首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Low ruminal pH may occur when feeding high-concentrate diets. However, because the reduction in pH occurs at the same time as the amount of concentrate fed increases, the changes observed in rumen fermentation may be attributed to pH or the type of substrate being fermented. Our objective was to determine the contribution of pH and type of substrate being fermented to the changes observed in rumen fermentation after supplying a high-concentrate diet. Eight dual-flow, continuous culture fermenters (1,400 mL) were used in 4 periods to study the effect of pH and type of diet being fermented on rumen microbial fermentation. Temperature (39 degrees C), solid (5%/h), and liquid (10%/h) dilution rates, and feeding schedule were maintained constant. Treatments were the type of diet (FOR = 60% ryegrass and alfalfa hays and 40% concentrate; CON = 10% straw and 90% concentrate) and pH (4.9, 5.2, 5.5, 5.8, 6.1, 6.4, 6.7, and 7.0). Diets were formulated to have similar CP and ruminally undegradable protein levels. Data were analyzed as a mixed-effects model considering the linear, quadratic, and cubic effects of pH, the effects of diet, and their interactions. Semipartial correlations of each independent variable were calculated to estimate the contribution of each factor to the overall relationship. True digestion of OM and NDF were affected by pH, but not by type of diet. Total VFA were reduced by pH and were greater in CON than in FOR. Acetate and butyrate concentrations were reduced by pH but were not affected by diet. Propionate concentration increased as the pH decreased and was greater in CON than in FOR. Ammonia-N concentration decreased with decreasing pH and was lower in CON than in FOR. Microbial N flow was affected by pH, diet, and their interaction. Dietary N flow increased as pH decreased and was greater in CON than in FOR. The degradation of CP followed the opposite pattern, increasing as pH increased, and was less in CON than in FOR. The efficiency of microbial protein synthesis (g of N/kg of OM truly digested) was slightly reduced by pH and was less in CON than in FOR. These results indicate that the effects of feeding a high-concentrate diet on rumen fermentation are due to a combination of pH and substrate. Furthermore, the digestion of OM in high-concentrate diets is likely limited by the pH-induced effects on the microbial population activity.  相似文献   

2.
Six steers (288.6 +/- 2.1 kg of BW) fitted with rumen and duodenal cannulas were used in a crossover design to evaluate intake, rumen fermentation, and site of nutrient digestion of freshly clipped, endophyte-infected (E+) Kentucky 31 tall fescue with or without soybean hull (SH) supplementation at 0.60% of BW (OM basis). Steers were placed in metabolism units within an environmentally controlled room and provided with free-choice access to fresh forage, water, and a vitamin/mineral supplement. The spring growth of E+ tall fescue was harvested daily during the experiment. Supplement was fed at 0700 with approximately 65% of the estimated daily forage. To maintain a fresh forage supply, additional forage was stored in a cooler and fed at 1900. Periods were 21 d with 14 d of adaptation and 7 d of digesta sample collection. Chromic oxide was used as a marker of duodenal digesta flow. Duodenal samples were taken 4 times daily with times shifting by 1 h each day to represent all 24 h of a day. Treatments were considered significant at P < 0.05. Supplementation of SH decreased forage OM intake from 1.64 to 1.41% of BW but increased total OM intake from 1.64 to 2.01% of BW. Apparent percentages (53.1%) and quantities (2,786 g/d) of rumen OM disappearance were not affected by supplementation. Percentages of total tract OM disappearance were not different (70.8%). Percentages of apparent rumen NDF disappearance also were not different (65.6%). Percentages of N disappearance were not different. Supplementation of SH resulted in increased total N (34.1 g/d) and microbial N (17.1 g/d) flowing to the duodenum. Rumen pH (6.5) was not affected, and rumen ammonia concentrations exhibited a time x treatment interaction in which SH decreased ammonia for 12 h after supplementation. Total VFA concentrations (103.9 mM) were unaffected. Liquid dilution rate (12.7%/h) and rumen OM fill (4.3 kg) were not different between treatments. Supplementation of SH at a rate of 0.60% of BW (OM basis) to calves consuming fresh E+ tall fescue decreased forage consumption but resulted in greater total intake, greater flow of N to the duodenum, and increased total tract OM disappearance.  相似文献   

3.
稀释率对于活体外瘤胃发酵和微生物生长效率的影响   总被引:4,自引:0,他引:4  
采用连续培养系统的4个发酵罐进行3次连续培养试验,研究瘤胃稀释率(DR,下同)对于瘤胃微生物发酵和微生物生长效率的影响。瘤胃稀释率为每小时发酵液流出量占发酵罐体积的0.03和0.06。试验日粮唯一由大豆皮组成。随着DR的提高,饲料DM,OM,CP,NDF和ADF消化率均没有显著变化(P>0.05)。提高瘤胃DR,显著提高了微生物发酵的pH(P<0.01),降低了发酵液中NH3的浓度(P<0.02),但对挥发性脂肪酸日产生量和乙、丙、丁酸比例没有显著影响(P>0.05)。发酵液中瘤胃细菌浓度不随DR变化而变化(P>0.05),但每日细菌总量随DR提高而提高(P<0.01)。发酵液原虫浓度(P<0.001)和原虫每日总产量(P<0.05)均随DR提高而下降。当DR从0.03提高到0.06时,微生物N日产生量和微生物生长效率分别提高41.6%(P<0.001)和51.9%(P<0.001)。  相似文献   

4.
This experiment was conducted to investigate the effect of lemongrass [Cymbopogon citratus (DC.) Stapf.] powder (LGP) on rumen ecology, rumen microorganisms, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman native) beef cattle were randomly assigned according to a 4 x 4 Latin square design. The dietary treatments were LGP supplementation at 0, 100, 200, and 300 g/d with urea-treated rice straw (5%) fed to allow ad libitum intake. Digestibilities of DM, ether extract, and NDF were significantly different among treatments and were greatest at 100 g/d of supplementation. However, digestibility of CP was decreased with LGP supplementation (P < 0.05), whereas ruminal NH(3)-N and plasma urea N were decreased with incremental additions of LGP (P < 0.05). Ruminal VFA concentrations were similar among supplementation concentrations (P > 0.05). Total viable bacteria, amylolytic bacteria, and cellulolytic bacteria were significantly different among treatments and were greatest at 100 g/d of supplementation (4.7 x 10(9), 1.7 x 10(7), and 2.0 x 10(9) cfu/mL, respectively). Protozoal populations were significantly decreased by LGP supplementation. In addition, efficiency of rumen microbial N synthesis based on OM truly digested in the rumen was enriched by LGP supplementation, especially at 100 g/d (34.2 g of N/kg of OM truly digested in the rumen). Based on this study, it could be concluded that supplementation of LGP at 100 g/d improved digestibilities of nutrients, rumen microbial population, and microbial protein synthesis efficiency, thus improving rumen ecology in beef cattle.  相似文献   

5.
应用双外流连续培养系统模拟瘤胃发酵,研究不同阴阳离子差(DCAD)水平的阴离子饲粮对活体外瘤胃发酵和营养物质消化率的影响。试验分2期进行,每期12个发酵罐,3个1组,分别投入4种不同DCAD水平的饲粮:+120-、9-、77-、145 mEq/kgDM,后3种饲粮通过添加阴离子添加剂降低DCAD。结果表明:①阴离子饲粮对瘤胃发酵pH值、氨态氮浓度、总挥发性脂肪酸浓度、主要挥发酸的摩尔比例均没有显著影响(P>0.2)。②对饲粮干物质、有机质、中性洗涤纤维、粗蛋白消化率没有显著影响(P>0.2)。③对瘤胃微生物合成效率没有显著影响(P>0.2)。试验结论为阴离子饲粮对活体外瘤胃发酵和饲粮营养物质消化率没有显著影响。  相似文献   

6.
The aim of this study was to investigate the effect of presence or absence of protozoa on rumen fermentation and efficiency of microbial protein synthesis under different diets. Of 20 twin paired lambs, 1 lamb of each pair was isolated from the ewe within 24 h after birth and reared in a protozoa-free environment (n = 10), whereas their respective twin-siblings remained with the ewe (faunated, n = 10). When lambs reached 6 mo of age, 5 animals of each group were randomly allocated to 1 of 2 experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain according to a 2 × 2 factorial arrangement of treatments. After 15 d of adaptation to the diet, the animals were euthanized and total rumen and abomasal contents were sampled to estimate rumen microbial synthesis using C(31) alkane as flow marker. Different ((15)N and purine bases) and a novel (recombinant DNA sequences) microbial markers, combined with several microbial reference extracts (rumen protozoa, liquid and solid associated bacteria) were evaluated. Absence of rumen protozoa modified the rumen fermentation pattern and decreased total tract OM and NDF digestibility in 2.0 and 5.1 percentage points, respectively. The effect of defaunation on microbial N flow was weak, however, and was dependent on the microbial marker and microbial reference extract considered. Faunated lambs fed with mixed diet showed the greatest rumen protozoal concentration and the least efficient microbial protein synthesis (29% less than the other treatments), whereas protozoa-free lambs fed with mixed diet presented the smallest ammonia concentration and 34% greater efficiency of N utilization than the other treatments. Although (15)N gave the most precise estimates of microbial synthesis, the use of recombinant DNA sequences represents an alternative that allows separate quantification of the bacteria and protozoa contributions. This marker showed that presence of protozoa decrease the bacterial-N flow through the abomasum by 33%, whereas the protozoa-N contribution to the microbial N flow increased from 1.9 to 14.1% when barley grain was added to the alfalfa hay. Absolute data related to intestinal flow must be treated with caution because the limitations of the sampling and maker system employed.  相似文献   

7.
Five ruminally, duodenally, and ileally cannulated steers (376 +/- 8.1 kg of initial BW) were used in a 5 x 5 Latin square to evaluate effects of cooked molasses block supplementation and inclusion of fermentation extract (Aspergillus oryzae) or brown seaweed meal (Ascophyllum nodosum) on intake, site of digestion, and microbial efficiency. Diets consisted of switchgrass hay (6.0% CP; DM basis) offered ad libitum, free access to water, and one of three molasses blocks (0.341 kg of DM/d; one-half at 0600 and one-half at 1800). Treatments were no block (control), block with no additive (40.5% CP; POS), block plus fermentation extract bolused directly into the rumen via gelatin capsules (2.0 g/d; FS), fermentation extract included in the block (2.0 g/d; FB), and seaweed meal included in the block (10 g/d; SB). Steers were adapted to diets for 14 d followed by a 7-d collection period. Overall treatment effect on hay OM intake tended (8.1 vs. 7.6 +/- 0.5 kg/d; P = 0.14) to increase with block supplementation. Total OM intake (8.4 vs. 7.6 +/- 0.5 kg/d; P = 0.01) increased in steers consuming block compared with control. Apparent and true ruminal OM digestibility increased (P = 0.05) with block consumption. Steers fed SB had greater (P = 0.10) true ruminal OM digestibility compared with steers fed POS (61.0 vs. 57.9 +/- 1.6%). True ruminal CP digestibility increased (P = 0.01) with block supplementation compared with control (37.5 vs. 23.6 +/- 3.7%). Addition of fermentation extract did not affect intake or digestion. Treatments did not alter ruminal pH, total VFA, or individual VFA proportions; however, ruminal ammonia increased (P = 0.01) with block supplementation. In situ disappearance rates of hay DM (3.14 +/- 0.44 %/h), NDF (3.18 +/- 0.47 %/h), and ADF (3.02 +/- 0.57 %/h) were not altered by treatment. Seaweed block increased (P = 0.01) slowly degraded CP fraction compared with POS (39.5 vs. 34.0 +/- 2.07%). Similarly, SB increased (P = 0.01) the extent of CP degradability (74.2 vs. 68.9 +/- 1.81%). No treatment effects (P = 0.24) were observed for microbial efficiency. Block supplementation increased intake, and use of brown seaweed meal seemed to have beneficial effects on forage digestibility in low-quality forage diets.  相似文献   

8.
试验研究红曲霉合生素对延边黄牛瘤胃VFA浓度变化及饲料表观消化率的影响。试验结果表明:采食后各组pH值无显著影响(P>0.05)。瘤胃液中总挥发性脂肪酸的浓度,红曲霉组和红曲霉加中药组高于对照组,红曲霉加中药组在3、6、9h差异显著(P<0.05)。乙酸浓度红曲霉加中药组在3、6、9h高于其他两组,在3、6h差异显著(P<0.05)。丙酸的浓度红曲霉加中药组在3、6、9h高于其他两组,在3、6、9h与对照组相比差异显著(P<0.05)。丁酸的浓度三组间差异不显著(P>0.05)。乙酸与丙酸的比值各组在各个时间点差异均不显著(P>0.05)。红曲霉组和红曲霉加中药组对粗脂肪、中性洗涤纤维、酸性洗涤纤维的影响不显著(P>0.05)。粗蛋白质和干物质中,红曲霉加中药组的消化率显著高于对照组(P<0.05)。有机物中,红曲霉加中药组和红曲霉组的消化率显著高于对照组(P<0.05)。红曲霉合生素提高了延边黄牛瘤胃液总挥发性脂肪酸和丙酸的浓度,显著增加了蛋白质、干物质和有机物的利用率,提高了延边黄牛瘤胃发酵效率。  相似文献   

9.
Sixteen ruminally cannulated, English-crossbred heifers (378 ± 28.4 kg) grazing small-grain pasture (SGP) were used in a completely randomized design to evaluate effects of supplementing different amounts of corn dried distillers grains with solubles (DDGS; 0, 0.2, 0.4, and 0.6% of BW; as-fed basis) on forage intake, digestibility, and rumen fermentation characteristics. The experiment was conducted from April 6 through April 20, 2007. Heifers grazed in a single SGP with supplements offered individually, once daily at 0700 h. Forage and total OM, CP, and NDF intake were not affected (P ≥ 0.21) by DDGS amount. Digestibility of NDF and ether extract (EE) increased linearly (P < 0.001) when heifers consumed more DDGS. Intake of DM (kg/d and g/kg of BW), ruminal volume (L), fluid dilution rate (%/h), fluid flow rate (L/h) turnover time (h), and particle dilution rate (SGP and DDGS) were not affected (P ≥ 0.32) by increasing DDGS supplementation amount. In situ DDGS CP kinetic parameters were not affected (P ≥ 0.25) by increasing DDGS supplementation amount. Forage masticate in situ soluble CP fraction and CP effective degradability increased quadratically (P = 0.01) with increasing DDGS supplementation amount. However, amount of DDGS did not affect forage masticate CP slowly degradable fraction (%; P = 0.39) or degradation rate (%/h; P = 0.63). Rate of in situ disappearance (%/h) for DDGS DM (P = 0.94), forage masticate DM (P = 0.89), and NDF (P = 0.89) were not affected by DDGS supplementation amount, nor was rumen undegradable intake protein (% of CP) for DDGS (P = 0.28) and forage masticate samples (P = 0.93). Ruminal concentration of VFA and ammonia and ruminal pH were not affected (P ≥ 0.21) by increasing DDGS amount. Results indicated that DDGS can be used in SGP supplements without negatively affecting forage intake, digestibility, or ruminal fermentation.  相似文献   

10.
Grass silages (n = 136) were selected from commercial farms across Northern Ireland according to their pH, ammonia nitrogen, DM, and predicted ME concentration. Each silage was offered to four sheep as a sole feed at maintenance feeding level to determine nutrient digestibility and urinary energy output. Dry matter concentration was determined as alcohol-corrected toluene DM and was subsequently used as the basis for all nutrient concentrations. The objectives were to use these data to examine relationships between nutritive value and nutrient concentration or fermentation characteristics in silages and then develop prediction equations for silage nutritive values using stepwise multiple regression techniques. The silages had a large range in quality (DM = 15.5 to 41.3%, ME = 7.7 to 12.9 MJ/kg of DM, pH = 3.5 to 5.5) and a relatively even distribution over the range. There was a positive relationship (P < 0.001) between silage GE and DE or ME concentration. Digestible OM in total DM (DOMD); ME/GE; and digestibility of DM, OM, and GE were positively related (P < 0.05) to CP, soluble CP, ether extract, lactic acid concentration, and lactic acid/ total VFA, whereas they were negatively related (P < 0.05) to ADF, NDF, lignin, individual VFA concentration, pH, and ammonia N/total N. Concentrations of DE and ME and digestibility of CP and NDF had similar relationships with those variables, although some relationships were not significant. Three sets of multiple prediction equations for DE and ME concentration; ME/ GE; DOMD; and digestibility of DM, OM, GE, CP, and NDF were therefore developed using three sets of predictors. The first set included GE, CP, soluble N/total N, DM, ash, NDF, lignin, lactic acid/total VFA, and ammonia N/total N; the second set excluded soluble N/ total N and lignin because they are not typically measured; the third set further excluded the fermentation data. The R2 values generally decreased with exclusion of predictors. The second and third sets of equations, except for NDF digestibility, were validated using the mean-square-prediction-error model and an independent grass silage data set published since 1977 (n = 17 [DM digestibility] to 28 [DOMD and OM digestibility]). The validation indicated that the equations developed in the present experiment could accurately predict DE and ME concentrations and DE/GE and ME/GE in grass silages.  相似文献   

11.
以3头装有瘤胃瘘管的干奶牛作为瘤胃液供体,用体外培养法研究不同日粮蛋白和中性洗涤纤维(NDF)水平对瘤胃发酵、消化和微生物蛋白合成的影响。采用2×3双因子完全随机设计,粗蛋白水平14%、16%和18%,NDF水平为32%和36%。体外发酵后2、4、6、12、24 h取瘤胃液测定pH、NH3-N浓度和微生物蛋白含量,发酵结束后测定饲料中干物质(DM)、NDF和酸性洗涤纤维(ADF)消化率。结果表明:随着蛋白水平升高,瘤胃发酵pH有增加趋势(P=0.079),显著提高NDF和ADF消化率和细菌蛋白合成量(P<0.05),但不影响DM消化率和原虫蛋白的合成量(P>0.05);日粮中NDF水平显著影响瘤胃pH、NH3-N浓度和ADF消化率(P<0.05),但不影响DM和NDF消化率以及微生物蛋白的合成量(P>0.05)。本试验条件下,日粮中16%CP和32%NDF组可在一定程度上促进瘤胃发酵,提高纤维消化率以及微生物蛋白的合成量。  相似文献   

12.
The objective of this experiment was to investigate the possibility of estimating the outflow of nutrients and microbial protein from the rumen based on sampling reticular contents as an alternative to duodenal sampling. Microbial protein flow estimates were also compared with a third method based on sampling of ruminal contents. Reticular and duodenal digesta and ruminal contents were recovered from 4 cows used in a 4 x 4 Latin square design experiment, in which the ruminal effects of 4 exogenous enzyme preparations were studied. Large and small particulate and fluid markers were used to estimate digesta flow in a triple-marker model; 15N was used as a microbial marker. Reticular and duodenal digesta were segregated into small and large particles (SP and LP, respectively) and a fluid phase, and ruminal digesta was segregated into particulate and fluid phases. Compared with digesta recovered at the duodenum, reticular digesta had lower OM and greater NDF contents. The proportion of microbial N was notably greater in the fluid phase of reticular digesta. Ruminal outflow of DM and OM was greater (by 17 and 28%) and that of NDF was lower (by 14%) when estimated from duodenal compared with reticular samples. There was no difference in the estimated flow of starch and nonammonia and microbial N between the reticular and duodenal techniques. Microbial N flow estimated based on ruminal sampling was similar to those based on duodenal and reticular sampling. The ruminal method, however, grossly overestimated flow of DM, OM, and NDF. This study supports the concept that microbial protein outflow from the rumen can be measured based on sampling of ruminal or reticular digesta. The reticular sampling technique can also provide reliable estimates for ruminal digestibility of OM, N, and fiber fractions. These findings need to be confirmed in experiments with basal diets varying in structure and forage-to-concentrate ratios.  相似文献   

13.
Six natural plant extracts and three secondary plant metabolites were tested at five doses (0, 0.3, 3, 30, and 300 mg/L) and two different pH (7.0 and 5.5) in a duplicate 9 x 5 x 2 factorial arrangement of treatments to determine their effects on in vitro microbial fermentation using ruminal fluid from heifers fed a high-concentrate finishing diet. Treatments were extracts of garlic (GAR), cinnamon (CIN), yucca (YUC), anise (ANI), oregano (ORE), and capsicum (CAP) and pure cinnamaldehyde (CDH), anethole (ATL), and eugenol (EUG). Each treatment was tested in triplicate and in two periods. Fifty milliliters of a 1:1 ruminal fluid-to-buffer solution were introduced into polypropylene tubes supplied with 0.5 g of DM of a 10:90 forage:concentrate diet (15.4% CP, 16.0% NDF; DM basis) and incubated for 24 h at 39 degrees C. Samples were collected for ammonia N and VFA concentrations. The decrease in pH from 7.0 to 5.5 resulted in lower (P < 0.05) total VFA, ammonia N, branched-chain VFA concentration, acetate proportion, and acetate:propionate, and in a higher (P < 0.05) propionate proportion. The interaction between pH and doses was significant for all measurements, except for ATL and CDH for butyrate, ATL and EUG for acetate:propionate ratio, and ORE for ammonia N concentration. The high dose of all plant extracts decreased (P < 0.05) total VFA concentrations. When pH was 7.0, ATL, GAR, CAP, and CDH decreased (P < 0.05) total VFA concentration, and ANI, ORE, CIN, CAP, and CDH increased (P < 0.05) the acetate:propionate. The CIN, GAR, CAP, CDH, ORE, and YUC decreased (P < 0.05), and EUG, ANI, and ATL increased (P < 0.05) ammonia N concentration. The effects of plant extracts on the fermentation profile when pH was 7.0 were not favorable for beef production. In contrast, when pH was 5.5, total VFA concentration did not change (ATL, ANI, ORE, and CIN) or increased (P < 0.05) (EUG, GAR, CAP, CDH, and YUC), and the acetate:propionate (ORE, GAR, CAP, CDH, and YUC) decreased (P < 0.05), which would be favorable for beef production. Ammonia N (ATL, ANI, CIN, GAR, CAP, and CDH) and branched-chain VFA (ATL, EUG, ANI, ORE, CAP, and CDH) concentrations also were decreased (P < 0.05), suggesting that deamination was inhibited. Results indicate that the effects of plant extracts on ruminal fermentation in beef cattle diets may differ depending on ruminal pH. When pH was 5.5, GAR, CAP, YUC, and CDH altered ruminal microbial fermentation in favor of propionate, which is more energetically efficient.  相似文献   

14.
To investigate the effects of synchronizing nonstructural carbohydrate (NSC) and protein degradation on intake and rumen microbial fermentation, four ruminally fistulated Holstein heifers (BW = 132.3 +/- 1.61 kg) fed high-concentrate diets were assigned to a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments studied in vivo and in vitro with a dual-flow continuous culture system. Two NSC sources (barley and corn) and 2 protein sources [soybean meal (SBM) and sunflower meal (SFM)] differing in their rate and extent of ruminal degradation were combined resulting in a synchronized rapid fermentation diet (barley-SFM), a synchronized slow fermentation diet (corn-SBM), and 2 unsynchronized diets with a rapidly and a slowly fermenting component (barley-SBM, and corn-SFM). In vitro, the fermentation profile was studied at a constant pH of 6.2, and at a variable pH with 12 h at pH 6.4 and 12 h at pH 5.8. Synchronization tended to result in greater true OM digestion (P = 0.072), VFA concentration (P = 0.067), and microbial N flow (P = 0.092) in vitro, but had no effects on in vivo fermentation pattern or on apparent total tract digestibility. The NSC source affected the efficiency of microbial protein synthesis in vitro, tending to be greater (P = 0.07) for barley-based diets, and in vivo, the NSC source tended to affect intake. Dry matter and OM intake tended to be greater (P > or = 0.06) for corn- than barley-based diets. Ammonia N concentration was lower in vitro (P = 0.006) and tended to be lower in vivo (P = 0.07) for corn- than barley-based diets. In vitro, pH could be reduced from 6.4 to 5.8 for 12 h/d without any effect on ruminal fermentation or microbial protein synthesis. In summary, ruminal synchronization seemed to have positive effects on in vitro fermentation, but in vivo recycling of endogenous N or intake differences could compensate for these effects.  相似文献   

15.
Four Holstein heifers (360 +/- 22 and 450 +/- 28 kg of BW in Exp. 1 and 2, respectively) fitted with ruminal trocars were used in 4 x 4 Latin square designs to evaluate the effects on ruminal microbial fermentation of the following: Exp. 1, no additive, alfalfa extract (30 g/d, AEX), a mixture of cinnamaldehyde (0.18 g/d) and eugenol (0.09 g/d; CIE1), and AEX and CIE1 in combination; and Exp. 2, no additive, anise oil (2 g/d), capsicum oil (1 g/d), and a mixture of cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d). Heifers were fed a 90:10 concentrate:barley straw diet (16% CP; 25% NDF) for ad libitum intake. Each period consisted of 15 d for adaptation and 6 d for sampling. On d 16 to 18, DM and water intakes were measured. On d 19 to 21 ruminal contents were sampled at 0, 3, 6, 9, and 12 h after feeding to determine ruminal pH and the concentrations of VFA, L-lactate, large peptides, small peptides plus AA (SPep+AA), and ammonia N. On d 20 and 21, samples of ruminal fluid were collected at 0 and 3 h after feeding to determine protozoal counts. In Exp. 1, CIE1 and AEX decreased (P < 0.05) total DMI, concentrate DMI, and water intake. The increase (P < 0.05) in SPep+AA and the decrease (P < 0.05) in ammonia N when supplementing CIE1 suggest that deamination was inhibited. Treatment AEX increased (P < 0.05) the acetate to propionate ratio, which is less efficient for beef production. Treatment CIE1 increased (P < 0.05) counts of holotrichs. Effects of AEX and CIE1 were not additive for many of the measured metabolites. In Exp. 2, treatments had no effect on ruminal pH, total VFA concentration, and butyrate proportion. The capsicum oil treatment increased (P < 0.05) DMI, water intake, and SPep+AA N concentration and decreased (P < 0.05) acetate proportion, branched-chain VFA concentration, and large peptide N concentration. The cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d) treatment decreased (P < 0.05) water intake, acetate proportion, branched-chain VFA, L-lactate, and ammonia N concentrations and increased (P < 0.05) propionate proportion and SPep+AA N concentration. The anise oil treatment decreased (P < 0.05) acetate to propionate ratio, branched-chain VFA and ammonia N concentrations, and protozoal counts. The results indicate that at the doses used a mixture of cinnamaldehyde and eugenol, anise oil, and capsicum oil may be useful as modifiers of rumen fermentation in beef production systems.  相似文献   

16.
Eight cannulated wethers (BW = 52.5 +/- 5.7 kg) were used in a replicated 4 x 4 Latin square designed experiment to evaluate the effects of oscillating dietary protein concentrations on ruminal fermentation, site and extent of digestion, and serum metabolite concentrations. Four treatments consisted of a 13, 15, or 17% CP diet fed daily or a regimen in which dietary CP was oscillated between 13 and 17% on a 48-h basis (ACP). All diets consisted of 65% bromegrass hay (10.5% CP, 61.9% NDF, 37.2% ADF) plus 35% corn-based supplement and were formulated to contain the same amount of degradable intake protein (9.6% of DM) plus additional undegradable intake protein (SoyPLUS, West Central Cooperative, Ralston, IA) to accomplish CP levels above 13%. Each of four experimental periods were 16 d in duration with 12 d for diet adaptation followed by 4 d for sample collection. All wethers were fed at 3.0% of initial BW (DM basis) throughout the experiment, resulting in an average organic matter intake of 1.39 kg/d across treatments. When compared to the 15% CP daily treatment, feeding ACP had no effect (P > or = 0.10) on ruminal or lower tract N, NDF, ADF, or OM digestion. True ruminal OM digestion responded quadratically (P = 0.07) to increasing dietary CP, reaching a maximum of 52.0% of OM intake with the 15% CP treatment. Sheep fed ACP tended to have lower (P = 0.08) ruminal NH3 N concentrations and an overall higher (P = 0.0001) molar proportion of acetate compared to those fed 15% CP daily. Total VFA concentrations were not affected (P > or = 0.45) by increasing dietary CP. Microbial efficiency did not differ (P > or = 0.55); thus, bacterial N flow at the duodenum responded quadratically (P = 0.04) to increasing dietary CP. Nonbacterial N (P = 0.001) and total N (P = 0.01) flows at the duodenum and total tract N digestibility (P < or = 0.04) increased linearly as dietary CP increased. Wethers fed ACP maintained a lower (P = 0.002) serum glucose and lower (P = 0.0006) serum urea N compared to those fed 15% CP daily. Because the CP content of the diet was increased at the expense of corn, the response to increased CP observed in this experiment is most likely due to negative associative effects of supplemental starch on ruminal fermentation and microbial growth. Oscillating the CP content of the diet on a 48-h basis has little effect on digestion or N utilization in sheep compared with feeding the same quantity of protein on a daily basis.  相似文献   

17.
为了研究不同盐碱化草地混播牧草对绵羊瘤胃发酵、养分消化率和氮平衡的影响,试验选用12只5月龄、(34.6±0.57)kg体重的德国肉用美利奴杂交一代公绵羊,随机分为4组,每组3个重复,对照组饲喂精料补充料+玉米青贮;处理Ⅰ、Ⅱ和Ⅲ组分别饲喂精料补充料+轻度、中度和重度盐碱化草地混播牧草(披碱草、碱茅和沙打旺),每只羊精料补充料平均日喂600g,粗饲料自由采食。结果表明,处理Ⅰ和Ⅱ组瘤胃pH显著低于对照组和处理Ⅲ组(P<0.05),而瘤胃总挥发性脂肪酸浓度显著高于对照组(P<0.05);处理Ⅰ、Ⅱ和Ⅲ组瘤胃液丙酸、丁酸、戊酸、异丁酸和异戊酸摩尔比显著高于对照组(P<0.05),而瘤胃乙酸摩尔比和乙酸/丙酸比例显著低于对照组(P<0.05)。各组间干物质和有机物质采食量差异不显著,处理Ⅲ组中性洗涤纤维采食量显著高于其他各组,处理Ⅲ组和Ⅱ组酸性洗涤纤维含量显著高于对照组(P<0.05)。干物质、有机物质、无氮浸出物和能量消化率变化规律一致,处理Ⅲ组显著低于处理Ⅰ和Ⅱ组,处理Ⅰ和Ⅱ组显著低于对照组(P<0.05)。粗蛋白质、粗脂肪、中性洗涤纤维和酸性洗涤纤维消化率由低到高依次为处理Ⅲ组、处理Ⅱ组、处理Ⅰ和对照组,组间差异均显著(P<0.05)。处理Ⅲ和Ⅱ组采食氮显著低于处理Ⅰ组,处理Ⅰ组采食氮显著低于对照组(P<0.05)。沉积氮和沉积氮/可消化氮均以处理Ⅱ组最低,依次为处理Ⅲ、处理Ⅰ和对照组,组间差异均显著(P<0.05)。结果说明饲喂轻度和中度盐碱化草地混播牧草促进了绵羊瘤胃发酵,但降低了饲料消化率和氮的利用率,而重度盐碱化草地混播牧草则降低了绵羊瘤胃发酵、饲料消化率和氮的利用率。  相似文献   

18.
Effects of protozoa on bacterial nitrogen recycling in the rumen   总被引:7,自引:0,他引:7  
The effects of protozoa on ruminal NH3-N kinetics and bacterial N recycling were measured in five sheep (57.6+/-7.1 kg BW, x +/- SD) with ruminal and duodenal cannulas in naturally faunated, defaunated, and refaunated periods. The sheep were fed a diet of 239 g of alfalfa haylage and 814 g of barley concentrate per day (DM basis) divided into 12 equal portions and allocated at 2-h intervals. A pulse dose of 300 mg of 15N as [15N]NH4Cl was administered into the rumen (on d 1 and 15) and 300 mg of 15N as [15N]urea was administered intravenously to the blood (d 8). Enrichment of 15N was measured in ruminal NH3-N, bacterial N, and plasma urea N over a period of 35 h. Total collection of urine was made for 5 d and analyzed for purine derivatives to calculate the flow of microbial N. Ruminal parameters and nutrient digestibilities were also measured. Sheep were defaunated using a rumen washing procedure 50 d prior to measurements in the defaunated period. Sheep were refaunated with ruminal contents from a faunated sheep receiving the same diet. Measurements began 26 d following refaunation, at which time protozoal numbers had returned to those in the originally faunated sheep. Data reported in parentheses are for faunated, defaunated, and refaunated sheep, respectively. Total culturable and cellulolytic bacterial numbers were unaffected by defaunation, but there was an increase in flow of microbial N from the rumen (10.8, 17.3, and 11.1 g N/d; P < .05) in the defaunated period. Flux, irreversible loss, and intraruminal recycling of NH3-N and recycling of NH3-N from plasma urea N were not affected by defaunation. Defaunation had no effect on reducing the absolute amount (13.8, 10.0, and 11.3 g N/d; P > .20) of bacterial N recycling and the percentage of N flux through the bacterial N pool. Total-tract digestion was reduced in defaunated compared with faunated sheep by 8, 17, 15, and 32% for OM, N, NDF, and ADF, respectively. In conclusion, defaunation improved ruminal N metabolism through the enhancement of bacterial protein synthesis, and improvement in the flow of microbial protein to the host animal.  相似文献   

19.
A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent–soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15‐day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia‐N and increased the growth of the solid‐associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N.  相似文献   

20.
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号