首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Cystic follicles have excess fluid derived from blood flow in the theca interna of the follicle; therefore, the vasculature network is related to cystic follicle formation. Vascular endothelial growth factor (VEGF) is a potent stimulator of blood vessel permeability and angiogenesis. The aim of this study was to examine the expression of VEGF receptors proteins and mRNA in cystic follicles to elucidate the VEGF system in cystic follicles. The expression of protein for VEGF receptors; fms‐like‐tyrosine kinase‐1 (Flt‐1) and foetal liver kinase‐1 (Flk‐1) was detected by the immunohistochemical method. The mRNA expression of Flt‐1 and Flk‐1 in cystic follicles was determined by RT‐PCR. Concentration of oestradiol‐17β and progesterone in the follicular fluid of cystic follicles was determined using ELISA. Flt‐1‐ and Flk‐1 proteins were localized in granulosa and theca interna cells and endothelial cells of theca layers. The intensity of Flt‐1 and Flk‐1 immunoreaction was similar among cystic follicles with various ratios of oestradiol‐17β/progesterone concentrations. The expression of Flt‐1 and Flk‐1 mRNA was similar, regardless of the ratio of oestradiol‐17β to progesterone in follicular fluid. These results demonstrate that cystic follicles have both VEGF receptors in the granulosa and theca interna layers, which may be responsible for the increased permeability of microvessels, causing the accumulation of follicular fluid in cystic follicles.  相似文献   

3.
Natriuretic peptides (NPs) are known to regulate reproductive events in polyovulatory species, but their function and regulation in monovulatory species remain to be fully characterized. Using a well‐established in vivo model, we found that bovine granulosa cells from follicles near the deviation stage express mRNA for the three NP receptors (NPR1, NPR2 and NPR3), but not for NP precursors (NPPA, NPPB and NPPC). The abundance of NPR3 mRNA was higher in dominant compared to subordinate follicles at the expected time of follicular deviation. After deviation, mRNA for all NP receptors was significantly more abundant in the dominant follicle. Intrafollicular inhibition of oestrogen receptors downregulated NPR1 mRNA in dominant follicles. In granulosa cells from preovulatory follicles, NPPC mRNA increased at 3 and 6 h after systemic GnRH treatment, but decreased at 12 and 24 h to similar levels observed in samples collected at 0 h. After GnRH treatment, NPR1 mRNA was upregulated at 24 h, NPR3 mRNA gradually decreased after 3 h, while NPR2 mRNA was not regulated. The mRNA expression of the enzyme FURIN increased at 24 h after GnRH treatment. These findings revealed that the expression of mRNA encoding important components of the NP system is regulated in bovine granulosa cells during follicular deviation and in response to GnRH treatment, which suggests a role of NP system in the modulation of these processes in monovulatory species.  相似文献   

4.
The anti‐Müllerian hormone (AMH) is an important marker of ovarian reserve and for predicting the response to superovulatory treatments in several species. The objective of this study was to investigate whether AMH and its receptor (AMHR2) are regulated in bovine granulosa cells during follicular development. In the first experiment, granulosa cells were retrieved from the two largest follicles on days 2 (before), 3 (at the expected time) or 4 (after deviation) of follicular wave. In the second experiment, four doses of FSH (30, 30, 20 and 20 mg) or saline were administered twice a day starting on Day 2 of the first follicular wave of the cycle. Granulosa cells and follicular fluid were collected from the two largest follicles 12 h after the last injection of FSH or saline. AMH mRNA abundance was similar in granulosa cells of the two largest follicles (F1 and F2) before deviation (Day 2), but greater in dominant (DF) than subordinate follicles (SF) at the expected time (Day 3) and after (Day 4) deviation (p < 0.05). In experiment 1, AMH mRNA levels declined in both DF and SF near the expected time and after deviation when compared to before deviation. There was no difference in AMHR2 mRNA levels before and during follicular deviation (p > 0.05), but they tended to be greater in DFs than SFs (p < 0.1) after deviation. Experiment 2 showed that AMH and AMHR2 mRNA in granulosa cells and AMH protein abundance in follicular fluid were similar (p > 0.05) between both co‐dominant follicles collected from the FSH‐treated cows. These findings indicate the followings: AMH mRNA levels decrease in both DFs and SFs during follicular deviation; granulosa cells from heathy follicles express more AMH mRNA compared to subordinate follicles undergoing atresia and FSH stimulates AMH and AMHR2 mRNA expression in granulosa cells of co‐dominant follicles.  相似文献   

5.
The growth factor receptor‐bound protein 14 (Grb14) is a cellular adapter protein belonging to the Grb7 family of proteins. Studies with human and rodent cells have demonstrated that Grb14 acts as a negative regulator of tyrosine kinase receptor signalling through the MAPK and PI3K pathways. In cattle, tyrosine kinase receptors are activated during follicular development but the role of Grb14 in this process has not yet been investigated. Therefore, the aim of the present study was to characterize Grb14 mRNA expression in ovarian somatic cells during follicular growth and deviation in cattle. We found Grb14 mRNA expressed in both granulosa and theca cells derived from follicles at different stages of development (3–5 , 6–8, >8 mm in diameter). The abundance of mRNA for Grb14 was higher in granulosa cells of subordinate compared with those from dominant follicles at days 3 and 4 of the follicular wave (p < 0.05). Further, there was a negative correlation between the abundance of mRNA for Grb14 and P450Arom in granulosa cells (R2 = 0.367; p < 0.05) and between the abundance of mRNA for Grb14 in granulosa cells and concentration of oestradiol in follicular fluid (R2 = 0.545; p < 0.05). In theca cells, the expression of Grb14 mRNA did not differ between dominant and subordinate follicles (p > 0.05). These findings suggest that Grb14 may play a regulatory role in granulosa cells during follicular deviation in cattle.  相似文献   

6.
Follicle selection is associated with an increase in the expression of vascular endothelial growth factor (VEGF) and its receptors in granulosa cells, however, the roles of VEGF in regulating the function of these or other non-endothelial cells in the ovary have not been explored in detail. The current study used bovine cell cultures to investigate potential roles of VEGF in the regulation of granulosa cell function during follicle development. Granulosa cells were obtained from morphologically healthy follicles 4 to 8 mm or 9 to 14 mm in diameter (corresponding to diameters before and after the establishment of dominance, respectively, during a bovine follicular wave) and exposed to a range of VEGF concentrations (1 to 100 ng/mL) encompassing concentrations found naturally in bovine dominant follicles. A concentration of VEGF of 1 ng/mL induced significant proliferation of granulosa cells from 4- to 8-mm follicles (P = 0.024) and increased the proliferative response of these cells to follicle-stimulating hormone (FSH; P = 0.045); whereas higher doses of VEGF had no effect on proliferation (P = 0.9). Treatment with VEGF induced an overall increase in mean extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation (P = 0.02). In contrast, VEGF, alone or in combination with FSH, had no effect on expression of the steroidogenic enzyme, CYP11A1, by cells from 4- to 8-mm follicles (P = 0.9). Granulosa cells from 9- to 14-mm follicles responded to 1 ng/mL VEGF with an increase in expression of the ovulation-associated gene, PTGS2 (P = 0.003) but higher VEGF doses had no effect (P = 0.9). The PTGS2 response to 1 ng/mL VEGF was similar to that induced by treatment with luteinizing hormone (LH). Interestingly, the stimulatory effects of LH on ERK1/2 phosphorylation (P = 0.003) and PTGS2 expression (P < 0.01) in granulosa cells from 9- to 14-mm follicles were abolished (P = 0.2) by specific chemical inhibition of VEGF receptor 2 (VEGFR2). These results suggest novel and important roles of VEGF and its receptor, VEGFR2, in mediating and/or enhancing the effects of gonadotropins in granulosa cells.  相似文献   

7.
Melatonin (N-acetyl-5-methoxytryptamine), an indole hormone, regulates various biological functions through three different receptor subtypes (Mel-1a, Mel-1b, and Mel-1c). However, the distribution of different melatonin receptor subtypes in chicken reproductive tissues was not known. In the present investigation, the partial sequences of ovarian melatonin receptor subtypes (Mel-1a, Mel-1b, and Mel-1c) were characterized. Further, the expression profile of melatonin receptor subtypes in the granulosa and theca layers of different preovulatory and postovulatory follicles (POF) were studied by semi-quantitative RT-PCR. The expression of all three subtypes of melatonin receptors were observed in the ovary of domestic chicken. Analysis of partial sequences of ovarian melatonin receptors revealed that the melatonin subtypes were identical to the brain receptors. In small white ovary follicles, we observed only the expression of mel-1b receptors, but not mel-1a or mel-1c receptors. In yellow follicles, all the three subtypes of receptors expression were noticed. Interestingly, we observed the expression of mel-1a receptor only in thecal layer, but not in granulosa layer. In contrast, mel-1b and -1c receptors were expressed in both granulosa and thecal layer. During the regression of POF, we observed significant upregulation of melatonin receptors (mel-1a and 1c) expression, that downregulated in the later stages of regression. We assume that the expression of melatonin receptors might have been influenced by the atresia or apoptosis of different follicular layers in POF. Our findings suggest that the differential distribution of melatonin receptor subtypes might have distinct downstream cellular functions in the ovarian tissues.  相似文献   

8.
Adiponectin is an adipocyte‐derived hormone regulating energy metabolism, insulin sensitivity and recently found to regulate reproduction. The current study was carried out to investigate gene and protein expression, immunolocalization of adiponectin and its receptors AdipoR1 and AdipoR2 in ovarian follicles of different developmental stages in water buffalo (Bubalus bubalis) and to investigate the effect of adiponectin on steroid production in cultured bubaline granulosa cells. qPCR, western blotting and immunohistochemistry were applied to demonstrate mRNA expression, protein expression and immunolocalization, respectively. The results indicate that adiponectin, AdipoR1 and AdipoR2 were present in granulosa cells (GC) and theca interna (TI) of ovarian follicles and the expression of adiponectin, AdipoR1, AdipoR2 in GC and AdipoR1 and AdipoR2 in TI increased with increase in follicle size (p < .05). Expression of adiponectin was high in small and medium size follicles in TI. The adiponectin and its receptors were immunolocalized in the cytoplasm of GC and TI cells. Further, in the in‐vitro study, GCs were cultured and treated with recombinant adiponectin each at 0, 1 and 10 µg/ml alone or with follicle stimulating hormone (FSH) at 30 ng/ml) or Insulin‐like growth factor I (IGF‐I) at 10 ng/ml for 48 hr after obtaining 75%–80%s confluency. Adiponectin at 10 µg/ml increased IGF‐I‐induced estradiol (E2) and progesterone (P4) secretion and FSH‐induced E2 secretion from GC and also increased the abundance of factors involved in E2 and P4 production (cytochrome P45019A1 [CYP19A1] and 3‐beta‐hydroxysteroid dehydrogenase [3β‐HSD]). In conclusion, this study provides novel evidence for the presence of adiponectin and its receptors in ovarian follicles and modulatory role of adiponectin on steroid production in buffalo.  相似文献   

9.
In the mammalian ovary, aquaporins (AQPs) are thought to be involved in the regulation of fluid transport within the follicular wall and antrum formation. Data concerning the AQPs in the avian ovary is very limited. Therefore, the present study was designed to examine whether the AQP4 is present in the chicken ovary, and if so, what is its distribution in the ovarian compartment of the laying hen. Localization of AQP4 in the ovarian follicles at different stage of development was also investigated. After decapitation of hens the stroma with primordial follicles and white (1–4 mm), yellowish (4–8 mm), small yellow and the three largest yellow pre‐ovulatory follicles F3‐F1 (F3 < F2 < F1; 20–36 mm) were isolated from the ovary. The granulosa and theca layers were separated from the pre‐ovulatory follicles. The AQP4 mRNA and protein were detected in all examined ovarian compartments by the real‐time PCR and Western blot analyses, respectively. The relative expression of AQP4 was depended on follicular size and the layer of follicular wall. It was the lowest in the granulosa layer of pre‐ovulatory follicles and the highest in the ovarian stroma as well as white and yellowish follicles. Along with approaching of the largest follicle to ovulation the gradual decrease in AQP4 protein level in the granulosa layer was observed. Immunoreactivity for AQP4 was present in the granulosa and theca cells (theca interna ≥ theca externa > granulosa). The obtained results suggest that AQP4 may take part in the regulation of water transport required for follicle development in the chicken ovary.  相似文献   

10.
The regulation of granulosa cell proliferation is complex, and it is essential for normal follicular development in mammals. The aim of this study was to examine the expression of cyclins and their inhibitors in the granulosa cells of follicles at different developmental stages. Follicles were classified into three groups: oestrogen‐inactive dominant follicles (EIDs), oestrogen‐active dominant follicles (EADs) and pre‐ovulatory follicles (POs). The expression of CCND2 (cyclin D2) mRNA was significantly higher in granulosa cells from EADs and POs than in those from EIDs. The expression of CCND3 (cyclin D3) mRNA was significantly higher in granulosa cells from EADs than in those from other follicles. CCND1 (cyclin D1), CCNE1 (cyclin E1) and CCNE2 (cyclin E2) mRNA expression did not differ among the different follicular stages. The expression of CDKN1A (p21cip1) and CDKN1B (p27kip1) mRNA was significantly higher in granulosa cells from EIDs and POs, respectively, than in those from other follicles. Expression of CDKN2D (p19INK4d) mRNA did not differ among the different follicular stages. Taken together, our study suggested that cyclins and their inhibitors are associated with granulosa cell proliferation at specific follicular developmental stages.  相似文献   

11.
12.
Steroid hormones and receptors play important roles in female reproduction, and their expression patterns affect follicular growth and development. To examine the expression of dihydrotestosterone (DHT) synthases (5α-reductases (5α-red1 and 5α-red2)) and androgen receptor (AR) during follicular development, and the regulation of DHT signalling by follicle-stimulating hormone (FSH) and luteinizing hormone (LH), we have used enzyme-linked immunosorbent assays, quantitative real-time polymerase chain reaction, immunohistochemical staining and Western blotting to examine DHT synthesis in small (≤2 mm), medium (2–5 mm) and large (≥5 mm) sheep follicles. Expression of 5α-red1, 5α-red2 and AR was observed in ovine ovaries, and with the development of follicles, the expressions of 5α-red1 and 5α-red2 mRNA and protein increased, but the levels of AR mRNA, protein and DHT level decreased. In addition, granulosa cells were treated with FSH (0.01, 0.1 and 1 international unit (IU)/ml), LH (0.01, 0.1 and 1 IU/ml) and testosterone (T, 10–7 M) to evaluate the effects of FSH and LH on DHT and oestradiol (E2) synthesis and 5α-red1, 5α-red2 and AR expression. We found that FSH and LH upregulated 5α-red1 and 5α-red2 in sheep granulosa cells, but downregulated the concentration of DHT and expression of AR. Meanwhile, FSH and LH significantly upregulated the expression of aromatase (P450arom) and secretion of E2. This result indicates that although FSH and LH promote the expression of 5α-red1 and 5α-red2, T is not transformed into DHT, but E2. This study reveals the reason why DHT concentration is downregulated in large follicles and lays a foundation for further exploring the synthesis mechanism of DHT during follicular development.  相似文献   

13.
The aim of this study was to document the expression and localization of VEGF system comprising of VEGF isoforms (VEGF 120, VEGF 164 and VEGF 188) and their receptors (VEGFR1 and VEGFR2) in buffalo corpus luteum (CL) obtained from different stages of the oestrous cycle. Real‐time RT‐PCR (qPCR), Western blot and immunohistochemistry were applied to investigate mRNA expression, protein expression and localization of examined factors. In general, all the components of VEGF system (the VEGF isoforms and their receptors) were found in the water buffalo CL during the oestrous cycle. The mRNA as well as protein expression of VEGF system was highest during the early and mid‐luteal phase, which later steadily decreased (p < 0.05) after day 10 to reach the lowest level in regressed CL. As demonstrated by immunohistochemistry, VEGF protein was localized predominantly in luteal cells; however, VEGFR1 and VEGFR2 were localized in luteal cells as well as in endothelial cells. In conclusion, the dynamics of expression and localization of VEGF system in buffalo corpora lutea during the luteal phase were demonstrated in this study, indicating the possible role of VEGF system in the regulation of luteal angiogenesis and proliferation of luteal as well as endothelial cells through their non‐angiogenic function.  相似文献   

14.
Luteinizing hormone LH plays important roles in follicular maturation and ovulation. The effects of LH are mediated by LH receptor (LHR) in the ovary. However, the factors that regulate the expression of LHR in bovine granulosa cells (GCs) are not well known. Insulin‐like growth factor‐1 (IGF‐1) is known to play a key role in the acquisition and maintenance of functional dominance. To better understand the roles of LHR expression and IGF‐1, we conducted three experiments to determine (i) mRNA expression of LHR in the GCs of developing follicles, (ii) the effects of IGF‐1 on LHR mRNA expression in cultured GCs and (iii) the effects of IGF‐1 on estradiol (E2), progesterone (P4) and androstenedione (A4) production by non‐luteinized GCs. In experiment 1, small follicles (<6 mm Ø) expressed lower levels of LHR than mid‐sized follicles (6–8 mm Ø) and large follicles (≥9 mm Ø) expressed the highest levels of LHR mRNA (p < 0.05). In experiment 2, IGF‐1 (1 and 100 ng/ml) increased (p < 0.05) the expression of LHR mRNA in GCs from small and large follicles. In experiment 3, IGF‐1 (0.1–100 ng/ml) increased A4 and E2 in GCs from both small and large follicles but increased P4 only in large follicles. IGF‐1 in combination with LH (0.1 and 1 ng/ml) increased P4 and A4 in large follicles, and increased E2 and A4 in GCs of small follicles. These findings strongly support the concept that IGF‐1 upregulates LHR mRNA expression as well as A4 and E2 production in GCs and that IGF‐1 is required for determining which follicle becomes dominant and acquires ovulatory capacity.  相似文献   

15.
Angiogenic factors are associated with angiogenesis during follicular development in the mammalian ovary. The aim of the present study was to determine the relationships between the vascular network and mRNA expressions of angiopoietins (Ang)-1, Ang-2 and hepatocyte growth factor (HGF), and their receptors in follicles at different developmental stages during follicular development. Ovaries in gilts were collected 72 h after equine chorionic gonadotropin (eCG, 1250 IU) treatment for histological observation of the capillary network. Granulosa cells and thecal tissues in small (<4 mm), medium (4-5 mm) or large (>5 mm) individual follicles were collected for detection of mRNA expression of HGF, Ang-1 and Ang-2 in granulosa cells, and HGF receptor (HGF-R) and Tie-2 in the theca cells by semi-quantitative RT-PCR. The number of capillaries in the thecal cell layer increased significantly in healthy follicles at all developmental stages in the eCG group compared with those in controls. The expression of Ang-1 mRNA declined in granulosa cells of medium and large follicles and the level of Ang-2 mRNA increased in granulosa cells of small follicles after eCG treatment. The ratio of Ang-2/Ang-1 increased in small, medium and large follicles from ovaries after eCG treatment, but Tie-2 mRNA expression in the theca cells did not change. The level of HGF mRNA increased in granulosa cells of small follicles after eCG treatment but HGF-R in theca cells was not increased by eCG. These data suggested that the angiopoietins might be associated with thecal angiogenesis during follicular development in eCG-treated gilts.  相似文献   

16.
Luteinizing hormone receptor (LHR) is a specific membrane receptor on the granulosa and theca cells that bind to luteinizing hormone (LH), resulting in androgen and progesterone production. Hence, the regulation of LHR expression is necessary for follicle maturation, ovulation and corpus luteum formation. We examined the immunolocalization of LHR in cyclic gilt ovaries. The ovaries were obtained from 21 gilts aged 326.0 ± 38.7 days and weighing 154.6 ± 15.7 kg. The ovarian tissues were incubated with rabbit anti‐LHR polyclonal antibody. The follicles were categorized as primordial, primary, preantral and antral follicles. Ovarian phase was categorized as either follicular or luteal phases. The immunolocalization of LHR was clearly expressed in primary, preantral and antral follicles. LHR immunostaining was detected in the cytoplasm of granulosa, theca interna and luteal cells. LHR immunostaining was evaluated using imaging software. LHR immunostaining in the theca interna cells in antral follicles was almost twice as intense as that in preantral follicles (65.4% versus 38.3%, < 0.01). LHR immunostaining was higher in the follicular phase than in the luteal phase (58.6% versus 45.2%, < 0.05). In conclusion, the expression of LHR in the theca interna cells of antral follicles in the follicular phase was higher than in the luteal phase. The expression of LHR in all types of the follicles indicates that LHR may impact follicular development from the primary follicle stage onwards.  相似文献   

17.
18.
The expression of growth factors was evaluated immunohistochemically in normal and cystic ovaries of sows. The immunohistochemically stained area (IHCSA) was quantified by image analysis to analyse the expression of these proteins in the follicular wall of secondary, tertiary and cystic follicles. IGF‐I immunoreactivity was strong in the granulosa cell layer (GC), moderate in the theca interna (TI) and mild in the theca externa (TE) of the normal follicles. There was severe reduction of the labelling to IGF‐I in the GC of the follicular and luteinized cysts. In the normal follicles, the reactivity for IGF‐II was very similar to pattern noted in IGF‐I. There was reduction of the IHCSAs in the GC of the follicular and luteinized cysts, but the decrease was not significant. The staining of the IGF‐II in the TI and TE of the cysts was increased, in comparison with normal follicles. The IHCSAs for VEGF were higher in the GC and TE of the normal follicles in contrast to TI, but this difference was noted only in the tertiary follicle. The VEGF reactivity increased in the GC of the cysts, in relation to normal follicles. The results of the current study show that the formation of ovarian cysts in sows is associated with alterations in the immunohistochemical expression of some growth factors.  相似文献   

19.
Normal metabolic activity in ovarian follicles may result in oxidative stress and damage to oocytes. The aim of this study was to evaluate expression of the natural anti‐oxidants paraoxonase (PON) 1, 2 and 3 in granulosa cells and PON1 activity in follicular fluid (FF) and plasma of dairy cows. For the first experiment, ovaries were collected from cows at slaughter, after which follicles were dissected and classified as oestrogen active (EAF) or atretic (ATF). Expression of PON1, PON2 and PON3 mRNA was evaluated in granulosa cells, and activity of PON1 was measured in FF. PON1 mRNA was undetectable in granulosa cells, PON2 mRNA expression was not different between follicle types, and PON3 mRNA tended to be higher in EAF (p = 0.11). The activity of PON1 in FF was higher (p = 0.01) for EAF (82.6 ± 8.0 kU/L) than ATF (53.9 ± 6.8 kU/L), as were high‐density lipoproteins (HDL), low‐density lipoproteins (LDL) and total cholesterol concentrations. In the second experiment, we aimed to compare plasma and FF PON1 activity in early lactation Holstein cows (n = 15) with pre‐ovulatory EAF. Activity of PON1 was twofold higher (p < 0.0001) in plasma (122.5 ± 11.1 kU/L) than in FF (61.4 ± 5.2 kU/L). Plasma concentrations were also higher (p < 0.0001) for HDL, LDL and total cholesterol when compared to FF. In conclusion, FF concentrations of PON1, HDL, LDL and total cholesterol were higher in healthy oestrogen active bovine follicles than in atretic follicles. PON1 was not expressed by granulosa cells indicating that high PON1 activity in bovine FF is apparently derived by transfer from blood in association with HDL.  相似文献   

20.
实验探讨了大豆黄酮(DAI)对伊莎鸡卵泡发育及其芳香化酶(P450arom)mRNA表达的影响。实验选取16只产蛋后期伊莎鸡,等分为对照组和DAI处理组。对照组饲喂基础日粮,实验组在基础日粮中添加10 mg/kgDAI。实验持续7周后,分离排卵前卵泡(F1、F2、F3……)的颗粒层及小黄卵泡和大白卵泡,通过RT-PCR法检测P450arom mRNA表达的相对丰度。结果表明:DAI明显提高了伊莎鸡小黄卵泡和大白卵泡的数量,P450arommRNA在伊莎鸡不同发育阶段卵泡中的表达存在差异,部分卵泡P450arom mRNA表达的相对丰度显著增加。因此,在产蛋后期伊莎鸡基础日粮中添加DAI可增加不同发育阶段卵泡的数目,上调部分卵泡中与发育相关的基因表达以促进卵泡发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号