首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Twenty-two dogs diagnosed with generalized demodicosis were treated with milbemycin oxime (MO) because of poor response to previous therapies or because the dog was a breed known to be susceptible to ivermectin toxicosis. Fifteen of the 22 dogs were herding breeds. Doses of MO ranged from 1.0 to 2.2 mg kg−1 day−1 per os. Cheek swab samples were obtained in order to determine each dog's ABCB 1 genotype. Adverse drug reactions were recorded for each dog by the owners and/or veterinarians. The ABCB 1-1Δ genotype was significantly associated with the development of an adverse reaction (neurological toxicity) after treatment with MO. None of the 19 dogs with the wild-type ABCB1 allele experienced adverse reactions, whereas two dogs homozygous for the ABCB1-1Δ mutation developed ataxia. Assessing the ABCB1-1Δ genotype prior to MO administration may prevent neurological toxicity in these patients.  相似文献   

2.
Background: Dogs that harbor the naturally occurring ABCB1-1Δ polymorphism experience increased susceptibility to avermectin-induced neurological toxicosis as a result of deficient P-glycoprotein function. Whether or not the ABCB1-1Δ polymorphism affects susceptibility to toxicity of other P-glycoprotein substrate drugs has not been studied.
Hypothesis: Dogs that possess the ABCB1-1Δ mutation are more likely to develop hematologic toxicity associated with vincristine than ABCB1 wild-type dogs.
Animals: Thirty-four dogs diagnosed with lymphoma were included in this study.
Methods: Cheek swab samples were obtained from dogs diagnosed with lymphoma that were to be treated with vincristine. DNA was extracted from cheek swabs and the ABCB1 genotype was determined. Hematologic adverse drug reactions were recorded for each dog and graded according to the Veterinary Comparative Oncology Group's criteria for adverse event reporting (Consensus Document). In order to avoid possible bias, ABCB1 genotype results for a particular patient were not disclosed to oncologists until an initial adverse event report had been submitted.
Results: Dogs heterozygous or homozygous for the ABCB1-1Δ mutation were significantly more likely to develop hematologic toxicity, specifically neutropenia ( P = .0005) and thrombocytopenia ( P = .0001), after treatment with vincristine than ABCB1 wild-type dogs.
Conclusions and Clinical Implications: At currently recommended dosages (0.5–0.7 mg/M2), vincristine is likely to cause hematologic toxicity in dogs with the ABCB1-1Δ mutation, resulting in treatment delays and unacceptable morbidity and mortality. Assessing the ABCB1-1Δ genotype before vincristine administration and decreasing the dosage may prevent toxicity and treatment delays resulting from neutropenia or thrombocytopenia.  相似文献   

3.
BACKGROUND: Dogs that harbor the naturally occurring ABCB1-1Delta polymorphism experience increased susceptibility to avermectin-induced neurological toxicosis as a result of deficient P-glycoprotein function. Whether or not the ABCB1-1Delta polymorphism affects susceptibility to toxicity of other P-glycoprotein substrate drugs has not been studied. HYPOTHESIS: Dogs that possess the ABCB1-1Delta mutation are more likely to develop hematologic toxicity associated with vincristine than ABCB1 wild-type dogs. ANIMALS: Thirty-four dogs diagnosed with lymphoma were included in this study. METHODS: Cheek swab samples were obtained from dogs diagnosed with lymphoma that were to be treated with vincristine. DNA was extracted from cheek swabs and the ABCB1 genotype was determined. Hematologic adverse drug reactions were recorded for each dog and graded according to the Veterinary Comparative Oncology Group's criteria for adverse event reporting (Consensus Document). In order to avoid possible bias, ABCB1 genotype results for a particular patient were not disclosed to oncologists until an initial adverse event report had been submitted. RESULTS: Dogs heterozygous or homozygous for the ABCB1-1Delta mutation were significantly more likely to develop hematologic toxicity, specifically neutropenia (P= .0005) and thrombocytopenia (P= .0001), after treatment with vincristine than ABCB1 wild-type dogs. CONCLUSIONS AND CLINICAL IMPLICATIONS: At currently recommended dosages (0.5-0.7 mg/M(2)), vincristine is likely to cause hematologic toxicity in dogs with the ABCB1-1Delta mutation, resulting in treatment delays and unacceptable morbidity and mortality. Assessing the ABCB1-1Delta genotype before vincristine administration and decreasing the dosage may prevent toxicity and treatment delays resulting from neutropenia or thrombocytopenia.  相似文献   

4.
A 4-bp deletion in the ATP-binding cassette subfamily B member 1 (ABCB1) gene, also referred to as the multidrug resistance gene (MDR1), produces stop codons that cause premature termination of P-glycoprotein 1 (P-gp) synthesis. Dogs with the homozygous mutation do not express functional P-gp, which increases their sensitivity markedly to many common veterinary drugs. We detected the nt230 (del4) ABCB1 mutation in Border Collie dogs in western Mexico with a simple and affordable primer-introduced restriction analysis PCR (PIRA-PCR). PIRA-PCR clearly identified all genotypes in our sample of 104 dogs. Genotype frequencies were 0.952 (wild/wild), 0.029 (wild/mut) and 0.019 (mut/mut). Allele frequencies were 0.033 (mutant alleles) and 0.966 (wild-type alleles). In this small subset of the Mexican dog population, we found a higher prevalence of the nt230 (del4) MDR1/ABCB1 gene mutation than reported in other countries.  相似文献   

5.
The impact of drug transporters on drug pharmacokinetics and pharmacodynamics has been increasingly recognized in recent years. P-glycoprotein (P-gp), the product of the ABCB1 (formerly MDR1) gene, is among the most well-characterized drug transporters, particularly in veterinary medicine. P-gp is expressed by a variety of normal tissues, including the intestines, brain capillary endothelial cells, renal tubular cells, and biliary canalicular cells, where it functions to actively extrude substrate drugs. In this capacity, P-gp limits oral absorption and central nervous system entry of many substrate drugs and enhances their excretion from the body. Many drugs used in veterinary medicine are substrates for P-gp, including many chemotherapeutic agents and macrocyclic lactones (avermectins and milbemycin). A 4-base pair deletion mutation in the ABCB1 gene occurs in many herding breed dogs, including collies, Australian shepherds, and Shetland sheepdogs. The mutation (ABCB1-1Delta) renders affected animals extremely susceptible to toxicosis induced by substrate drugs, such as the macrocyclic lactones at doses well below those tolerated by dogs with the wild-type ABCB1 gene. However, at the manufacturer's recommended dose, all FDA-approved heartworm preventive products marketed in the United States are safe, even for dogs with the ABCB1 mutant/mutant genotype.  相似文献   

6.
P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug–drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi (99mTc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h × 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of 99mTc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of 99mTc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of 99mTc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.  相似文献   

7.
P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members'' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.  相似文献   

8.
This study evaluated the impact of the ABCB1‐1Δ mutation in Collies which exhibited toxicity toward ivermectin, on changes in gene expression when given the unrelated ABCB1 substrate loperamide, to identify potential biomarkers predictive of drug safety. Thirty‐two healthy intact Collies consisting of dogs with either a wild‐type, heterozygous mutant, or homozygous mutant genotype were used. Whole blood samples were collected from Collies at 0 or 5 h following administration of loperamide at a dose of 0.10 mg/kg. Whole‐genome gene expression microarray was conducted to examine for changes in gene expression. Microarray analysis identified loperamide‐induced changes in gene expression which were specifically associated with ivermectin‐sensitive phenotypes in Collies possessing the ABCB1‐1Δ mutation. Gene pathway analysis further demonstrated that the altered genes are involved in immunological disease, cell death and survival, and cellular development. Thirteen genes, including CCL8 and IL‐8, were identified. Collie dogs harboring ABCB1‐1Δ mutation which also exhibited toxicity toward ivermectin demonstrated systematic responses following loperamide treatment exhibited by altered expression of genes involved in immune and inflammatory signaling pathways. Genes such as CCL8 and IL‐8 are potential biomarkers in whole blood that may predict the safety of loperamide in dogs with ABCB1‐1? mutation associated with ivermectin sensitivity.  相似文献   

9.
A subpopulation of dogs of the Collie and Australian Shepherd breeds show increased sensitivity to central nervous actions of ivermectin, doramectin, loperamide, and probably several other drugs. The molecular background for this greater sensitivity is a nonsense mutation in the MDR1 efflux pump, which is part of the functional blood-brain barrier and normally limits drug penetration into the brain. This report describes a rapid PCR-based method for detection of this nt230(del4) MDR1 mutation using a small amount of genomic DNA from blood cells. Thereby, homozygous intact, homozygous mutated, and heterozygous mutated MDR1 genotypes can be clearly differentiated by high resolution polyacrylamide gel electrophoresis. Using this diagnostic test two Collies and one Australian Shepherd were screened for the nt230(del4) MDR1 mutation. The Collies had no history of altered drug sensitivity and showed homozygous intact and heterozygous mutated MDR1 alleles, respectively. However, the Australian Shepherd developed clear signs of neurotoxicity including ataxia, crawling, acoustic and tactile hyperexcitability, and miosis after a single dose of moxidectin (400 microg/kg). For this dog two mutated MDR1 alleles were detected. This report describes for the first time moxidectin neurotoxicosis in a dog with a homozygous MDR1 mutation.  相似文献   

10.
OBJECTIVE: To evaluate the breed distribution of the ABCB1-1Delta polymorphism in a large number of dogs in North America, including dogs of several herding breeds in which this polymorphism has been detected and other breeds in which this polymorphism has not yet been identified. DESIGN: Cross-sectional study. ANIMALS: 5,368 dogs from which buccal swab samples were collected for purposes of ABCB1 genotyping. PROCEDURES: From May 1, 2004, to September 30, 2007, DNA specimens derived from buccal swab samples collected from 5,368 dogs underwent ABCB1 genotyping. These data were reviewed, and results for each dog were recorded in a spreadsheet, along with the dog's breed. The genotypes for each breed were tallied by use of a sorting function. RESULTS: The ABCB1-1Delta allele was identified in 9 breeds of dogs and in many mixed-breed dogs. Breeds that had the ABCB1-1Delta allele included Collie, Longhaired Whippet, Australian Shepherd (standard and miniature), Shetland Sheepdog, Old English Sheepdog, Border Collie, Silken Windhound, and German Shepherd Dog (a breed in which this mutation had not been detected previously). CONCLUSIONS AND CLINICAL RELEVANCE: The ABCB1-1Delta polymorphism is associated with increased susceptibility to many adverse drug reactions and with suppression of the hypothalamic-pituitary-adrenal axis and is present in many herding breeds of dog. Veterinarians should be familiar with the breeds that have the ABCB1-1Delta polymorphism to make appropriate pharmacologic choices for these patients.  相似文献   

11.
Therapeutic implications of the MDR-1 gene   总被引:11,自引:0,他引:11  
Drug transporters significantly influence drug pharmacokinetics and pharmacodynamics. P-glycoprotein (P-gp), the product of the MDR1 (ABCB1) gene, is among the most well-characterized drug transporters, particularly in veterinary medicine. A number of clinically relevant, structurally and functionally unrelated drugs are substrates for P-gp. P-gp is expressed by a variety of normal tissues including the intestines, renal tubular cells, brain capillary endothelial cells, biliary canalicular cells, and others, where it functions to actively extrude substrate drugs. In this capacity, P-gp limits oral absorption and central nervous system entry of many substrate drugs. A number of MDR1 polymorphisms have been described in human patients, some of which result in altered drug pharmacokinetics and susceptibility to diseases such as Parkinson's disease, inflammatory bowel disease, refractory seizures, and others. An MDR1 polymorphism in herding breed dogs, including collies and Australian shepherds, has been demonstrated to be the cause of ivermectin sensitivity in these breeds. Recent evidence suggests that this polymorphism, a 4-bp deletion mutation, results in increased susceptibility to the toxicity of several drugs in addition to ivermectin. Furthermore, data in rodent models suggest that P-gp may play an important role in regulating the hypothalamic-pituitary-adrenal axis.  相似文献   

12.
Objective-To develop in genetically engineered mice an alternative screening method for evaluation of P-glycoprotein substrate toxicosis in ivermectin-sensitive Collies. Animals-14 wild-type C57BL/6J mice (controls) and 21 genetically engineered mice in which the abcb1a and abcb1b genes were disrupted and the mutated canine ABCB1 gene was inserted. Procedures-Mice were allocated to receive 10 mg of ivermectin/kg via SC injection (n = 30) or a vehicle-only formulation of propylene glycol and glycerol formal (5). Each was observed for clinical signs of toxic effects from 0 to 7 hours following drug administration. Results-After ivermectin administration, considerable differences were observed in drug sensitivity between the 2 types of mice. The genetically engineered mice with the mutated canine ABCB1 gene had signs of severe sensitivity to ivermectin, characterized by progressive lethargy, ataxia, and tremors, whereas the wild-type control mice developed no remarkable effects related to the ivermectin. Conclusions and Clinical Relevance-The ivermectin sensitivity modeled in the transgenic mice closely resembled the lethargy, stupor, disorientation, and loss of coordination observed in ivermectin-sensitive Collies with the ABCB1-1Δ mutation. As such, the model has the potential to facilitate toxicity assessments of certain drugs for dogs that are P-glycoprotein substrates, and it may serve to reduce the use of dogs in avermectin derivative safety studies that are part of the new animal drug approval process.  相似文献   

13.
A six-year-old, neutered, female collie was presented to an oncology specialty service after developing tetraparesis and self-mutilation that progressively worsened while receiving chemotherapy for lymphoma. Neurologic examination revealed ataxia, paresis and diminished conscious proprioception in all limbs with entire spinal reflexes. Magnetic resonance imaging of the brain and spinal cord was normal. Electromyography of the limbs ruled out a vincristine-induced peripheral neuropathy. Cerebrospinal fluid analysis and cerebrospinal fluid and serum testing for Neospora and Toxoplasma were normal. Results of MDR1 genotyping revealed that the dog was homozygous for the ABCB1-1Δ (MDR1) mutation. This clinical presentation strongly resembled the effects seen from inadvertent intrathecal administration of vincristine in humans. Dogs that are homozygous for the ABCB1-1Δ (MDR1) mutation should not receive standard dosages of chemotherapy drugs known to be eliminated by P-glycoprotein, the gene product of ABCB1. Testing for this mutation is strongly recommended before chemotherapy initiation for at-risk breeds.  相似文献   

14.
Background: The identification of dogs defective in ATP‐binding cassette transporter B1 (ABCB1, MDR1) activity has prompted questions regarding pharmacokinetics (PK), efficacy and toxicity of ABCB1 substrates in these dogs. Hypothesis/Objectives: Dogs defective in ABCB1 activity (ABCB1null) have doxorubicin (DOX) PK different from that of normal dogs (ABCB1wt). Utilization of a physiologically based pharmacokinetic (PBPK) model allows computer simulation to study this polymorphism's impact on DOX PK. Animals: None. Methods: A virtual ABCB1wt dog population was generated and DOX distribution, elimination, and metabolism simulated by PBPK modeling. An in silico population of virtual dogs was generated by Monte Carlo simulation, with variability in physiologic and biochemical parameters consistent with the dog population. This population was used in the PBPK model. The ABCB1 components of the model were inactivated to generate an ABCB1null population and simulations repeated at multiple doses. Resulting DOX levels were used to generate PK parameters. Results: DOX exposures in the ABCB1null population were increased in all simulated tissues including serum (24%) and gut (174%). Estimated dosages in the ABCB1null population to approximate exposure in the ABCB1wt population at a dose of 30 mg/m2 were 24.8 ± 3.5 mg/m2 for serum and 10.7 ± 5.9 mg/m2 for gut. Conclusions and Clinical Importance: These results suggest that serum DOX concentrations are not indicative of tissue exposure, especially those with appreciable ABCB1 activity, and that gastrointestinal (GI) toxicosis would be dose limiting in ABCB1null populations. Dosage reductions necessary to prevent GI toxicosis likely result in subtherapeutic concentrations, thereby reducing DOXs efficacy in ABCB1null dogs.  相似文献   

15.
Background: Variation in the ABCB1 gene is believed to play a role in drug resistance in epilepsy. Hypothesis/Objectives: Variation in the ABCB1 gene encoding the permeability‐glycoprotein could have an influence on phenobarbital (PB) resistance, which occurs with high frequency in idiopathic epileptic Border Collies (BCs). Animals: Two hundred and thirty‐six client‐owned BCs from Switzerland and Germany including 25 with idiopathic epilepsy, of which 13 were resistant to PB treatment. Methods: Prospective and retrospective case‐control study. Data were collected retrospectively regarding disease status, antiepileptic drug (AED) therapy, and drug responsiveness. The frequency of a known mutation in the ABCB1 gene (4 base‐pair deletion in the ABCB1 gene [c.296_299del]) was determined in all BCs. Additionally, the ABCB1 coding exons and flanking sequences were completely sequenced to search for additional variation in 41 BCs. Association analyses were performed in 2 case‐control studies: idiopathic epileptic and control BCs and PB‐responsive and resistant idiopathic epileptic BCs. Results: One of 236 BCs (0.4%) was heterozygous for the mutation in the ABCB1 gene (c.296_299del). A total of 23 variations were identified in the ABCB1 gene: 4 in exons and 19 in introns. The G‐allele of the c.‐6‐180T > G variation in intron 1 was significantly more frequent in epileptic BCs resistant to PB treatment than in epileptic BCs responsive to PB treatment (Praw= .0025). Conclusions and Clinical Importance: A variation in intron 1 of the ABCB1 gene is associated with drug responsiveness in BCs. This might indicate that regulatory mutations affecting the expression level of ABCB1 could exist, which may influence the reaction of a dog to AEDs.  相似文献   

16.
The major multidrug transporter P-glycoprotein (Pgp) contributes to the barrier function of several tissues and organs, including the brain. In a subpopulation of Collies and seven further dog breeds, a 4 base pair deletion has been described in the Pgp-encoding MDR1 gene. This deletion results in the absence of a functional form of Pgp and loss of its protective function. Severe intoxication with the Pgp substrate ivermectin has been attributed to the genetically determined lack of Pgp. An allele-specific polymerase chain reaction (PCR)-based screening method has been developed to detect the mutant allele and to determine if a dog is homozygous or heterozygous for the mutation. Based on this validation, the allele-specific PCR proved to be a robust, reproducible and specific tool, allowing rapid determination of the MDR1 genotype of dogs of at risk breeds using blood samples or buccal swabs.  相似文献   

17.
The aim of this study was to sequence all exons of the ABCB1 (MDR1) gene in cats that had experienced adverse reactions to P‐glycoprotein substrate drugs (phenotyped cats). Eight phenotyped cats were included in the study consisting of eight cats that experienced central nervous system toxicosis after receiving ivermectin (n = 2), a combination product containing moxidectin and imidacloprid (n = 3), a combination product containing praziquantel and emodepside (n = 1) or selamectin (n = 2), and 1 cat that received the product containing praziquantel and emodepside but did not experience toxicity (n = 1). Fifteen exons contained polymorphisms and twelve exons showed no variation from the reference sequence. The most significant finding was a nonsense mutation (ABCB11930_1931del TC) in one of the ivermectin‐treated cats. This cat was homozygous for the deletion mutation. All of the other phenotyped cats were homozygous for the wild‐type allele. However, 14 missense mutations were identified in one or more phenotyped cats. ABCB11930_1931del TC was also identified in four nonphenotyped cats (one homozygous and three heterozygous for the mutant allele). Cats affected by ABCB11930_1931del TC would be expected to have a similar phenotype as dogs with the previously characterized ABCB1‐1Δ mutation.  相似文献   

18.
Canine generalised demodicosis (GD) can be difficult to cure, with some dogs requiring life-long treatment. The aim of this pilot study was to evaluate the effectiveness of monthly 10 per cent moxidectin/2·5 per cent imidacloprid spot-on in maintaining long-term (12 months) clinical and parasitological remission in dogs with relapsing GD. Fourteen dogs were included: 10 with juvenile-onset GD (JOGD) and four with adult-onset GD (AOGD). All?dogs had been treated previously and relapsed (1-4 times). Each dog was treated again with either milbemycin oxime 2 mg/kg or ivermectin 400 μg/kg orally once daily, until two consecutive negative skin scrapings at one-month intervals (total 4-7 months of treatment). After treatment discontinuation, 10 per cent moxidectin/2·5 per cent imidacloprid spot-on was applied monthly for 12 months. Dogs were rechecked after 1, 2, 3, 6 and 12 months, and multiple skin scrapings were taken. Twelve dogs completed the study and were clinically normal and parasitologically negative at each recheck (four dogs with AOGD and eight with JOGD). One dog died suddenly for unrelated reasons, and one dog relapsed. Results of this pilot study suggest that monthly application of 10 per cent moxidectin/2·5 per cent imidacloprid spot-on may be effective as maintenance therapy in relapsing cases of GD.  相似文献   

19.
MDR1 (ABCB1) P-glycoprotein exerts a protective function in the blood–brain barrier thereby limiting the entry of many drugs and other xenobiotics to the central nervous system. A nonsense mutation has been described for Collies and related dog breeds which abolishes this function and is associated with increased susceptibility to neurotoxic side effects of several drugs including ivermectin, moxidectin and loperamide. In order to evaluate the occurrence and frequency of this nt230 (del4) MDR1 mutation in Germany, we screened 1500 dogs. Frequency of the homozygous mutated genotype was highest for Collies (33.0%), followed by Australian Shepherd (6.9%) and Shetland Sheepdog (5.7%). Thirty-seven percent of the Wäller dogs and 12.5% of the Old English Sheepdogs were heterozygous for the mutant MDR1 (−) allele. Considering the predominant role of MDR1 P-glycoprotein in drug disposition and in particular for blood–brain barrier protection, MDR1 genotype-based breeding programs are recommended for improving the safety of drug therapy in these canine breeds.  相似文献   

20.
Abstract

CASE HISTORY: A 5-year-old entire female Huntaway from a sheep and beef farm was one of four dogs that developed clinical signs including hypersalivation, depression, blindness and ataxia after the death of another dog. A 4-year-old female Huntaway farm dog from a second farm was observed to be sitting down more often than usual on the day after being fed part of a calf carcass that had been treated with an abamectin pour-on.

CLINICAL FINDINGS: The first dog was ataxic and depressed but did respond to sound. The second dog presented with an acute onset of blindness, mydriasis, absence of a menace response, hypersalivation, gait abnormalities (e.g. high stepping gait and ataxia), and depression. Other presenting signs included muscle tremors, dehydration and difficulty eating. No abnormalities were detected from routine haematology and biochemistry. Analysis of samples of plasma from both dogs revealed concentrations of abamectin of 0.149 mg/L and 0.260 mg/L for the first and second dogs, respectively. Buccal swabs taken from the first dog for DNA testing for the ABCB1 gene mutation, gave a negative result.

DIAGNOSIS: In addition to the presenting signs which suggested a toxicosis, both dogs had measurable concentrations of abamectin in plasma confirming exposure.

CLINICAL RELEVANCE: Farm dogs exposed to concentrated pour-on products containing abamectin have been poisoned and recover or die. The product labels do not carry any warnings as to the risk of poisoning to dogs. This paper discusses two incidents affecting six farm dogs, but the authors are aware of more toxicoses in farm dogs exposed to abamectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号