首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment was conducted to determine the optimal standardized ileal digestible lysine (SID Lys) level in diets fed to primiparous sows during lactation. A total of 150 (Landrace × Large White) crossbred gilts (weighing 211.1 ± 3.5 kg with a litter size of 11.1 ± 0.2) were fed lactation diets (3325 kcal metabolizable energy (ME)/kg) containing SID Lys levels of 0.76, 0.84, 0.94, 1.04 or 1.14%, through 28 days lactation. Gilts were allocated to treatments based on their body weight and backfat thickness 48 h after farrowing. Gilt body weight loss was significantly (P < 0.05) decreased by increasing dietary SID Lys levels. Fitted broken‐line (P < 0.05) and quadratic plot (P < 0.05) analysis of body weight loss indicated that the optimal SID Lys for primiparous sows was 0.85 and 1.01%, respectively. Average daily feed intake (ADFI), weaning‐to‐estrus interval and subsequent conception rate were not affected by dietary SID Lys levels. Increasing dietary lysine had no effect on litter performances. Protein content in milk was increased by dietary SID Lys (P < 0.05). Dietary SID Lys tended to increase concentrations of serum insulin‐like growth factor I (P = 0.066). These results of this experiment indicate that the optimal dietary SID Lys for lactating gilts was at least 0.85%, which approaches the recommendation of 0.84% that is estimated by the National Research Council (2012).  相似文献   

2.
This experiment was conducted to investigate the effects of inulin supplementation in low‐ or high‐fat diets on both the reproductive performance of sow and the antioxidant defence capacity in sows and offspring. Sixty Landrace × Yorkshire sows were randomly allocated to four treatments with low‐fat diet (L), low‐fat diet containing 1.5% inulin (LI), high‐fat diet (H) and high‐fat diet containing 1.5% inulin (HI). Inulin‐rich diets lowered the within‐litter birth weight coefficient of variation (CV, p = 0.05) of piglets, increased the proportion of piglets weighing 1.0–1.5 kg at farrowing (p < 0.01), reduced the loss of body weight (BW) and backfat thickness (BF) during lactation (p < 0.05) and decreased the duration of farrowing as well as improved sow constipation (p < 0.05). Sows fed fat‐rich diets gained more BW during gestation (p < 0.01), farrowed a greater number of total (+1.65 pigs, p < 0.05) and alive (+1.52 pigs p < 0.05) piglets and had a heavier (+2.06 kg, p < 0.05) litter weight at birth as well as a decreased weaning‐to‐oestrous interval (WEI, p < 0.01) compared with sows fed low‐fat diets. However, it is worth noting that the H diet significantly decreased the serum activities of superoxide dismutase (T‐SOD) and glutathione peroxidase (GSH‐Px) and increased the serum malondialdehyde (MDA) levels in sows and piglets (p < 0.05). In contrast, HI diet enhanced the activities of T‐SOD and GSH‐Px and decreased the serum MDA concentrations (p < 0.05) in sows and piglets. In summary, the fat‐rich diets fed to sows during gestation had beneficial effects on reproductive performance, but aggravated the oxidative stress in sow and piglets. Inulin‐rich diets fed to sow during gestation had beneficial effects on within‐litter uniformity of piglet birthweight and enhanced the antioxidant defence capacity of sows and piglets.  相似文献   

3.
This study examined the influence of adding different amounts of maternal dietary l ‐carnitine and two fat types on fatty acid (FA) composition and the expression of lipid metabolism‐related genes in piglets. The experiment was designed as a 2 × 2 factorial with two fat types (3.5% soyabean oil, SO, and 3.5% fish oil, FO) and two levels of l ‐carnitine (0 and 100 mg/kg) added to the sows' diets. A higher proportion of n‐3 polyunsaturated fatty acids (PUFA) and a lower ratio of n‐6/n‐3 PUFA in sow milk and piglet tissues were observed in the FO groups than in the SO groups. Adding l ‐carnitine increased the proportion of C16:1 in sow milk and decreased n‐3 PUFA in piglet subcutaneous fat. Hepatic peroxisome proliferator‐activated receptor α (PPAR‐α) was more abundantly expressed in piglets from the FO groups than from the SO groups (p < 0.05), whereas stearoyl‐CoA‐desaturase (SCD), sterol regulatory element binding protein‐1 (SREBP1) and ?6‐desaturase (D6D) genes were less expressed in the FO groups compared with piglets from the SO groups. The expression of fatty acid synthase (FAS) genes was decreased in the SO groups with l ‐carnitine compared to that of the other dietary treatments. No differences among dietary treatments were observed with regard to the expression of acetyl‐CoA carboxylase (ACC). In conclusion, FO and l ‐carnitine supplementation in sows affect FA composition and hepatic gene expression in piglets.  相似文献   

4.
The objective of this study was to investigate the effects of dietary supplementation with various fat sources (3.8–3.9% of diet) during late pregnancy and lactation on the reproductive performance, fatty acids profile in colostrum, milk and serum of sow progeny. A total of 80 multiparous sows were randomly fed a control (adding no oil), palm oil (PO), fish oil (FO) or soybean oil (SO) supplemented diet from 90 days of pregnancy to weaning. Supplementation of FO increased litter size of weak piglets, compared with the control‐fed sows (< 0.05). Dietary FO and SO supplementation, enhanced the weaning survival rate, litter weaning weight, litter weight gain and fat content in milk (< 0.05). The highest immunoglobulin (Ig)G and IgM levels in colostrum and milk were observed in the FO group (< 0.05). Meanwhile, the highest concentration of C22:5 (n‐3) and C22:6 (n‐3) in colostrum, milk and piglet serum was observed in the FO group (< 0.05). Taken together, dietary inclusion of FO or SO improved growth performance of nursing piglets by increasing milk fat output, and FO consumption by sows might benefit the piglets via increasing n‐3 polyunsaturated fatty acid availability and immunoglobulins (IgG and IgM) secretion.  相似文献   

5.
This study was conducted to evaluate the effects of dietary ratios of n‐6:n‐3 polyunsaturated fatty acids (PUFA) on reproductive performance, fecal microbiota and nutrient digestibility of gestation‐lactating sows and suckling piglets. Fifteen primiparous sows (Landrace × Yorkshire) were randomly allotted into three treatments. Fed diets contained different ratios of n‐6:n‐3 PUFA, including 20:1, 15:1 and 10:1. No differences were detected among the treatments for average daily feed intake (ADFI) of sows and the back fat levels during lactation (> 0.05). Body weight (BW) loss of sows after farrowing to weanling was greater in the 10:1 treatment compared with 15:1 or 20:1 (< 0.05). In piglets, a great significant difference for BW was observed at 4 weeks (< 0.01). Furthermore, average daily gain (ADG) of piglets in the 10:1 treatment was higher (< 0.05). No difference was observed among treatments in nutrient digestibility of sows (> 0.05). A great significant difference for fecal microbiota was in the 10:1 treatment compared with 20:1 and 15:1 treatments (< 0.01). In conclusion, altering the ratio of n‐6:n‐3 PUFA in gestation‐lactating sow diet had no difference on nutrient digestibility in gestation‐lactating sows, but it can partially improve reproductive performance.  相似文献   

6.
Two experiments were conducted to determine the lysine requirement of weaned pigs [Duroc × (Yorkshire × Landrace)] with an average initial BW of 7 kg and fed wheat–corn–soybean meal‐based diets. The experiments were conducted for 21 days during which piglets had free access to diets and water. Average daily gain (ADG), average daily feed intake (ADFI) and gain to feed ratio (G:F) were determined on day 7, 14 and 21. Blood samples were collected on day 0 and 14 to determine plasma urea nitrogen (PUN) concentration. In experiment 1, 96 weaned pigs were housed four per pen and allocated to four dietary treatments with six replicates per treatment. The diets contained 0.99%, 1.23%, 1.51% and 1.81% standardized ileal digestible (SID) lysine, respectively, corrected analysed values. The rest of the AA were provided to meet the ideal AA ratio for protein accretion. Increasing dietary lysine content linearly increased (p < 0.05) ADG and G:F. In experiment 2, 90 piglets were housed three per pen and allocated to five dietary treatments with six replicates per treatment. The five diets contained 1.03%, 1.25%, 1.31%, 1.36% and 1.51% SID lysine, respectively, corrected analysed values. Increasing dietary lysine content linearly increased (p < 0.05) G:F, linearly decreased (p < 0.05) day‐14 PUN and quadratically (p < 0.05) increased ADG and ADFI. The ADG data from experiment 2 were subjected to linear and quadratic broken‐lines regression analyses, and the SID lysine requirement was determined to be 1.29% and 1.34% respectively. On average, optimal dietary SID lysine content for optimal growth of 7–16 kg weaned piglets fed wheat–corn–SBM‐based diets was estimated to be 1.32%; at this level, the ADG and ADFI were 444 and 560 g, respectively, thus representing an SID lysine requirement, expressed on daily intake basis as, 7.4 g/day or 16.76 mg/g gain.  相似文献   

7.
The primary objective of this study was to determine the effects of supplemental dietary fat during lactation on sow BW, sow backfat thickness, sow feed consumption, litter size, and pig growth rate. Dietary treatments included 0, 3, 6, and 9% supplemental low acid yellow fat in a traditional corn-soybean meal basal lactation diet. A total of 160 Landrace and crossbred sows (approximately 40 per treatment) were included in the study. Sows fed 3 and 6% supplemental fat had greater (P<0.10) average backfat thickness at weaning. Sow weight change and feed consumption were inconsistent among dietary fat levels. Dietary fat level during lactation did not affect number of pigs born alive or number of stillborns. However, the 9% fat level was associated with more mummified pigs at birth. Number of pigs weaned was greater for the 0% supplemental fat than for the 9% fat level. The largest average pig weights at 21 (5.8±0.29 kg) and 28 (7.48±0.38) d of age were those from sows fed the 3% added fat diet. Sows with ≤25.4 mm backfat at farrowing had more pigs born alive (P<0.05), had less backfat at 21 and 28 d of lactation (P<0.05), and consumed more feed during wk 2 and 3 of lactation. Of all sows fed the control diet, sows with >25.4 mm backfat at farrowing consistently had heavier pigs throughout the lactation phase (P<0.05). Backfat loss during lactation was lower (P<0.05) for sows with ≤25.4 mm at farrowing within all dietary treatments. Consistent significant differences were not observed in sow weight loss or feed consumption between low and high backfat sows for each dietary treatment. Sow backfat loss during lactation is dependent on body condition at farrowing, in that, fatter sows at farrowing have greater backfat loss during lactation. Sows with ≤25.4 mm of backfat at farrowing responded to added dietary fat treatments and produced heavier pigs throughout the lactation period.  相似文献   

8.
In the present study, the effects of dietary resistant starch (RS) content on serum metabolite and hormone concentrations, milk composition, and faecal microbial profiling in lactating sows, as well as on offspring performance was investigated. Sixteen sows were randomly allotted at breeding to two treatments containing low‐ and high‐RS contents from normal and high‐amylose corn varieties, respectively, and each treatment had eight replicates (sows). Individual piglet body weight (BW) and litter size were recorded at birth and weaning. Milk samples were obtained on day 10 after farrowing for composition analysis. On day 2 before weaning, blood and faecal samples were collected to determine serum metabolite and hormone concentrations and faecal microbial populations, respectively. Litter size at birth and weaning were not influenced (p > 0.05) by the sow dietary treatments. Although feeding the RS‐rich diet to sows reduced (p = 0.004) offspring birth BW, there was no difference in piglet BW at weaning (p > 0.05). High‐RS diet increased (p < 0.05) serum triacylglycerol and nonesterified fatty acid concentrations and milk total solid content, and tended (p = 0.09) to increase milk fat content in lactating sows. Feeding the RS‐rich diet to sows increased (p < 0.01) faecal bacterial population diversity. These results indicate that high‐RS diets induce fatty acid mobilization and a greater intestinal bacterial richness in lactating sows, as well as a greater nutrient density in maternal milk, without affecting offspring performance at weaning.  相似文献   

9.
This study evaluated the effects of different gestation housing types on reproductive performance of sows. A total of 60 sows (218 ± 24 kg body weight) with mixed parity were used. During gestation, 28 sows were housed in groups with electronic sow feeders (space allowance = 1.26 m2/sow) and 32 sows were housed in individual stalls (space allowance = 1.20 m2/sow). Sows from both housing types were moved to farrowing crates on day 109 of gestation and stayed until weaning (18 days post‐farrowing). Typical corn‐soybean meal diets were provided to sows during gestation and lactation. Measurements were reproductive performance of sows at farrowing as well as performance of sows and their litter during lactation. Similar total numbers of piglets born at farrowing were observed for sows gestated in both housing types. However, group‐housed gestation sows had more mummies (0.321 vs. 0.064; < 0.05) and stillbirths (0.893 vs. 0.469; = 0.073) at farrowing than individual‐housed gestation sows. Consequently, individual‐housing type had higher percentage of piglets born alive (95.5 vs. 90.4%; < 0.05) than the group‐housing type. Therefore, improved reproductive performance of sows from individual gestating housing was confirmed in this study.  相似文献   

10.
This study was conducted to compare effects of dietary administration of iron dextran and bacterial‐iron on growth performance, fecal microbial flora, and blood profiles in sows and their litters. A total of 20 multiparous sows (Landrace × Yorkshire) were randomly allotted into two treatments: (i) ID (basal diet, piglets were injected with iron dextran); (ii) BR (basal diet + bacterial‐iron; bacterial‐iron was given to sows, piglets were not injected with iron dextran). There were five replicates per treatment with two sows per replicate. No differences were observed on sow and piglet growth performance, fecal microbial flora as well as sow blood profiles between ID and BR treatments. In piglets, blood iron, red blood cell and hemoglobin concentrations in ID treatment were higher (P < 0.05) on days 12 and 24. Furthermore, concentration of white blood cells in BR treatment was lower (P < 0.05) on day 12. However, the percentage of lymphocytes on day 12 was increased (P < 0.05) in BR treatment. In conclusion, effect of iron dextran and bacterial‐iron has no difference on growth performance in lactating sows and piglets, but iron dextran injection has higher blood iron, white blood cell, red blood cell and hemoglobin concentrations in piglets.  相似文献   

11.
A total of 180 mixed‐sex pigs (Duroc × (Yorkshire × Landrace); average initial body weight of 7.36 ± 0.2 kg) weaned at 21 ± 1 days were fed corn‐soybean meal‐wheat‐based diets to determine the optimal standardized ileal digestible (SID) tryptophan to lysine ratio (Trp : Lys) in a 2 × 5 factorial arrangement (two sanitary conditions: clean (CL) and unclean (UCL), and five dietary treatments (SID Trp : Lys (16, 18, 20, 22 and 24%)). In each sanitary condition, blood was collected on days 0 and 14 to determine plasma urea nitrogen and on day 14, ileal tissue (one pig per pen) was collected for the measurement of gut morphology. Pigs kept under UCL conditions had lower growth rate (P < 0.05) than under CL conditions. Under CL conditions, the estimated optimal SID Trp : Lys for average daily gain (ADG) was 19.7% whereas under UCL conditions these values were 20.5% and 19.0% for ADG and gain‐to‐feed ratio, respectively. Under CL conditions, increasing SID Trp : Lys reduced (linear, P = 0.05) plasma urea nitrogen concentration but had no effect (P > 0.10) on villous height (VH), crypt depth ( CD) and VH : CD. In conclusion, an SID Trp : Lys to optimize ADG for pigs raised under UCL conditions was higher (4%) than CL conditions.  相似文献   

12.
The effects of dietary β‐hydroxy‐β‐methylbutyrate (HMB) supplementation during gestation on reproductive performance of sows and the mRNA expression of myogenic markers in skeletal muscle of neonatal pigs were determined. At day 35 of gestation, a total of 20 sows (Landrace × Yorkshire, at third parity) were randomly assigned to two groups, with each group receiving either a basal diet or the same diet supplemented with 4 g/day β‐hydroxy‐β‐methylbutyrate calcium (HMB‐Ca) until parturition. At parturition, the total and live litter size were not markedly different between treatments, however, the sows fed HMB diet had a decreased rate of stillborn piglets compared with the sows fed the control (CON) diets (p < 0.05). In addition, piglets from the sows fed HMB diet tended to have an increased birth weight (p = 0.08), and a reduced rate of low birth weight piglets (p = 0.05) compared with piglets from the CON sows. Nevertheless, lower feed intake during lactation was observed in the sows fed the HMB diet compared with those on the CON diet (p < 0.01). The relative weights of the longissimus dorsi (LD) and semitendinosus (ST) muscle were higher (p < 0.05) in neonatal pigs from the HMB than the CON sows. Furthermore, maternal HMB treatment increased the mRNA levels of the myogenic genes, including muscle regulatory factor‐4 (MRF4, p < 0.05), myogenic differentiation factor (MyoD) and insulin‐like growth factor‐1 (IGF‐1, p < 0.01). In conclusion, dietary HMB supplementation to sows at 4 g/day from day 35 of gestation to term significantly improves pregnancy outcomes and increases the expression of myogenic genes in skeletal muscle of neonatal piglets, but reduces feed intake of sows during lactation.  相似文献   

13.
This study investigates the effects of microencapsulated fat (FAT) and whey protein (WHEY) supplementation on the milk composition, backfat loss, and reproductive performance in lactating sows. A total of 144 sows were divided according to their backfat thickness at farrowing into three groups, i.e., low (12.0–16.5 mm, n?=?33), moderate (17.0–21.5 mm, n?=?78), and high (22.0–24.5 mm, n?=?33). The lactation diet was divided into three types, i.e., a control diet (CONTROL, n?=?50), a diet supplemented with FAT (n?=?48), and a diet supplemented with WHEY (n?=?50). Pooled milk samples were collected at the second and third week of lactation. On average, the sows lost backfat 23.5 % during lactation. The backfat loss during lactation was 24.5, 22.7, and 22.8 % in sows fed with CONTROL, FAT, and WHEY diets, respectively (P?>?0.05). Supplementation of FAT increased the percentage of fat in the sow’s milk compared to the CONTROL (9.1 and 8.4 %, P?=?0.022). For sows with low backfat, FAT and WHEY supplementation increased the average daily gain of piglets compared to the CONTROL (244, 236, and 205 g/days, respectively, P?<?0.05). For sows with high backfat, the sows receiving the CONTROL diet had a higher total piglet mortality than those that received FAT or WHEY (28.1, 14.1, and 13.0 %, respectively, P?<?0.05). It could be concluded that supplementation of FAT in the diet of sow during lactation significantly enhanced the fat content in the sow’s milk, improved the piglet’s daily weight gain, and reduced piglet mortality.  相似文献   

14.
A total of 15 primiparous sows (Landrace × Yorkshire) and their litters were used in the current study to evaluate the efficacy of cellulase supplementation on the production performance of sows and piglets. Pigs were randomly allocated into one of three treatments with five replicates per treatment. The dietary treatments were as follows: (i) CON (corn‐soybean meal‐based control); (ii) EZ1 (CON + 0.05% cellulase); and (iii) EZ2 (CON + 0.10% cellulase). The supplementation of cellulase had no effect (P > 0.05) on body weight and feed intake of lactating sows. At weaning, back fat thickness loss decreased (P = 0.04) linearly in EZ1 and EZ2 treatments. The average daily gain (ADG) of piglets increased (linear P = 0.06, quadratic P = 0.04)) during days 14 to 21 as well as at days 21 to 25 (linear P = 0.03 and quadratic P = 0.01) with the increase in the level of supplemented enzyme. Dry matter and nitrogen digestibility increased (linear P = 0.01) in lactating sows fed EZ1 and EZ2 diet compared with CON. In conclusion, it is suggested that cellulase supplementation to corn‐soybean meal based diet exerts beneficial effects to sows in reducing their back fat thickness loss at weaning and also helps to improve nutrient digestibility. It also helped to improve the ADG of piglets.  相似文献   

15.
Lactating sows are susceptible to heat stress (HS). Part of the thermoregulatory response to HS is to increase peripheral blood flow, which is mediated in part by the vasodilator, nitric oxide (NO). Therefore, the aim of this experiment was to determine the effect of supplementation of L‐citrulline, a NO precursor, on symptoms of HS, lactation performance and subsequent reproductive performance of sows in summer. A total of 221 summer farrowing mixed parity sows were fed either a control diet or supplemented with 1% L‐citrulline upon entry to the farrowing house (6 ± 1.8 days for mean ± standard deviation [SD] before farrowing) until weaning (26 ± 1.5 days). The average daily minimum and maximum temperature in the farrowing house was 21.0 ± 1.88 and 29.2 ± 3.82°C (mean ± SD). Rectal temperature, respiration rate, and plasma and urinary nitrite and nitrate (NOx) of sows were measured on the 19th day post‐farrowing. Supplemental L‐citrulline in the diet did not affect the number of piglets born alive, feed intake of sows, body weight or backfat thickness of sows at weaning, or litter weight gain. L‐citrulline tended to reduce piglet pre‐weaning mortality rate from 18.6% to 15.6% (p = 0.058). L‐citrulline reduced the respiration rate of sows compared to the control diet at 17:00 hr (Time × Diet, p < 0.001); however, rectal temperature was not affected. L‐citrulline tended to increase urinary NOx concentrations (127 vs. 224 µM, p = 0.057) but not plasma NOx concentrations. L‐citrulline did not affect farrowing rate or number of piglets born alive in the subsequent parity. In conclusion, L‐citrulline supplementation reduced respiration rate of lactating sows and reduced piglet pre‐weaning mortality rate in summer. Whether the effects were due to a NO‐dependent mechanism requires further validation.  相似文献   

16.
Fifty nine primiparous sows PIC Camborough 23 were distributed in a completely randomized 2 × 2 (with and without floor cooling × two dietary treatments) factorial design with 16 sows/treatment, each sow being considered as an experimental unit. Four replicates of sixteen sows each were used during the trial with the objective of evaluating the effects of floor cooling and the use of dietary amino acid contents on their performance and behaviour during summer. The sows were distributed among the treatments according to body weight and backfat thickness after farrowing. The sows were maintained in the experiment until weaning at 21 days of lactation. The two experimental diets supplied the same levels of crude protein (22%), metabolizable energy (ME; 14.65 MJ/kg) and levels of essential digestible AA relative to digestive lysine and differed according to the digestible lysine to ME ratio (0.75 vs. 0.82 g/MJ of ME). The temperature of the water circulating in the cooled floor was maintained at about 17 °C. Based on the average minimum and maximum temperatures (21.5 and 29.5 °C) obtained during the experimental trial, it can be assumed that the sows were exposed to periods of heat stress. The replicate and the interaction between replicate and treatment effects on all the measurements were not significant. Similarly, no effect of diet or interaction between diet and floor cooling system was found for all criteria measured. An effect (P < 0.05) of floor cooling on average daily feed intake was observed and floor cooling sows showed a higher average (P < 0.05) digestible lysine (61.5 vs. 51.8 g/d) and ME (78.2 vs. 65.9 MJ/d) intakes. The sows submitted to floor cooling showed, consistently, higher absolute values for average weight (+ 8.5 kg) and backfat (+ 0.75 mm) at weaning, compared with the control sows. The sows submitted to the cooled floor showed a shorter (P < 0.01) weaning-to-oestrus interval. The piglet and litter's daily weight gain (DWG), average weight at weaning (AWW) and total weight gain during lactation (TWG) were higher (P < 0.01) for the floor cooling sows. The floor cooling sows showed a higher (P < 0.01) daily milk production. The respiratory rate and rectal temperature values were lower (P < 0.01) for the floor cooling sows. There were differences (P < 0.01) on the cutaneous temperatures measured on the different parts of the sow's body, with the animals submitted to the cooled floor having lower values. The sows submitted to floor cooling spent less (P < 0.01) time in lateral recumbency inactive, more time nursing (P < 0.05) and more time feeding (P < 0.01) compared with control sows. The floor cooling under the sows increased daily feed intake and lysine intake, leading to a lower body weight loss, a lower weaning-to-oestrus interval and also improved nursing behaviour of the sows, leading to a higher milk production and, consequently, higher weight gains of piglets and litter during the lactation period.  相似文献   

17.
This study was conducted to investigate the effects of dietary supplementation with yeast culture (YC) and organic selenium (Se) during late gestation and lactation on reproductive performance, milk quality, piglet preweaning performance, antioxidant capacity, and secretion of immunoglobulin in multiparous sows. A total of 160 healthy cross-bred sows (Landrace × Yorkshire, mean parity 4.1 ± 0.3) were randomly assigned to 4 groups as follows: 1) high nutrient (HN), 3,420 kcal/kg digestible energy (DE) and 18.0% crude protein (CP); 2) low nutrient (LN), 3,240 kcal/kg DE and 16.0% CP; 3) LN + YC, LN diet + 10 g/kg YC; 4) LN + YC + Se, LN diet + 10 g/kg YC + organic Se (1 mg/kg Se). Feeding trials of sows started from d 85 of pregnancy to d 35 of lactation. Compared with sows in the LN group, sows fed the LN + YC + Se diet had greater litter weaning weight, average litter gain, and milk fat content (14-d and 25-d milk) (P < 0.05). The content of malonaldehyde (MDA) (colostrum and 14-d milk) was lesser, and the activity of glutathione peroxidase (GSH-Px) (colostrum and 25-d milk) was greater when sows were fed the LN + YC + Se diet, compared with sows fed the LN diet (P < 0.05). Supplementation of YC and organic Se in the nutrient-restricted diet improved sows’ reproductive performance and pig weaning body weight by enhancing the antioxidant capacity and fat content in milk.  相似文献   

18.
Gilts (n = 208) were used to evaluate the effect of lysine (protein) intake over three parities on lactation and subsequent reproductive performance. Sows were assigned randomly to one of five experimental diets at each farrowing. The five corn-soybean mealbased lactation diets contained increasing concentrations of total lysine (.60, .85, 1.10, 1.35, and 1.60%) and CP (14.67, 18.15, 21.60, 25.26, and 28.82%). Other amino acids were provided at a minimum of 105% of the NRC (1988) ratio to the lysine requirement. Sows had ad libitum access to their assigned diets from parturition until weaning (19.5+/-.2 d postpartum). All sows were fed a common gestation diet (14% CP and .68% lysine) from weaning to next farrowing. Litter size was standardized by d 3 postpartum to 10 pigs in parity 1 and 11 pigs in parity 2 and 3. Increasing dietary lysine (protein) linearly decreased (P<.05) voluntary feed intake of parity 1 (from 5.4 to 4.6 kg/d), 2 (from 6.5 to 5.8 kg/d), and 3 sows (from 6.8 to 6.2 kg/d). With the increase of dietary lysine (protein) concentration during lactation, litter weight gain responded quadratically (P<.05) in all three parities. Maximal litter ADG was 2.06, 2.36, and 2.49 kg/d in parities 1, 2, and 3, respectively, which occurred at about 44, 55, and 56 g/d of lysine intake for parity 1, 2, and 3 sows, respectively. Increasing dietary lysine (protein) had no effect (P>.1) on sow weight change, weaning-to-estrus interval, and farrowing rate in all three parities and no effect on backfat change in parity 2 and 3, but tended to increase backfat loss linearly (P<.1) in parity 1. A linear decrease of second litter size (total born, from 11.7 to 10.1, P<.1; born alive, from 11.0 to 8.9, P<.01) was observed when dietary lysine (protein) increased during the first lactation. Lysine (protein) intake during the second lactation had a quadratic effect on third litter size (P<.05; total born: 13.3, 11.2, 11.6, 11.9, and 13.6; born alive: 11.8, 10.1, 10.3, 11.2, and 12.4). However, fourth litter size was not influenced by lysine (protein) intake during the third lactation. These results suggest that the lysine (protein) requirement for subsequent reproduction is not higher than that for milk production. Parity influences the lysine (protein) requirement for lactating sows and the response of subsequent litter size to previous lactation lysine (protein) intake.  相似文献   

19.
This study was conducted to evaluate effects of beet pulp supplementation on growth performance, fecal moisture, serum hormones and litter performance in lactating sows. Ninety primiparous sows (Landrace × Yorkshire) were randomly allotted to one of three dietary treatments in a 21‐day trial starting 3 days before parturition. The three dietary treatments were supplemented with 0, 10 and 20% beet pulp, respectively. Backfat loss and fecal moisture content were increased (P < 0.05), where cortisol and norepinephrine levels were decreased (P < 0.05) in sows fed beet pulp supplementation diets compared with control diet, but there was no difference between 10% and 20% beet pulp supplementation treatments. No effect was observed on bodyweight, average daily intake, weaning to estrus interval, epinephrine level in sows and litter weight, litter size, survivability in piglets among dietary treatments. Taken together, beet pulp supplementation has no significant effect of growth performance of lactating sows and piglets with decreased cortisol and norepinephrine levels in lactating sows, but it can increase fecal moisture content which is beneficial for sow feces excretion.  相似文献   

20.
We investigated the effects of dietary supplementation with Bacillus subtilis PB6 (B. subtilis PB6) during late gestation and lactation on sow reproductive performance, antioxidant indices, and gut microbiota. A total of 32 healthy Landrace × Yorkshire sows on d 90 of gestation were randomly assigned to 2 groups, with 16 replicates per group, receiving basal diet (CON) or the basal diet + 0.2% B. subtilis PB6, containing 4.0 × 108 CFU/kg of feed (BS). The litter sizes (total born) and numbers of piglets born alive were larger in the BS group (P < 0.01), whereas the weights of piglets born alive and the piglet birth intervals were lower in the BS group (P < 0.05). Although the litter weights and piglet bodyweights (after cross-fostering) were lower after BS treatment (P < 0.05), the litter sizes, litter weights, lactation survival rate, and litter weight gains at weaning were higher in BS group (P < 0.05). The concentrations of malondialdehyde (MDA) in the sow sera at parturition were lower in the BS group (P < 0.01). The serum total antioxidant capacity (T-AOC) at parturition and the serum catalase (CAT) concentrations on d 21 of lactation were higher in the BS group (P < 0.05). Dietary supplementation with B. subtilis PB6 (P < 0.05) reduced the serum endotoxin concentrations in the sows and the serum cortisol concentrations of the piglets at d 14 of lactation. The α-diversity indices of microbial were higher in the CON group (P < 0.05). At the phylum level, B. subtilis PB6 supplementation increased the relative abundances of Gemmatimonadete and Acidobacteria (both P < 0.01) and reduced those of Proteobacteria, and Actinobacteria (both P < 0.05). At the genus level, B. subtilis PB6 supplementation increased the relative abundance of Ruminococcaceae_UCG-013 cc (P < 0.05) and reduced that of Streptococcus (P < 0.05). This study demonstrated that adding 4.0 × 108 CFU/kg B. subtilis PB6 to sows’ feed during late gestation and lactation could shorten piglet birth intervals, enhance the growth performance of suckling piglets, and improve the gut health of sows during late gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号