首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We hypothesized that stearoyl-CoA desaturase (SCD) enzyme activity would not correlate with fatty acid indices of SCD activity in steers fed different grains. Forty-five Angus steers (358 +/- 26 kg BW) were individually fed for 107 d diets differing in whole cottonseed (WCS) supplementation (0, 5, or 15% of DM) and grain source (rolled corn, flaxseed plus rolled corn, or ground sorghum grain) in a 3 x 3 factorial arrangement. Flaxseed- and corn-fed steers had greater (P < 0.01) G:F (0.119 and 0.108, respectively) than sorghum-fed steers (0.093). Marbling score was decreased by WCS (P = 0.04), and LM area was decreased (P < 0.01) by sorghum. Plasma 14:0, 16:0, 16:1n-7, and 18:2n-6 were greatest in corn-fed steers, whereas plasma 18:3n-3 and 20:5n-3 were greatest in the flax-seed-fed steers (P < 0.01). Plasma 18:1trans-11 was least in sorghum-fed steers, and plasma cis-9,trans-11 CLA was barely detectable, in spite of high intestinal mucosal SCD enzyme activity (118 to 141 nmol*g tissue(-1).7 min(-1)). Interfascicular (i.f.) and s.c. cis-9,trans-11 CLA remained unchanged (P > or = 0.25) by treatment, although 18:1trans-11 was increased (P < or = 0.02) in steers fed corn or flaxseed. Steers fed flaxseed also had greater (P < 0.01) i.f. and s.c. concentrations of 18:3n-3 than steers fed the other grain sources. Oleic acid (18:1n-9) was least and total SFA were greatest (P < 0.01) in i.f. adipose tissue of steers fed 15% WCS. Lipogenesis from acetate in s.c. adipose tissue was greater (P < 0.01) in flaxseed-fed steers than in the corn- or sorghum-fed steers. Steers fed flaxseed or corn had larger i.f. mean adipocyte volumes (P < 0.01) than those fed sorghum and tended (P = 0.07) to have larger s.c. adipocyte volumes. Several fatty acid indices of SCD enzyme activity were decreased (P < or = 0.03) by WCS in i.f. adipose tissue, including the 18:2cis-9,trans-11/ 18:1trans-11 ratio. The 18:2cis-9,trans-11/18:1trans-11 ratio also tended to be decreased (P = 0.09) in s.c. adipose tissue by flaxseed; however, SCD enzyme activities in i.f. and s.c. adipose tissue were not affected by dietary WCS (P > or = 0.47) or grain source (P > or = 0.37). Differences in SFA seemed to be independent of SCD enzyme activity in both adipose tissues, suggesting that duodenal concentrations of fatty acids were more important in determining tissue fatty acid concentrations than endogenous desaturation by SCD.  相似文献   

2.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

3.
One hundred sixty-eight crossbred steers (317.1 +/- 1.0 kg) were used to evaluate the effects of supplemental fat in finishing diets on the fatty acid composition, including the 9,11 isomer of conjugated linoleic acid, of beef. Steers were allotted within three weight blocks to a randomized complete block design with a 3 x 2 + 1 factorial arrangement of dietary treatments. Main effects were level of yellow restaurant grease (RG; 0, 3, and 6%), and level of alfalfa hay (AH; 3.5 and 7%) with an added treatment containing 6% tallow (T) and 7% AH in barley-based diets containing 15% potato by-product and 7% supplement (all dietary levels are on a DM basis) fed for an average of 165 d. Fatty acids of the LM and s.c. fat from four randomly selected steers per pen were quantified using GC after methylation with sodium methoxide. Dietary treatment did not (P > 0.10) affect total fatty acid (FA) content of the LM (143 +/- 5.2 mg/g) or fat (958 +/- 7.9 mg/g). Myristic acid increased linearly (P < 0.01) with increasing RG from 3.1 to 3.7 +/- 0.1 g/100 g of FA in muscle. Stearic acid increased linearly (P < 0.05) as RG increased in the diet, from 11.4 to 12.9 +/- 0.4 g/100 g of FA in LM and from 9.9 to 12.2 +/- 0.3 g/100 g of FA in fat. Compared with T, steers fed 6% RG had more (P < 0.05) oleic acid in LM (42.7 vs. 40.3 +/- 0.5 g/100g FA) and in fat (43.0 vs. 40.9 +/- 0.5 g/100g FA). The cis-9, trans-11 conjugated linoleic acid (CLA) increased quadratically (P < 0.01) with increasing dietary RG in LM from 0.45 to 0.64 to 0.62 +/- 0.03 g/100 g of FA and increased in fat from 0.61 to 0.84 to 0.83 +/- 0.04 g/100 g of FA. Moreover, cis-9, trans-11 CLA was higher (P < 0.05) in fat from steers fed RG compared with T (0.81 vs. 0.69 +/- 0.04 g/100 g of FA), and tended to be higher (P = 0.07) in muscle (0.62 vs. 0.54 +/- 0.03 g/100 g of FA. Feeding yellow restaurant grease increased content of cis-9, trans-11 CLA in beef without an increase total FA content.  相似文献   

4.
Six Hereford steers (295 kg) cannulated in the proximal duodenum were used to evaluate the effects of forage and sunflower oil level on ruminal biohydrogenation (BH) and conjugated linoleic acid (CLA) outflow. Steers were fed one of six treatment diets in a 3 x 2 factorial arrangement of treatments (grass hay level: 12, 24, or 36% of DM; and sunflower oil level: 2 or 4% of DM) in a 6 x 6 Latin square design. The remainder of the diet was made up of steam rolled corn and protein/mineral supplement. Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, period, forage level, sunflower oil level, and two-way interaction between forage and sunflower oil level in the model. Dry matter intake showed a quadratic response (P < 0.04), with an increase in DMI as forage level increased from 12 to 24% followed by a decrease in DMI when 36% forage was fed. Flow of fatty acids at the duodenum was higher (P < 0.03) for 4 vs. 2% sunflower oil diets, and similar among forage levels. Apparent ruminal digestibility of NDF increased in a linear manner (P < 0.04) as dietary forage level increased. Ruminal BH of dietary unsaturated 18-C fatty acids, oleic acid, and linoleic acid increased linearly (P < 0.05) as dietary forage level increased. Linoleic acid BH tended (P < 0.07) to be greater for 4 than 2% sunflower oil level. Duodenal flow of pentadecyclic, stearic, linolenic, and arachidic acids increased linearly (P < 0.05) as dietary forage level increased from 12 to 36%. Duodenal flow of linoleic acid decreased in a linear manner (P < 0.03) with increasing dietary forage level. Flow of trans-10 octadecenoate decreased linearly (P < 0.03) as dietary forage level increased, whereas trans-11 vaccenic acid flow to the duodenum increased (P < 0.01) linearly with increased dietary forage. Dietary forage or sunflower oil levels did not alter the outflow of cis-9, trans-11 CLA. Flows of cis-11, trans-13, and cis-9, cis-11 CLA increased linearly (P < 0.05) with increased dietary forage. Flows of cis-11, cis-13, and trans-11, trans-13 CLA decreased linearly (P < 0.05) with increased dietary forage. Increasing dietary forage levels from 12 to 36% in beef cattle finishing diets increased BH of unsaturated 18-C fatty acid and outflow of trans-11 vaccenic acid to duodenum without altering cis-9, trans-11 CLA outflow.  相似文献   

5.
Our objective was to determine the effect of oil supplementation of pasture fed, beef cattle on the fatty acids, particularly CLA and PUFA, of muscle and s.c. adipose tissue. Forty-five Charolais crossbred heifers were blocked on BW and randomly assigned to 1 of 3 dietary regimens in a randomized complete block design (n = 15). The 3 treatments were: unsupplemented grazing (GO), restricted grazing plus a sunflower oil-enriched ration (SO), or restricted grazing plus a linseed oil-enriched ration (LO). Heifers were fed the experimental diets for approximately 158 d. Samples of LM muscle and s.c. adipose tissue were taken postmortem, the muscle fat was separated into neutral lipid and polar lipid (no separation was performed on the s.c. adipose tissue), and the fatty acid profile was determined by GLC. No effect of dietary treatment on carcass weight or total fatty acid concentration (mean 2,571 mg/100 g of muscle) in muscle fat was detected. Heifers offered SO had a greater (P < 0.001) proportion of CLA and C18:1trans-11 (1.90 and 9.35 vs. 1.35 and 6.89 g/100 g of fatty acids, respectively) in neutral lipid of muscle fat compared with those offered LO, which had a greater proportion of CLA and C18:1trans-11 than heifers offered GO (0.78 and 3.37 g/100 g of fatty acids, respectively). Similar effects were observed in the polar lipid and s.c. lipid. The PUFA:SFA ratio was greater in muscle fat and s.c. adipose tissue from supplemented heifers than in those offered GO (P < 0.001). Compared with LO, the PUFA:SFA ratio was greater (P < 0.05) in muscle fat of heifers offered SO, but there was no difference between SO and LO for this ratio in s.c. adipose tissue. The n-6:n-3 PUFA ratio was similar in muscle and s.c. adipose tissue for GO and LO, but it was greater (P < 0.05) for SO. It is concluded that supplementation of pasture-fed cattle with plant oil-enriched concentrates resulted in an increase in beef fat of some fatty acids considered to be of benefit to human health. Concentrates enriched with sunflower oil were more effective in increasing the CLA concentration, whereas linseed oil-enriched concentrates resulted in a more favorable n-6:n-3 PUFA ratio. The relevance to human health of the associated increase in C18:1trans-11 merits investigation.  相似文献   

6.
The effects of dietary algal supplementation, a source of docosahexaenoic acid, on the fatty acid profile of rumen lipids in cattle were evaluated, with special emphasis on CLA and trans fatty acids produced by rumen microbes. A diet based on corn silage was fed with supplements containing the following: 1) no algal meal and fed at 2.1 kg of DM/d (control), 2) algal meal and fed at 1.1 kg of DM/d (low algal meal), 3) algal meal and fed at 2.1 kg of DM/d (medium algal meal), and 4) algal meal and fed at 4.2 kg of DM/d (high algal meal). A modified lipid extraction procedure was developed to analyze the lipid changes in rumen fluid. The percentage of stearic acid (18:0) in rumen fluid was decreased by algal meal supplementation (P < 0.001) compared with control and was linearly dependent on the level of algal meal supplementation (P = 0.005). Total trans-18:1 in rumen fluid of cattle fed the control diet was 19% of total fatty acids. Addition of algal meal increased (P < 0.001) total trans-18:1 up to 43%, mostly due to 18:1 trans-10 that increased (P = 0.002) to 29.5% of total rumen fatty acids. This increase in 18:1 trans-10 seems to suggest a change in the rumen microbial population. Vaccenic acid (18:1 trans-11) increased quadratically (P = 0.005) with increasing level of algal meal supplementation in the diets. The total CLA content was low in the control (<0.9%) and increased with dietary algal meal addition, although not significantly; the greatest level was 1.5% with the medium algal meal diet. The increase of rumenic acid (cis-9, trans-11 CLA) was quadratic (P = 0.05) with algal meal supplementation, whereas trans-10, cis-12 CLA increased linearly with increased level of algal meal from 0.08 to 0.13% (P = 0.03). The ratio of trans-11 (cis-9, trans-11 CLA + 18:1 trans-11) to trans-10 (trans-10, cis-12 CLA + 18:1 trans-10) decreased from 2.45 to 0.77, 0.87, and 0.21 for the control, low algal meal, medium algal meal, and high algal meal diets, respectively. The content of docosahexaenoic acid in rumen fluid increased (P = 0.002) from 0.3 to 1.4% of total fatty acids with increasing level of algal meal supplementation in the diets. Our results suggest that algal meal inhibits the reduction of trans-18:1 to 18:0, giving rise to the high trans-18:1 content. In conclusion, algal meal could be used to increase the concentration in rumen contents of trans-18:1 isomers that serve as precursors for CLA biosynthesis in the tissues of ruminants.  相似文献   

7.
Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  相似文献   

8.
The aim of the present study was to investigate the influence of feeding rumen-protected CLA during the early growing period on physical and chemical beef properties in young Simmental heifers. A total of 36 heifers (5 mo old; initial BW 185 ± 21 kg) were fed 250 g of different rumen-protected fats daily for 16 wk in 1 of 3 treatment groups: 250 g of a CLA-free control fat; 100 g of a CLA fat containing 2.4% of cis-9,trans-11 CLA and 2.1% of trans-10,cis-12 CLA and 150 g control fat; or 250 g of the CLA fat. Heifer growth performance variables as well as carcass weight, classification (conformation and fatness), and weights of organs and fat depots were not affected (P > 0.05) by CLA supplementation. Concentration of trans-10,cis-12 CLA in tissues (LM and subcutaneous fat) was dose-dependently increased (P < 0.01) by CLA supplementation, whereas that of cis-9,trans-11 CLA in these tissues did not differ (P > 0.05) between groups. The ratio of SFA to MUFA was increased (P < 0.01) in tissues of CLA-fed heifers compared with control heifers. Concentration of α-tocopherol in LM was greater (P = 0.01) in heifers of the 2 CLA groups than in control heifers. Other quality characteristics such as drip loss during storage, cooking loss, intramuscular fat content, and color variables in LM did not differ (P > 0.05) between groups. In conclusion, the present study demonstrates that feeding rumen-protected CLA during the early growing period changes tissue fatty acid composition but does not influence beef quality variables. Performance variables and carcass traits in young heifers, unlike in pigs and laboratory animals, are not influenced by CLA feeding.  相似文献   

9.
Our objective was to determine effects of dietary high-oleate (Oleate; 76% 18:1) or high-linoleate (Linoleate; 78% 18:2) safflower seeds on fatty acids in muscle and adipose tissue of feedlot lambs. White-faced ewe lambs (n = 36) were fed a beet pulp, oat hay, and soybean meal basal diet (Control), blocked by BW, and allotted randomly to dietary treatments. Cracked safflower seeds were used in isocaloric and isonitrogenous replacement of beet pulp, oat hay, and soybean meal so that Oleate and Linoleate diets contained 5.0% additional fat. Fatty acids were determined in semitendinosus, longissimus dorsi (longissimus), and adipose tissue from the tail head (tailhead adipose tissue), adjacent to the 12th rib (s.c. adipose tissue), and kidney and pelvic fat (KPH adipose tissue) depots. Fatty acid data were analyzed within muscle and adipose tissue as a split-block design. Single degree of freedom orthogonal contrasts were used to compare treatment effects. Average daily gain, feed efficiency, and carcass characteristics did not differ (P = 0.15 to 0.96) across dietary treatments. Adipose tissue saturated fatty acids were greater (P = 0.04) for Controls but were not different (P = 0.36) in muscle. Trans-vaccenic acid (18:1(trans-11)) increased (P < 0.0001) with safflower supplementation and was greater (P < 0.0001) in Linoleate than in Oleate for both tissue types. Linoleate lamb had greater (P < 0.0001) PUFA than Oleate lamb in muscle and adipose tissue. Conjugated linoleic acids (CLA; cis-9, trans-11 and trans-10, cis-12) were greater (P < 0.0001) in muscle and adipose tissue of lambs fed safflower seeds. Lambs fed Linoleate had greater (P < 0.0001) CLA in adipose tissue and muscle than lambs fed Oleate. Saturated fatty acids were greater (P < 0.0001) in s.c. adipose tissue than in tailhead adipose tissue. Mono- and polyunsaturated fatty acids were greater (P < 0.0001) in tailhead adipose tissue than in s.c. adipose tissue. Weight percentages of 18:1(trans-11) ranked tailhead adipose tissue = KPH adipose tissue > s.c. adipose tissue and semitendinosus > longissimus, whereas CLA ranked tailhead adipose tissue > s.c. adipose tissue > KPH adipose tissue and semitendinosus > longissimus. Feeding mono- and polyunsaturated fatty acids increased tissue 18:1(trans-11) and CLA, which is a favorable change in regard to current human dietary guidelines.  相似文献   

10.
Five beef cattle management regimens were evaluated for their effect on meat quality, fatty acid composition, and overall palatability of the longis-simus dorsi (LD) muscle in Angus cross steers. A 98-d growing phase was conducted using grass silage with or without supplementation of growth promotants (Revalor G and Rumensin) or soybean meal. Dietary treatments in the finishing phase were developed with or without supplementation of growth promotants based on exclusive feeding of forages with no grain supplementation, or the feeding of grain:forage (70:30) diets. Growth promotants increased (P < 0.01) shear force and tended (P = 0.06) to increase toughness of the LD muscle due to limited postmortem proteolytic activity (lower myofibrillar fragmentation index value; P = 0.02). Grain feeding increased DM and intramuscular fat content (P = 0.03 and P = 0.05, respectively) in the LD but decreased the sensory panel tenderness score (P = 0.01). Growth promotants increased (P 相似文献   

11.
Because of the potential benefits to human health, there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 CLA in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg of BW) fitted with ruminal and duodenal cannulas were used in a 4 × 4 Latin square experiment with 21-d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 PUFA in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg of DM of FO, LO, or a mixture (1:1, wt/wt) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g of DM/(kg of BW(0.75)/d). Oils had no effect (P = 0.52) on DMI. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, whereas FO shifted rumen fermentation toward propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of 9,11, 11,13, and 13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in greater (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and decreased (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum, responses to LFO were intermediate of FO and LO. However, LFO resulted in greater (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was greater (P < 0.001) for LO and LFO than FO, whereas biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally less (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg of DM altered the biohydrogenation of unsaturated fatty acids in the rumen, causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.  相似文献   

12.
The objective of this study was to compare fatty acid weight percentages and cholesterol concentrations of longissimus dorsi (LD), semitendinosus (ST), and supraspinatus (SS) muscles (n = 10 for each) of range bison (31 mo of age), feedlot-finished bison (18 mo of age), range beef cows (4 to 7 yr of age), feedlot steers (18 mo of age), free-ranging cow elk (3 to 5 yr of age), and chicken breast. Lipids were analyzed by capillary GLC. Total saturated fatty acids (SFA) were greater (P < 0.01) in range bison than in feedlot bison and were greater (P < 0.01) in SS of range beef cattle than in feedlot steers. Muscles of elk and range bison were similar (P > 0.05) in SAT. In LD, polyunsaturated fatty acids (PUFA) were highest (P < 0.01) for elk and range bison and lowest (P < 0.01) for feedlot steers within each muscle. Range bison and range beef cows had greater (P < 0.01) PUFA in LD and ST than feedlot bison or steers, respectively. Range-fed animals had higher (P < 0.01) n-3 fatty acids than feedlot-fed animals or chicken breast. Chicken breast n-6 fatty acids were greater (P < 0.01) than for muscles from bison, beef, or elk. Elk had higher (P < 0.01) n-6 fatty acids than bison or beef cattle; however, range-fed animals had higher (P < 0.01) n-6 fatty acids than feedlot-fed animals in ST. Conjugated linoleic acid (CLA, 18:2cis-9, trans-11) in LD was greatest (P < 0.01) for range beef cows (0.4%), and lowest for chicken breast and elk (mean = 0.1%). In ST, CLA was greatest (P < 0.01) for range and feedlot bison and range beef cows (mean = 0.4%) and lowest for elk and chicken breast (mean = 0.1%). Also, SS CLA was greatest (P < 0.01) for range beef cows (0.5%) and lowest for chicken breast (0.1%). Mean total fatty acid concentration (g/100 g tissue) for all muscles was highest (P < 0.01) for feedlot bison and feedlot cattle and lowest (P < 0.01) for range bison, range beef cows, elk, and chicken. Chicken breast cholesterol (mg/100 g tissue) was higher (P < 0.01) than LD and ST cholesterol, which were lowest (P < 0.01; 43.8) for range bison and intermediate for the other species. Cholesterol in SS was highest (P < 0.01) for feedlot bison and steers, which were similar to chicken breast (mean = 61.2 vs 52.8 for the mean of the other species). We conclude that lipid composition of bison muscle varies with feeding regimen, and range-fed bison had muscle lipid composition similar to that of forage-fed beef cows and wild elk.  相似文献   

13.
Xu CX  Oh YK  Lee HG  Kim TG  Li ZH  Yin JL  Jin YC  Jin H  Kim YJ  Kim KH  Yeo JM  Choi YJ 《Journal of animal science》2008,86(11):3033-3044
The present study was conducted to examine the effects of different plant oils or plant oil mixtures and high-temperature, microtime processing (HTMT) on the CLA content in Hanwoo steers. Experiment 1, consisting of 3 in vitro trials, was conducted to determine how the biohydrogenation of C18 fatty acids and CLA production were affected by fat sources (tallow, soybean oil, linseed oil, or mixtures of soybean oil and linseed oil) or HTMT treatment in the rumen fluid. The results showed that HTMT was capable of protecting unsaturated fatty acids from biohydrogenation by ruminal bacteria. The HTMT-treated diet containing 4% linseed oil (LU) and a supplement containing 2% linseed oil and 1% soybean oil treated with HTMT + 1% soybean oil (L(2)S(1)U+S(1)) produced an increased quantity of trans-11 C18:1 and cis-9, trans-11 CLA, and a reduced quantity of trans-10, cis-12 CLA. Based on these results, in vivo studies (Exp. 2) were conducted with LU and L(2)S(1)U+S(1). These 2 treatments increased the content of cis-9, trans-11 CLA in LM compared with the control diet. The content of trans-10, cis-12 CLA in subcutaneous fat was also increased in the L(2)S(1)U+S(1) treatment compared with other treatments. The subcutaneous fat thickness in the LU treatment was decreased compared with the L(2)S(1)U+S(1) treatment. The LU treatment significantly decreased fatty acid synthase expression but simultaneously increased leptin expression. In this report, we showed that diets containing LU and L(2)S(1)U+S(1) were capable of increasing CLA in the intramuscular fat of beef.  相似文献   

14.
15.
Conjugated linoleic acid (CLA) has been shown to have an effect on subcutaneous fatty acid composition and has been reported to decrease stearoyl coenzyme A desaturase (SCD) activity by decreasing mRNA expression and(or) catalytic activity in rodents and rodent cell lines. This investigation was designed to study the effects of CLA, corn oil, or beef tallow supplementation on s.c. adipose tissue fatty acid composition, adiposity, SCD enzyme activity, and the delta9 desaturase index in piglets. Eighteen crossbred barrows 16 to 18 d of age were adapted to diet for 1 wk and then assigned randomly to one of three treatments: 1.5% added CLA, 1.5% added corn oil, or 1.5% added beef tallow. Barrows were penned individually and fed the supplemental oils for 35 d (to 25.6 +/- 0.6 kg BW). Subcutaneous adipose tissue samples were obtained after slaughter. Fatty acid composition of the s.c. adipose tissue differed for each fatty acid measured due to diet with the exception of 18:3. The concentrations of CLA trans-10, cis-12 and cis-9, trans-11 were elevated from nondetectable to 1.62 and 2.52 g/100 g lipid, respectively (P < 0.001 for both isomers). Conjugated linoleic acid decreased the delta9 desaturase index (P < 0.01) and SCD enzyme activity, expressed as nanomoles of palmitate converted to palmitoleate/(7 min x g of tissue) (P = 0.075) and nanomoles of palmitate converted to palmitoleate/(7 min 105 cells) (P= 0.056). Tallow-fed pigs had a greater proportion of large adipocytes (> 700 pL) and the greatest SCD activity. These data provide the first direct evidence that dietary CLA depresses SCD enzyme activity in porcine adipose tissue, which may in part be responsible for the depression of adiposity by CLA observed by others in market weight pigs.  相似文献   

16.
The objective of this study was to determine the forage:concentrate ratio that would provide the greatest duodenal flow of unsaturated fatty acids in ewes supplemented with soybean oil and to determine how diets differing in forage content affect flow of conjugated linoleic acid (CLA) and trans-vaccenic acid (18:1(trans-11)). Five mature ewes (66.5 +/- 12.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 x 5 Latin square experiment. Diets were isonitrogenous and included bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Dietary fat was adjusted to 6% with soybean oil. Five ratios of forage:concentrate (18.4:81.6, 32.2:67.8, 45.8:54.2, 59.4:40.6, and 72.9:27.1) were fed at 1.3% of BW daily in equal allotments at 0630 and 1830. After 14 d, Cr2O3 (2.5 g) was dosed at each feeding for 7 d and ruminal, duodenal, and fecal collections were taken for the next 3 d. Duodenal flow of 18:0 increased linearly (P < 0.01) with dietary forage. Duodenal flow of 18:1(cis-9) and 18:2(cis-9,12) decreased (P < 0.001) but duodenal flow of 18:3(cis-9,12,15) increased (P < 0.01) with increased dietary forage. Biohydrogenation of dietary unsaturated fatty acids increased (P < 0.001) as dietary forage increased, which was concomitant with increased ruminal pH. Duodenal flow of 18:2(cis-9,trans-11) increased linearly (P < 0.01) with increased dietary forage but increased abruptly when forage was fed at 45.8%. Duodenal flow of the trans-10, cis-12 and cis-10, cis-12 CLA isomers decreased as dietary forage increased, but flow tended to increase on the highest-forage diet, resulting in both linear (P < 0.01) and quadratic (P < 0.01) effects. Duodenal flow of 18:1(trans-11) decreased from 8.28 g/d on the 18.4% forage diet to 5.47 g/d on the 59.4% forage diet then increased to 7.29 g/d on the highest-forage diet (quadratic, P < 0.1). Duodenal flow of 18:1(trans-11) was 27- to 69-fold greater than flow of CLA. We conclude that when ewes were fed a 6% crude fat diet duodenal flows of dietary fatty acids changed incrementally as dietary forage was increased, whereas changes in flows of CLA isomers seemed to be more abrupt. Biohydrogenation changes were gradual with diet, suggesting a gradual shift in ruminal microbial populations with increasing forage. Finally, the highest-concentrate diet supported the greatest duodenal flows of dietary unsaturated fatty acids, as well as the highest flow of 18:1(trans-11).  相似文献   

17.
Three-year-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479 +/- 36 kg of BW) or 6 +/- 0.07 (580 +/- 53 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr) to determine the effects of maternal BCS at parturition and postpartum lipid supplementation on fatty acid profile of suckling calf plasma and adipose tissue. Beginning 3 d postpartum, cows within each BCS were assigned randomly to 1 of 3 treatments in which cows were all fed hay and either a low-fat (control) supplement or supplements with either high-linoleate cracked safflower seeds (linoleate) or high-oleate cracked safflower seeds (oleate) until d 61 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Total concentration of fatty acids in plasma did not differ (P = 0.48) due to maternal BCS at parturition. Percentage of 20:5n-3 in plasma tended (P = 0.06) to be greater for calves suckling cows with a BCS of 6 at parturition. No other differences (P = 0.12 to 0.99) were noted in calf plasma fatty acid profile due to maternal BCS at parturition. Likewise, no differences were detected for total fatty acid concentration (P = 0.88) in calf adipose tissue due to maternal BCS at parturition. Weight percentage of 14:1 (P = 0.001) was greatest in adipose tissue of calves suckling cows fed control and oleate; however, the percentages of 14:0, 15:0, 16:0, 16:1, 17:0, and 18:3n-3 were greater (P < 0.001) in adipose tissue from calves suckling cows fed control compared with calves suckling cows fed linoleate or oleate. Percentages of 18:0, 18:1trans-11, 18:2n-6, and cis-9, trans-11 CLA were greater (P < 0.001) in adipose tissue from calves suckling cows fed linoleate compared with calves suckling cows fed control and oleate. Calves suckling cows fed oleate had greater (P < 0.001) percentages of 18:1trans-9, 18:1trans-10, and 18:1cis-9 in adipose tissue than calves suckling cows fed control or linoleate. Calf plasma and adipose tissue fatty acid profiles were reflective of milk fatty acids. Because fatty acids play an important role in metabolic regulatory functions, changes in milk fatty acid profile should be considered when beef cows are fed lipid supplements.  相似文献   

18.
1. Laying hen performance, yolk fat fatty acid concentrations and firmness of eggs were evaluated with respect to the inclusion in the diet of conjugated linoleic acid (CLA) and fish oil. 2. Nine diets were arranged factorially, with three levels of supplementation of CLA (1, 3 and 5 g/kg) and fish oil (0, 14 and 20 g/kg). 3. Type of diet did not affect egg production traits. 4. CLA addition increased yolk weight and yolk fat concentrations of CLA, saturated and total long-chain n-3 fatty acids, but decreased those of monounsaturated and total long-chain n-6 fatty acids. 5. Fish oil addition increased long-chain n-3 fatty acids yolk fat concentrations but decreased those of CLA, saturated and long-chain n-6 fatty acids. 6. Effects of CLA addition on yolk fat concentrations of C22:4 n-6 and C20:5 n-3 were greater when no fish oil was added to the diet. 7. CLA supplementation increased linearly yolk moisture and firmness and altered albumen and yolk pH.  相似文献   

19.
20.
Two experiments were conducted with lactating Angus x Gelbvieh beef cows to determine the effects of postpartum lipid supplementation, BCS at parturition, and day of lactation on fatty acid profiles in plasma, adipose tissue, and milk. In Exp. 1, 36 pri-miparous cows (488 +/- 10 kg of initial BW; 5.5 +/- 0.02 initial BCS) were given ad libitum access to hay and assigned randomly to a low-fat (control) supplement or supplements with cracked, high-linoleate safflower seeds (linoleate) or cracked, high-oleate safflower seeds (oleate) from d 3 to 90 of lactation. Diets were formulated to be isonitrogenous and isocaloric; safflower seed diets provided 5% of DMI as fat. Plasma and milk samples were collected on d 30, 60, and 90 of lactation. Adipose tissue biopsies were collected near the tail-head region of cows on d 45 and 90 of lactation. In Exp. 2, 3-yr-old cows achieving a BCS of 4 +/- 0.07 (479 +/- 36 kg of BW) or 6 +/- 0.07 (580 +/- 53 kg of BW) at parturition were used in a 2-yr experiment (n = 36/yr). Beginning 3 d postpartum through d 61 of lactation, cows were fed diets similar to those of Exp. 1. Adipose tissue and milk samples were collected on d 30 and 60, and plasma was collected on d 31 and 61 of lactation. Responses to postpartum dietary treatment were comparable in both experiments. Cows fed linoleate and oleate had greater (P < 0.001) total fatty acid concentrations in plasma than cows fed control. Except for 15:1, milk fatty acids with <18 carbons were greatest (P < or = 0.01) for cows fed control, whereas milk from cows fed linoleate had the greatest (P < or = 0.02) 18:1trans-11, 18:2n-6, and cis-9, trans-11 CLA. Milk from cows fed oleate had the greatest (P < 0.001) 18:1cis-9. In Exp. 1, total fatty acid concentrations in adipose tissue samples decreased at d 90 compared with d 45 of lactation, but the fatty acid profile of cow adipose tissue was not affected (P = 0.14 to 0.80) by dietary treatment. In Exp. 2, the percentage of cis-9, trans-11 CLA in adipose tissue of cows with a BCS of 6 decreased (P = 0.001) from d 30 to 60 of lactation. Plasma and milk fatty acid composition reflected alterations in postpartum diet. Less medium-chain fatty acids and more 18-carbon fatty acids in milk were indicative of reduced de novo fatty acid synthesis in the mammary gland of beef cows fed lipid supplements; however, the metabolic demands of lactation prevented the deposition of exogenously derived fatty acids in adipose tissue through d 90 of lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号