those reported for sires in other breeds. The magnitude of heritability estimates suggests that improvement in carcass yield, carcass quality, and consumer acceptance traits can be made within the Brahman population.  相似文献   

8.
Feedlot and carcass characteristics of 276 steers from five closed lines of Hereford cattle and reciprocal crosses among these lines were studied. The traits studied were initial weight, final weight, 224-d gain, days on test, hot carcass weight, marbling score, longissimus muscle area, fat thickness, yield grade, dressing percentage and shear force. Year of record was a significant source of variation for most traits. Age of dam was a significant source of variation for growth traits but not carcass traits. Line of sire affected initial weight, final weight, 224-d gain, days on test, marbling score and dressing percentage. Significant heterosis was observed only for hot carcass weight. Heterosis estimates were 1.9% for initial weight, 2.2% for final weight, 2.5% for 224-d gain, -2.1% for days on test, .6% for hot carcass weight, -.6% for marbling score, 0 for carcass grade, .6% for longissimus muscle area, 2.3% for backfat thickness, .9% for yield grade, -.9% for dressing percent and -10.9% for shear force. Initial age on test affected only hot carcass weight. Hot carcass weight, dressing percentage, marbling score, longissimus muscle area and fat thickness were affected by slaughter weight. Slaughter age affected dressing percent and marbling score.  相似文献   

9.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

10.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

11.
Correlated responses in reproductive and carcass traits were studied in 181 litters and 218 pigs from a line of Landrace pigs selected six generations for increased weight at 70 d of age and a contemporaneous, randomly selected control line. The reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th-rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle, and lean gain per day. Total weighted cumulative selection differential for 70-d weight was 30.2 kg. The realized heritability for 70-d weight was .13 +/- .06, and the change in 70-d weight was .65 +/- .29 kg per generation. The regression coefficient of litter size at 21 d on generation was .24 +/- .10 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Carcass length, specific gravity, and ham weight decreased (P less than .10) -.075 +/- .036 cm, -.00054 +/- .00027, and -.102 +/- .048 kg, respectively, per generation. Color score and lean gain per day increased .046 +/- .021 points and .0032 +/- .0013 kg/d, respectively, each generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Correlated responses in reproductive and carcass traits from a line of Duroc pigs selected for increased 200-d weight along with a randomly selected control line were studied in 189 litters (116 select, 73 control) and 191 pigs (106 select, 85 control), respectively. Reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle and lean gain per day. Total weighted cumulative selection differential for 200-d weight was 81.7 kg. The realized heritability for 200-d weight was .18 +/- .08, and the change in 200-d weight was 2.5 +/- 1.2 kg per generation. The regression coefficient of litter size born on generation was -.29 +/- .12 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Average backfat thickness, 10th rib backfat thickness, and belly weight increased by .093 +/- .016 cm, .122 +/- .029 cm, and .089 +/- .040 kg, respectively, per generation. Specific gravity, ham weight, shoulder weight, color score, and percentage of muscle decreased -.00086 +/- .00024, -.165 +/- .013 kg, -.104 +/- .011 kg, -.035 +/- .015 points, and -.47 +/- .12%, respectively, per generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Heifer and steer progeny of 2-yr-old first-cross (F1) heifers and 3- to 6-yr-old F1 cows, from Hereford dams and five sire breeds, were evaluated for postweaning feedlot growth and carcass composition. Breeds of sire of dam were Angus (A), Red Poll (RP), Tarentaise (T), Simmental (Sm), and Pinzgauer (P). Calves from 2-yr-old heifers were sired by Shorthorn, and calves from 3- to 6-yr-old dams were sired by Charolais. Breed of sire of dam was significant (P less than .05 to P less than .01) for total gain and final weight for female progeny from 2-yr-old dams. At all weights, Sm, P, and T ranked above A and RP. Progeny of A, P, Sm, and T F1 2-yr-old dams were not significantly different but were higher (P less than .05) than RP heifers in total feedlot gain. Breed of sire of dam was significant (P less than .05) for carcass weight and longissimus muscle area; T ranked highest and RP lowest. Breed was not significant for any growth traits of steer progeny of 2-yr-old dams. Breed was significant for marbling score; A ranked highest and exceeded (P less than .01) both RP and Sm steers. Breed was significant (P less than .05) for most growth traits in the heifer progeny of the 3- to 6-yr-old dams bred to Charolais sires. Heifer calves of the Sm group were heavier (P less than .05) than all other groups for most weights and total gain. For total gain, P and T were intermediate and A and RP lowest. For heifer carcass traits from 3- to 6-yr-old dams, breed was significant (P less than .05 to P less than .01) for carcass weight, longissimus muscle area, percentage of cutability, and estimated kidney, heart, and pelvic fat. Heifers from Sm-sired dams were heavier (P less than .05) than those from all other groups but ranked second to heifers from P for percentage of cutability. Marbling scores of RP heifer carcasses ranked highest of all groups. Breed was not significant (P greater than .05) for any of the weights or gains in steer progeny of 3- to 6-yr-old dams; however, the Sm and P groups ranked above A and RP for all feedlot test weights.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To assess the effects of slaughter weight and sex on APGS (Animal Products Grading Service) quality and APGS yield grade of Korean Hanwoo (n = 20,881) cattle, data were collected from cow, bull, and steer carcasses during a 1-yr period. Factors used to determine quality grade (marbling, meat color, fat color, texture, and overall maturity score) and yield grade (cold carcass weight, adjusted fat thickness, and longissimus muscle area) by the Korean grading system were recorded. Both yield and quality grades were improved (P < 0.01) with heavier slaughter weight, but there was no difference in yield grade for Hanwoo cattle classes heavier than 551 kg (P > 0.01). Longissimus muscle area, adjusted fat thickness, and marbling score increased (P < 0.01) with carcass weight. Bull carcasses showed higher yield but lower quality than those of cows or steers (P < 0.01). The quality grade of steer carcasses was higher (P < 0.01) than that of cow carcasses due to higher marbling scores, lower maturity scores, and heavier carcass weights. Hanwoo carcasses with larger longissimus muscle areas in relation to their carcass weight had lower APGS quality grades. The APGS quality grades were different between yield grade A and B carcasses (P < 0.01), but quality grade was not improved by increased fat thickness beyond the point of yield grade B. Adjusted fat thickness and marbling score showed significant (P < 0.01) differences among all yield grade classes, and this resulted in increased quality grade as yield grade decreased. Adjusted fat thickness showed the strongest correlation (r = -0.63) with yield grade, whereas marbling score had the strongest correlation (r = 0.81) with quality grade. Results showed a negative effect of castration on yield but a positive effect on quality. Also, data showed that Hanwoo carcasses with heavier weights had higher quality grades than those of lighter weight.  相似文献   

15.
Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits.  相似文献   

16.
A 2(3) factorial arrangement of treatments was utilized to determine effects of postweaning zeranol implantation, breed (Angus vs Limousin) and castration (bull vs steer) on growth, behavior and carcass traits. An initial slaughter group was used to account for breed differences in composition and to determine fat and lean growth in the 9-10-11th rib section (NTE). The remaining cattle were fed a finishing diet to a fat end point of .76 cm, as determined by a backfat probe. Control bulls outgained (P less than .01) control steers both to the first kill date and over the entire test and did not require significantly more time to reach the fat end point. The implant did not influence gain in bulls but did increase gain in steers. Angus and Limousins were similar in growth rate for the first 126 d before the first slaughter date. Limousins required more (P less than .01) time to reach the fat end point. Bulls and Limousins produced heavier (P less than .01) carcasses and larger rib eyes (P less than .05; bulls; P less than .01; Limousins). Steers and Angus had higher (P less than .01) marbling scores and lower bone maturity. Implanting decreased (P less than .05) marbling and increased carcass maturity. Small but significant shifts in carcass wholesale cut weight distribution were found between breed and sex condition groups. Bulls and Limousins had greater lean growth in the NTE. Bulls and steers were similar in fat growth, but Angus exceeded Limousin in this trait. Zeranol reduced scrotal circumference (P less than .01) and testicle weight at slaughter (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Growth rates and weights at weaning, 365 d, and at slaughter were obtained on 616 bulls in a nonselected Hereford herd over a 10-yr period beginning in 1978. Carcass data were obtained for 401 of these bulls at 16 mo of age and on 101 that were sires or alternates and slaughtered at 30 mo of age. Fifty-five bulls slaughtered at 30 mo of age sired 301 male offspring on which growth data were obtained and 30 sired 169 male offspring on which carcass data were obtained. Bulls gained an average of .75 kg/d preweaning and 1.16 kg/d postweaning on a 168-d feed test. Rate of daily gain from the end of feed test to slaughter ranged from .7 to 1.2 kg/d. Time from the end of the feed test to slaughter ranged from 48 to 140 d. Slaughter weight, marbling score (Small = 12, Traces = 6), longissimus muscle area, fat covering over the 12th rib, percentage of kidney, pelvic and heart fat (KPH), and dressing percentage for bulls slaughtered as yearlings were 470 kg, 7.6 score, 82.5 cm, 8.2 mm, 1.0%, and 58.8%, respectively. The 30-mo-old bulls were slaughtered directly from range pastures. Marbling was devoid or practically devoid and fat covering over the 12th rib and KPH fat were insufficient to measure or estimate accurately. Sufficient variation was not available for statistical analyses of these traits. Slaughter weight, longissimus muscle area, and dressing percentage of 30-mo-old bulls were 583 kg, 91.8 cm, and 54.0%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

19.
A total of 144 male crossbred calves were allocated to four management treatments (bulls; steers; bulls implanted with zeranol at 100 d of age and re-implanted at 69, 93 and 56 d thereafter; bulls implanted with zeranol at 168 d of age and re-implanted at 93 and 56 d thereafter), and two pre-slaughter shipping treatments (minimum pre-slaughter stress with cattle shipped and slaughtered within 4 h of leaving the feedlot pen; moderate pre-slaughter stress with cattle mixed, trucked 160 km and slaughtered up to 24 h of leaving the feedlot pen) in a 4 X 2 factorial arrangement. Management treatment had no significant effect on carcass pH (45 min), carcass muscle temperature (45 min), or peak shear-force of cooked longissimus muscle. Steers had significantly lower dressing percentage, warm-carcass weight, hide weight and carcass-lean content, but higher marbling score, fat thickness and intramuscular-fat content than all treatments with bulls. Minimum pre-slaughter stress resulted in significantly lower dressing percentage, warm-carcass weight, and carcass pH (45 min), but generally had no effect on carcass tissue-yield measurements compared with the moderate stress treatment. Implanted bulls produced carcasses with significantly darker meat, higher 24-h pH and lower meat expressible juice than bulls and castrates for the moderate pre-slaughter stress treatment. These results provide evidence that zeranol implantation in bulls had a minor influence on carcass characteristics, and did not reduce the incidence of dark-cutting carcasses in young bulls subjected to moderate pre-slaughter shipping stress.  相似文献   

20.
Carcass measurements for weight, longissimus muscle area, 12-13th-rib fat thickness, and marbling score, as well as for live animal measurements of weight at the time of ultrasound, ultrasound longissimus muscle area, ultrasound 12-13th-rib fat thickness, and ultrasound-predicted percentage ether extract were taken on 2,855 Angus steers. The average ages for steers at the time of ultrasound and at slaughter were 391 and 443 d, respectively. Genetic and environmental parameters were estimated for all eight traits in a multivariate animal model. In addition to a random animal effect, the model included a fixed effect for contemporary group and a covariate for measurement age. Heritabilities for carcass weight, carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound weight, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.48, 0.45, 0.35, 0.42, 0.55, 0.29, 0.39, and 0.51, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, carcass marbling score and ultrasound-predicted percentage ether extract, and carcass and ultrasound weight were 0.69, 0.82, 0.90, and 0.96, respectively. Additional estimates were derived from a six-trait multivariate animal model, which included all traits except those pertaining to weight. This model included a random animal effect, a fixed effect for contemporary group, as well as covariates for both measurement age and weight. Heritabilities for carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.36, 0.39, 0.40, 0.17, 0.38, and 0.49, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, and carcass marbling and ultrasound-predicted percentage ether extract were 0.58, 0.86, and 0.94, respectively. The high, positive genetic correlations between carcass and the corresponding real-time ultrasound traits indicate that real-time ultrasound imaging is an alternative to carcass data collection in carcass progeny testing programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号