首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Data of broiler chickens for 2 pure lines across 3 generations were used for genomic evaluation. A complete population (full data set; FDS) consisted of 183,784 and 164,246 broilers for the 2 lines. The genotyped subsets (SUB) consisted of 3,284 and 3,098 broilers with 57,636 SNP. Genotyped animals were preselected based on more than 20 traits with different index applied to each line. Three traits were analyzed: BW at 6 wk (BW6), ultrasound measurement of breast meat (BM), and leg score (LS) coded 1 = no and 2 = yes for leg defect. Some phenotypes were missing for BM. The training population consisted of the first 2 generations including all animals in FDS or only genotyped animals in SUB. The validation data set contained only genotyped animals in the third generation. Genetic evaluations were performed using 3 approaches: 1) phenotypic BLUP, 2) extending BLUP methodologies to utilize pedigree and genomic information in a single step (ssGBLUP), and 3) Bayes A. Whereas BLUP and ssGBLUP utilized all phenotypic data, Bayes A could use only those of the genotyped subset. Heritabilities were 0.17 to 0.20 for BW6, 0.30 to 0.35 for BM, and 0.09 to 0.11 for LS. The average accuracies of the validation population with BLUP for BW6, BM, and LS were 0.46, 0.30, and <0 with SUB and 0.51, 0.34, and 0.28 with FDS. With ssGBLUP, those accuracies were 0.60, 0.34, and 0.06 with SUB and 0.61, 0.40, and 0.37 with FDS, respectively. With Bayes A, the accuracies were 0.60, 0.36, and 0.09 with SUB. With SUB, Bayes A and ssGBLUP had similar accuracies. For traits of high heritability, the accuracy of Bayes A/SUB and ssGBLUP/FDS were similar, and up to 50% better than BLUP/FDS. However, with low heritability, ssGBLUP/FDS was 4 to 6 times more accurate than Bayes A/SUB and 50% better than BLUP/FDS. An optimal genomic evaluation would be multi-trait and involve all traits and records on which selection is based.  相似文献   

2.
The objective of this study was to compare and determine the optimal validation method when comparing accuracy from single‐step GBLUP (ssGBLUP) to traditional pedigree‐based BLUP. Field data included six litter size traits. Simulated data included ten replicates designed to mimic the field data in order to determine the method that was closest to the true accuracy. Data were split into training and validation sets. The methods used were as follows: (i) theoretical accuracy derived from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approximated accuracies from the accf90(GS) program in the BLUPF90 family of programs (Approx), (iii) correlation between predictions and the single‐step GEBVs from the full data set (GEBVFull), (iv) correlation between predictions and the corrected phenotypes of females from the full data set (Yc), (v) correlation from method iv divided by the square root of the heritability (Ych) and (vi) correlation between sire predictions and the average of their daughters' corrected phenotypes (Ycs). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large White. Approximation accuracies were very consistent and close in absolute value (0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected phenotype methods (ranging from 0.04 to 0.27). On average, simulated data showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both iLHS and Ych approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45, respectively. GEBVFull performed poorly in both data sets and is not recommended. Results suggest that for within‐breed selection, theoretical accuracy using PEV was consistent and accurate. When direct inversion is infeasible to get the PEV, correlating predictions to the corrected phenotypes divided by the square root of heritability is adequate given a large enough validation data set.  相似文献   

3.
Mortality of laying hens due to cannibalism is a major problem in the egg‐laying industry. Survival depends on two genetic effects: the direct genetic effect of the individual itself (DGE) and the indirect genetic effects of its group mates (IGE). For hens housed in sire‐family groups, DGE and IGE cannot be estimated using pedigree information, but the combined effect of DGE and IGE is estimated in the total breeding value (TBV). Genomic information provides information on actual genetic relationships between individuals and might be a tool to improve TBV accuracy. We investigated whether genomic information of the sire increased TBV accuracy compared with pedigree information, and we estimated genetic parameters for survival time. A sire model with pedigree information (BLUP) and a sire model with genomic information (ssGBLUP) were used. We used survival time records of 7290 crossbred offspring with intact beaks from four crosses. Cross‐validation was used to compare the models. Using ssGBLUP did not improve TBV accuracy compared with BLUP which is probably due to the limited number of sires available per cross (~50). Genetic parameter estimates were similar for BLUP and ssGBLUP. For both BLUP and ssGBLUP, total heritable variance (T2), expressed as a proportion of phenotypic variance, ranged from 0.03 ± 0.04 to 0.25 ± 0.09. Further research is needed on breeding value estimation for socially affected traits measured on individuals kept in single‐family groups.  相似文献   

4.
Joint Nordic (Denmark, Finland, Sweden) genetic evaluation of female fertility is currently based on the multiple trait multilactation animal model (BLUP). Here, single step genomic model (ssGBLUP) was applied for the Nordic Red dairy cattle fertility evaluation. The 11 traits comprised of nonreturn rate and days from first to last insemination in heifers and first three parities, and days from calving to first insemination in the first three parities. Traits had low heritabilities (0.015–0.04), but moderately high genetic correlations between the parities (0.60–0.88). Phenotypic data included 4,226,715 animals with records and pedigree 5,445,392 animals. Unknown parents were assigned into 332 phantom parent groups (PPG). In mixed model equations animals were associated with PPG effects through the pedigree or both the pedigree and genomic information. Genotype information of 46,914 SNPs was available for 33,969 animals in the pedigree. When PPG used pedigree information only, BLUP converged after 2,420 iterations whereas the ssGBLUP evaluation needed over ten thousand iterations. When the PPG effects were solved accounting both the pedigree and the genomic information, the ssGBLUP model converged after 2,406 iterations. Also, with the latter model breeding values by ssGBLUP and BLUP became more consistent and genetic trends followed each other well. Models were validated using forward prediction of the young bulls. Reliabilities and variance inflation of predicted genomic breeding values (values for parent averages in brackets) for the 11 traits ranged 0.22–0.31 (0.10–0.27) and 0.81–0.95 (0.83–1.06), respectively. The ssGBLUP model gave always higher validation reliabilities than BLUP, but largest increases were for the cow fertility traits.  相似文献   

5.
Genomic selection has been adopted nationally and internationally in different livestock and plant species. However, understanding whether genomic selection has been effective or not is an essential question for both industry and academia. Once genomic evaluation started being used, estimation of breeding values with pedigree best linear unbiased prediction (BLUP) became biased because this method does not consider selection using genomic information. Hence, the effective starting point of genomic selection can be detected in two possible ways including the divergence of genetic trends and Realized Mendelian sampling (RMS) trends obtained with BLUP and single-step genomic BLUP (ssGBLUP). This study aimed to find the start date of genomic selection for a set of economically important traits in three livestock species by comparing trends obtained using BLUP and ssGBLUP. Three datasets were used for this purpose: 1) a pig dataset with 117k genotypes and 1.3M animals in pedigree, 2) an Angus cattle dataset consisted of ~842k genotypes and 11.5M animals in pedigree, and 3) a purebred broiler chicken dataset included ~154k genotypes and 1.3M birds in pedigree were used. The genetic trends for pigs diverged for the genotyped animals born in 2014 for average daily gain (ADG) and backfat (BF). In beef cattle, the trends started diverging in 2009 for weaning weight (WW) and in 2016 for postweaning gain (PWG), with little divergence for birth weight (BTW). In broiler chickens, the genetic trends estimated by ssGBLUP and BLUP diverged at breeding cycle 6 for two out of the three production traits. The RMS trends for the genotyped pigs diverged for animals born in 2014, more for ADG than for BF. In beef cattle, the RMS trends started diverging in 2009 for WW and in 2016 for PWG, with a trivial trend for BTW. In broiler chickens, the RMS trends from ssGBLUP and BLUP diverged strongly for two production traits at breeding cycle 6, with a slight divergence for another trait. Divergence of the genetic trends from ssGBLUP and BLUP indicates the onset of the genomic selection. The presence of trends for RMS indicates selective genotyping, with or without the genomic selection. The onset of genomic selection and genotyping strategies agrees with industry practices across the three species. In summary, the effective start of genomic selection can be detected by the divergence between genetic and RMS trends from BLUP and ssGBLUP.  相似文献   

6.
Genomic information has a limited dimensionality (number of independent chromosome segments [Me]) related to the effective population size. Under the additive model, the persistence of genomic accuracies over generations should be high when the nongenomic information (pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this study was to evaluate the decay in accuracy over time and to compare the magnitude of decay with varying quantities of data and with traits of low and moderate heritability. The dataset included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a fitness trait (FT) related to prolificacy in a population with dimensionality around 5,000. The pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1-generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by the linear regression (LR) method. The validation population consisted of single generations succeeding the training population and continued forward for all generations available. The average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 for GT and FT, respectively. The average decay in accuracy from the first generation after training to generation 9 was −0.13 and −0.19 for GT and FT, respectively. The persistence of accuracy improves with more data. Old data have a limited impact on the predictions for young animals for a trait with a large amount of information but a bigger impact for a trait with less information.  相似文献   

7.
Effect of different genomic relationship matrices on accuracy and scale   总被引:1,自引:0,他引:1  
Phenotypic data on BW and breast meat area were available on up to 287,614 broilers. A total of 4,113 birds were genotyped for 57,636 SNP. Data were analyzed by a single-step genomic BLUP (ssGBLUP), which accounts for all phenotypic, pedigree, and genomic information. The genomic relationship matrix (G) in ssGBLUP was constructed using either equal (0.5; GEq) or current (GC) allele frequencies, and with all SNP or with SNP with minor allele frequencies (MAF) below multiple thresholds (0.1, 0.2, 0.3, and 0.4) ignored. Additionally, a pedigree-based relationship matrix for genotyped birds (A(22)) was available. The matrices and their inverses were compared with regard to average diagonal (AvgD) and off-diagonal (AvgOff) elements. In A(22), AvgD was 1.004 and AvgOff was 0.014. In GEq, both averages decreased with the increasing thresholds for MAF, with AvgD decreasing from 1.373 to 1.020 and AvgOff decreasing from 0.722 to 0.025. In GC, AvgD was approximately 1.01 and AvgOff was 0 for all MAF. For inverses of the relationship matrices, all AvgOff were close to 0; AvgD was 2.375 in A(22), varied from 11.563 to 12.943 for GEq, and increased from 8.675 to 12.859 for GC as the threshold for MAF increased. Predictive ability with all GEq and GC was similar except that at MAF = 0.4, they declined by 0.01 for BW and improved by 0.01 for breast meat area. Compared with BLUP, EBV in the ssGBLUP were, on average, increased by up to 1 additive SD greater with GEq and decreased by 2 additive SD less with GC. Genotyped animals were biased upward with GEq and downward with GC. The biases and differences in EBV could be controlled by adding a constant to GC; they were eliminated with a constant of 0.014, which corresponds to AvgOff in A(22). Unbiased evaluation in the ssGBLUP may be obtained with GC scaled to be compatible with A(22). The reduction of SNP with small MAF has a small effect on the real accuracy, but it may falsely increase the estimated accuracies by inversion.  相似文献   

8.
Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.  相似文献   

9.
Estimated breeding values (EBVs) using data from genetic markers can be predicted using a genomic relationship matrix, derived from animal's genotypes, and best linear unbiased prediction. However, if the accuracy of the EBVs is calculated in the usual manner (from the inverse element of the coefficient matrix), it is likely to be overestimated owing to sampling errors in elements of the genomic relationship matrix. We show here that the correct accuracy can be obtained by regressing the relationship matrix towards the pedigree relationship matrix so that it is an unbiased estimate of the relationships at the QTL controlling the trait. This method shows how the accuracy increases as the number of markers used increases because the regression coefficient (of genomic relationship towards pedigree relationship) increases. We also present a deterministic method for predicting the accuracy of such genomic EBVs before data on individual animals are collected. This method estimates the proportion of genetic variance explained by the markers, which is equal to the regression coefficient described above, and the accuracy with which marker effects are estimated. The latter depends on the variance in relationship between pairs of animals, which equals the mean linkage disequilibrium over all pairs of loci. The theory was validated using simulated data and data on fat concentration in the milk of Holstein cattle.  相似文献   

10.
Pig survival is an economically important trait with relevant social welfare implications, thus standing out as an important selection criterion for the current pig farming system. We aimed to estimate (co)variance components for survival in different production phases in a crossbred pig population as well as to investigate the benefit of including genomic information through single-step genomic best linear unbiased prediction (ssGBLUP) on the prediction accuracy of survival traits compared with results from traditional BLUP. Individual survival records on, at most, 64,894 crossbred piglets were evaluated under two multi-trait threshold models. The first model included farrowing, lactation, and combined postweaning survival, whereas the second model included nursery and finishing survival. Direct and maternal breeding values were estimated using BLUP and ssGBLUP methods. Furthermore, prediction accuracy, bias, and dispersion were accessed using the linear regression validation method. Direct heritability estimates for survival in all studied phases were low (from 0.02 to 0.08). Survival in preweaning phases (farrowing and lactation) was controlled by the dam and piglet additive genetic effects, although the maternal side was more important. Postweaning phases (nursery, finishing, and the combination of both) showed the same or higher direct heritabilities compared with preweaning phases. The genetic correlations between survival traits within preweaning and postweaning phases were favorable and strong, but correlations between preweaning and postweaning phases were moderate. The prediction accuracy of survival traits was low, although it increased by including genomic information through ssGBLUP compared with the prediction accuracy from BLUP. Direct and maternal breeding values were similarly accurate with BLUP, but direct breeding values benefited more from genomic information. Overall, a slight increase in bias was observed when genomic information was included, whereas dispersion of breeding values was greatly reduced. Combined postweaning survival presented higher direct heritability than in the preweaning phases and the highest prediction accuracy among all evaluated production phases, therefore standing out as a candidate trait for improving survival. Survival is a complex trait with low heritability; however, important genetic gains can still be obtained, especially under a genomic prediction framework.  相似文献   

11.
旨在提出一种新型基因组关系矩阵并验证其在多品种联合群体中的模拟应用效果。本研究利用QMsim软件模拟牛的表型数据和基因型数据;利用Gmatrix软件构建常规G阵;利用R语言构建新型G阵,新型G阵在常规G阵的基础上,将多品种联合群体的非哈代-温伯格平衡位点考虑在内;利用DMU软件使用“一步”法模型计算基因组估计育种值(estimated genomic breeding value,GEBV);比较不同情况下使用两种G阵的GEBV预测准确性。结果表明,在不同遗传力及QTL数下,不对新型G阵使用A22阵加权就能达到常规G阵使用A22阵加权时的GEBV预测准确性。在系谱部分缺失时,新型G阵不加权较常规G阵加权时GEBV预测准确性高。证明,在系谱有部分缺失时,新型G阵对多品种GEBV的预测有一定优势。  相似文献   

12.
旨在比较不同方法对中国荷斯坦牛繁殖性状的基因组预测效果,选择最佳的基因组预测方法及信息矩阵权重组合(τ和ω)用于实际育种。本研究利用北京地区33个牧场1998—2020年荷斯坦牛群繁殖记录,分析了3个重要繁殖性状:产犊至首次配种间隔(ICF)、青年牛配种次数(NSH)和成母牛配种次数(NSC)共98 483~197 764条表型数据。同时收集了8 718头母牛和3 477头公牛的基因芯片数据,根据具有芯片数据的牛群结构划分为公牛验证群和母牛验证群。随后,通过BLUPF90软件的AIREMLF90和BLUPF90模块利用最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(ssGBLUP)对3个性状进行基因组预测,不同方法的预测效果根据准确性和无偏性来评估。结果表明,3个繁殖性状均为低遗传力性状(0.03~0.08);ssGBLUP方法中,各性状信息矩阵的权重取值能够在一定程度上提升基因组预测的效果;ICF、NSH和NSC在母牛验证群下的最佳权重取值分别为:τ=1.3和ω=0,τ=0.5和ω=0.4以及τ=0.5和ω=0;在公牛验证群下最优权重组合分别为:τ=1.5和ω=0,τ=1.3和ω=0.8以及τ=0.5和ω=0;基于最佳权重的ssGBLUP方法准确性较BLUP和GBLUP方法准确性分别提升了0.10~0.39和0.08~0.15,且无偏性最接近于1。综上,使用最佳权重组合的ssGBLUP时,各性状基因组预测结果具有较高准确性和无偏性,建议作为中国荷斯坦牛繁殖性状基因组选择方法。  相似文献   

13.
Accuracy of genomic predictions is an important component of the selection response. The objectives of this research were: 1) to investigate trends for prediction accuracies over time in a broiler population of accumulated phenotypes, genotypes, and pedigrees and 2) to test if data from distant generations are useful to maintain prediction accuracies in selection candidates. The data contained 820K phenotypes for a growth trait (GT), 200K for two feed efficiency traits (FE1 and FE2), and 42K for a carcass yield trait (CY). The pedigree included 1,252,619 birds hatched over 7 years, of which 154,318 from the last 4 years were genotyped. Training populations were constructed adding 1 year of data sequentially, persistency of accuracy over time was evaluated using predictions from birds hatched in the three generations following or in the years after the training populations. In the first generation, before genotypes became available for the training populations (first 3 years of data), accuracies remained almost stable with successive additions of phenotypes and pedigree to the accumulated dataset. The inclusion of 1 year of genotypes in addition to 4 years of phenotypes and pedigree in the training population led to increases in accuracy of 54% for GT, 76% for FE1, 110% for CY, and 38% for FE2; on average, 74% of the increase was due to genomics. Prediction accuracies declined faster without than with genomic information in the training populations. When genotypes were unavailable, the average decline in prediction accuracy across traits was 41% from the first to the second generation of validation, and 51% from the second to the third generation of validation. When genotypes were available, the average decline across traits was 14% from the first to the second generation of validation, and 3% from the second to the third generation of validation. Prediction accuracies in the last three generations were the same when the training population included 5 or 2 years of data, and a decrease of ~7% was observed when the training population included only 1 year of data. Training sets including genomic information provided an increase in accuracy and persistence of genomic predictions compared with training sets without genomic data. The two most recent years of pedigree, phenotypic, and genomic data were sufficient to maintain prediction accuracies in selection candidates. Similar conclusions were obtained using validation populations per year.  相似文献   

14.
We investigated the importance of SNP weighting in populations with 2,000 to 25,000 genotyped animals. Populations were simulated with two effective sizes (20 or 100) and three numbers of QTL (10, 50 or 500). Pedigree information was available for six generations; phenotypes were recorded for the four middle generations. Animals from the last three generations were genotyped for 45,000 SNP. Single‐step genomic BLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) were used to estimate genomic EBV using a genomic relationship matrix ( G ). The WssGBLUP performed better in small genotyped populations; however, any advantage for WssGBLUP was reduced or eliminated when more animals were genotyped. WssGBLUP had greater resolution for genome‐wide association (GWA) as did increasing the number of genotyped animals. For few QTL, accuracy was greater for WssGBLUP than ssGBLUP; however, for many QTL, accuracy was the same for both methods. The largest genotyped set was used to assess the dimensionality of genomic information (number of effective SNP). The number of effective SNP was considerably less in weighted G than in unweighted G . Once the number of independent SNP is well represented in the genotyped population, the impact of SNP weighting becomes less important.  相似文献   

15.
The benefit of using genomic breeding values (GEBV) in predicting ADG, DMI, and residual feed intake for an admixed population was investigated. Phenotypic data consisting of individual daily feed intake measurements for 721 beef cattle steers tested over 5 yr was available for analysis. The animals used were an admixed population of spring-born steers, progeny of a cross between 3 sire breeds and a composite dam line. Training and validation data sets were defined by randomly splitting the data into training and testing data sets based on sire family so that there was no overlap of sires in the 2 sets. The random split was replicated to obtain 5 separate data sets. Two methods (BayesB and random regression BLUP) were used to estimate marker effects and to define marker panels and ultimately the GEBV. The accuracy of prediction (the correlation between the phenotypes and GEBV) was compared between SNP panels. Accuracy for all traits was low, ranging from 0.223 to 0.479 for marker panels with 200 SNP, and 0.114 to 0.246 for marker panels with 37,959 SNP, depending on the genomic selection method used. This was less than accuracies observed for polygenic EBV accuracies, which ranged from 0.504 to 0.602. The results obtained from this study demonstrate that the utility of genetic markers for genomic prediction of residual feed intake in beef cattle may be suboptimal. Differences in accuracy were observed between sire breeds when the random regression BLUP method was used, which may imply that the correlations obtained by this method were confounded by the ability of the selected SNP to trace breed differences. This may also suggest that prediction equations derived from such an admixed population may be useful only in populations of similar composition. Given the sample size used in this study, there is a need for increased feed intake testing if substantially greater accuracies are to be achieved.  相似文献   

16.
The Algorithm for Proven and Young (APY) enables the implementation of single‐step genomic BLUP (ssGBLUP) in large, genotyped populations by separating genotyped animals into core and non‐core subsets and creating a computationally efficient inverse for the genomic relationship matrix ( G ). As APY became the choice for large‐scale genomic evaluations in BLUP‐based methods, a common question is how to choose the animals in the core subset. We compared several core definitions to answer this question. Simulations comprised a moderately heritable trait for 95,010 animals and 50,000 genotypes for animals across five generations. Genotypes consisted of 25,500 SNP distributed across 15 chromosomes. Genotyping errors and missing pedigree were also mimicked. Core animals were defined based on individual generations, equal representation across generations, and at random. For a sufficiently large core size, core definitions had the same accuracies and biases, even if the core animals had imperfect genotypes. When genotyped animals had unknown parents, accuracy and bias were significantly better (p ≤ .05) for random and across generation core definitions.  相似文献   

17.
Accuracy and bias of EBV are important measures of the quality of genetic evaluations. A sampling method that accounts for the uncertainty in the estimation of genetic group effects was used to calculate accuracy and bias of estimated effects. The method works by repeatedly simulating phenotypes for multiple traits for a defined data and pedigree structure. These simulated values are analyzed using BLUP with genetic groups in the relationship matrix. Accuracies and biases are then calculated as correlations among and differences between true and estimated values across all replicates, respectively. The method was applied to the Irish beef production data set for 15 traits and with 15 genetic groups to account for differences in breed means. Accuracy and bias of estimated genetic group effects, estimated comparisons between genetic group effects, EBV within genetic group, and EBV across genetic group were calculated. Small biases were detected for most estimated genetic group effects and most estimated comparisons between genetic group effects. Most of these were not important relative to the phenotypic SD of the traits involved. For example, a bias of 0.78% of the phenotypic SD was detected for carcass conformation in Aberdeen Angus. However, one trait, calf quality, which had few performance records in the data set, displayed larger bias, ranging from -10.31 to 5.85% of the phenotypic SD across the different estimated genetic group effects. Large differences were observed in the accuracies of genetic group effects, ranging from 0.02 for feed intake in Holstein, which had no data recorded, to >0.97 for carcass conformation, a trait with large amounts of data recorded in the different genetic groups. Large differences were also observed in the accuracies of the comparisons among genetic group effects. The accuracies of the EBV within genetic group and EBV across genetic group were sometimes different; for example, carcass conformation in Belgian Blue had an average accuracy within genetic group of 0.69 compared with an average accuracy across genetic group of 0.89. This suggests that the accuracy of genetic groups should be taken into account when publishing EBV across genetic groups.  相似文献   

18.
The accuracy of estimated breeding values (EBVs) is an important parameter in livestock genetic improvement. It is used to calculate response to selection and to express the credibility of individual EBVs. Although it is well-known that selection reduces accuracy, this effect is not well-studied and accuracies from genetic evaluations are not adjusted for selection. This work investigates the effect of selection on accuracy of EBVs estimated using best linear unbiased predictors. Results show that accuracies in a selected population may be considerably smaller than the ordinary accuracy from genetic evaluation. Accuracy of the parent average is dramatically reduced by selection, up to a factor of three. Expressions for equilibrium accuracies in selected populations are presented and depend only on the unselected accuracy and the intensity of selection. Thus, schemes with the same unselected accuracy and intensity of selection also have the same equilibrium accuracy and response to selection. At the same unselected accuracy, therefore, schemes based on between-family information do not show greater reduction in response and accuracy because of the Bulmer effect. An example shows that benefit of genomic selection may be underestimated when the effect of selection on accuracy is ignored. Finally, this work argues that the SE of an EBV and the correlation between true and EBVs are different things, and that accuracies should not be adjusted for selection when they primarily serve to indicate the SEs of EBVs.  相似文献   

19.
Genetic evaluations for carcass traits of young bulls in Normande and Montbeliarde breeds are currently being developed in France. In order to determine a suitable genomic evaluation for three carcass traits of young bulls, genomic breeding values were estimated for young candidates to selection using different approaches. Records of 111,789 Normande and 118,183 Montbeliarde were used. Average progeny pre-adjusted performances (DYD) were calculated for sires. Evaluation approaches were compared based on an assessment of their accuracy (correlation between DYD and estimated breeding values [EBVs]) and bias (regression coefficient of DYD on EBVs) on the 20% youngest AI sires. All genomic approaches were generally more accurate than BLUP (+.045 to +.116 correlation points), except for age at slaughter where single-step GBLUP (SSGBLUP) was the only genomic method leading to a greater accuracy (+.038 to +.126 points). The best setting of the SSGBLUP relationship matrix was characterized by a weight of 30% for pedigree information in the genomic relationship matrix. SSGBLUP was the most valuable evaluation approach for the evaluation of carcass traits of Normande and Montbeliarde young bulls.  相似文献   

20.
The purpose of this study was to examine accuracy of genomic selection via single‐step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix ( G ) is replaced by an approximation of G ?1 based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G ?1 and the approximated G ?1 via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G ?1 and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号