首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effects of an increased level of dietary energy (flushing) on plasma concentrations of FSH, LH, insulin, progesterone and estradiol-17 beta and ovulation rate were studied in 16 gilts. Gilts received 5,400 kcal ME/d for one estrous cycle and the first 7 d of a second. On d 8 of the second estrous cycle, gilts received either 5,400 kcal ME/d (control [C], n = 8) or 11,000 kcal ME/d (flushed [F], n = 8) for the remainder of the estrous cycle. Blood was collected daily at 15-min intervals for 6 h from d 8 through estrus. Gilts were examined by laparotomy 6 d after estrus. Ovulation rate was greater (P less than .05) in F than C gilts (16.0 vs 9.4). Mean daily concentrations of FSH were greater (P less than .05) in F gilts at 5 d, 4 d and 3 d prior to estrus compared with C females. In both C and F gilts, FSH decreased (P less than .05) prior to estrus. Mean daily concentrations of LH and LH pulse amplitude were not different (P greater than .05) between treatments. Mean number of LH pulses/6 h at 4 d, 3 d and 2 d prior to estrus were greater (P less than .05) in F than in C gilts. In both treatments, LH pulse amplitude decreased (P less than .05) and pulse frequency increased (P less than .07) prior to estrus. Mean plasma concentrations of insulin tended to be higher (P less than .07) in F than in C females during the 7-d period before estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

3.
We previously reported that ovulation rate, but not pregnancy rate or litter size at d 30 after mating, was enhanced by treatment with P.G. 600 (400 IU of PMSG and 200 IU of hCG, Intervet America, Inc., Millsboro, DE) in gilts fed the orally active progestin, altrenogest (Matrix, Intervet America, Inc.) to synchronize estrus. We hypothesized that in addition to increasing ovulation rate, P.G. 600 may have altered the timing of ovulation. Therefore, mating gilts 12 and 24 h after first detection of estrus, as is common in the swine industry, may not have been the optimal breeding regimen, and as a consequence, pregnancy rate and litter size were not altered. The objective of the present study was to determine the effect of P.G. 600 on the timing of ovulation in gilts treated with altrenogest. Randomly cycling, crossbred gilts (5.5 mo old, 117 kg BW, and 14.7 mm of backfat) were fed a diet containing altrenogest (15 mg/d) for 18 d. Twenty-four hours after altrenogest withdrawal, gilts received i.m. injections of P.G. 600 (n = 25) or saline (n = 25). Gilts were checked for estrus at 8-h intervals. After first detection of estrus, transrectal ultrasonography was performed at 8-h intervals to determine the time of ovulation. Gilts were killed 9 to 11 d after the onset of estrus to determine ovulation rate. All gilts displayed estrus by 7 d after treatment with P.G. 600 or saline. Compared with saline, P.G. 600 increased (P = 0.07) ovulation rate (14.8 vs. 17.5, respectively; SE = 1.1). The intervals from injection to estrus (110.9 vs. 98.4; SE = 2.7 h; P < 0.01) and injection to ovulation (141.9 vs. 128.6; SE = 3.2 h; P < 0.01) were greater in gilts treated with saline than in gilts treated with P.G. 600. Duration of estrus (54.4 vs. 53.7; SE = 2.5 h), the estrus-to-ovulation interval (30.2 vs. 31.7; SE = 2.2 h), and the time of ovulation as a percentage of estrus duration (55.8 vs. 57.5; SE = 3.0%) did not differ for the P.G. 600 and saline-injected gilts, respectively. In summary, P.G. 600 advanced the onset of estrus and ovulation following termination of altrenogest treatment and increased ovulation rate; however, treatment of gilts with P.G. 600 had no effect on the timing of ovulation relative to the onset of estrus.  相似文献   

4.
Influences of estrous synchronization with altrenogest and flushing on reproductive traits in gilts were evaluated in three experiments on two farms. Crossbred gilts were fed altrenogest or altrenogest and an additional 1.55 kg ground sorghum grain for at least 10 d before breeding (flushing), or served as controls. Additional grain for the flushing treatment was provided to gilts from the eighth day of altrenogest treatment until they were detected in estrus. The combination of altrenogest and flushing (on Farm A) increased (P less than .05) litter size when compared with gilts treated only with altrenogest and controls that received neither altrenogest nor flushing. This response was entirely among gilts inseminated at their pubertal estrus. For pubertal gilts fed altrenogest and the flushing treatment, litter traits were similar to other treated or control gilts inseminated at a postpubertal estrus. No treatment effects on litter size were detected for gilts inseminated at a postpubertal estrus. Gilts on Farm B responded differently, with larger litter sizes (P = .08) for those treated with altrenogest and flushing plus altrenogest than for control gilts. Reasons for farm differences might be unidentified genetic or management factors or different seasons of the year when gilts were treated on Farm B (summer) vs Farm A (fall, winter and spring). Our results indicate a marked potential for increasing litter size in gilts mated at their pubertal estrus because their unstimulated ovulation rate (no altrenogest or flushing) did not challenge adequately the biological capacity of their uteri.  相似文献   

5.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

6.
The generic GnRH agonist, Fertilan (goserelin), was tested for the ability to induce an LH surge and ovulation in estrus-synchronized gilts. Three experiments were performed to 1) examine the effect of various doses of Fertilan on secretion of LH in barrows, to select doses to investigate in gilts (Exp. 1); 2) determine doses of Fertilan that would induce a preovulatory-like rise of LH in gilts (Exp. 2); and 3) determine the time of ovulation after Fertilan treatment (Exp. 3). In Exp. 1, 10 barrows were injected on d 1, 4, 7, 10, and 13 with 10, 20, or 40 microg of Fertilan; 50 microg of Gonavet (depherelin; GnRH control) or saline (negative control); and sequential blood samples were collected for 480 min. There was a dose-dependent stimulation (P < 0.05) of LH release. Maximal plasma concentrations of LH (LH(MAX)) were 2.1 +/- 0.2, 4.1 +/- 0.3, 2.6 +/- 0.4, and 3.4 +/- 0.3 ng/mL after 10, 20, and 40 microg of Fertilan and 50 microg of Gonavet, respectively, and duration of release was 78 +/- 9, 177 +/- 12, 138 +/- 7, and 180 +/- 11 min, respectively. Fertilan doses of 10 and 20 microg were deemed to be the most suitable for testing in gilts. In Exp. 2, 12 gilts received (after estrus synchronization with Regumate and eCG) injections of 10 or 20 microg of Fertilan or 50 microg of Gonavet 80 h after eCG to stimulate a preovulatory-like LH surge and ovulation. An LH surge was induced in 3 of the 4 gilts in both of the Fertilan groups and in all of the Gonavet-treated gilts. Characteristics of induced release of LH did not differ among groups: LH(MAX), 5.0 +/- 0.9 vs. 4.6 +/- 1.8 vs. 6.6 +/- 1.1 ng/mL; duration, 11.7 +/- 2.0 vs. 12.3 +/- 2.2 vs. 14.3 +/- 0.5 h; interval from GnRH injection to LH(MAX), 4.0 +/- 2.0 vs. 6.7 +/- 1.3 vs. 5.8 +/- 1.6 h. In Exp. 3, estrus-synchronized gilts were injected with 20 microg of Fertilan (n = 8) or 50 microg of Gonavet (n = 4), and the time of ovulation was determined by repeated endoscopic examination. Time of ovulation ranged from 34 to 42 h postGnRH; however, ovulation occurred earlier in the Gonavet compared with the other groups (P < 0.05). Results of these experiments indicate that 1) barrows are an appropriate model for determining GnRH doses that can be effective in inducing a preovulatory-like LH surge in females; 2) the generic GnRH agonist Fertilan, at doses of 10 to 20 microg, can stimulate an LH surge in gilts, with subsequent ovulation; and 3) Fertilan at doses of 10 and 20 microg should be examined further for use in fixed-time insemination protocols.  相似文献   

7.
Hormones within the somatotropin cascade influence several physiological traits, including growth and reproduction. Active immunization against growth hormone-releasing factor (GRFi) initiated at 3 or 6 mo of age decreased weight gain, increased deposition of fat, and delayed puberty in heifers. Two experiments were conducted to investigate the effects of GRFi on puberty and subsequent ovulation rate in gilts. Crossbred gilts were actively immunized against GRF-(1-29)-(Gly)2-Cys-NH2 conjugated to human serum albumin (GRFi) or against human serum albumin alone (HSAi). In Exp. 1, gilts were immunized against GRF (n = 12) or HSA (n = 12) at 92 +/- 1 d of age. At 191 d of age, antibody titers against GRF were greater (P < .05) in GRFi (55.5 +/- 1.3%) than in HSAi (.4 +/- 2%) gilts. The GRFi decreased (P < .05) BW (86 +/- 3 vs 104 +/- 3 kg) by 181 d of age and increased (P < .05) backfat depth (15.7 +/- .4 vs 14.8 +/- .4 mm) by 130 d of age. At 181 d of age, GRFi reduced the frequency of ST release (1.0 +/- .5 vs 5.0 +/- .5, peaks/24 h; P < .0001) and decreased (P < .01) ST (1.1 +/- .06 vs 1.7 +/- .06 ng/mL), IGF-I (29 +/- 2 vs 107 +/- 2 ng/mL), and insulin concentrations (3.5 +/- .2 vs 6.3 +/- .2 ng/mL). The GRFi decreased (P < .05) feed conversion efficiency but did not alter age at puberty (GRFi = 199 +/- 5 d vs HSAi = 202 +/- 5 d) or ovulation rate after second estrus (GRFi = 10.7 +/- .4 vs HSAi = 11.8 +/- .5). In Exp. 2, gilts were immunized against GRF (n = 35) or HSA (n = 35) at 35 +/- 1 d of age. The GRFi at 35 d of age did not alter the number of surface follicles or uterine weight between 93 and 102 d of age, but GRFi decreased (P < .05) ovarian weight (.41 +/- .08 vs 1.58 +/- .4 g) and uterine length (17.2 +/- 1.1 vs 25.3 +/- 2.3 cm). Immunization against GRF reduced (P < .05) serum IGF-I (GRFi = 50 +/- 4 vs HSAi = 137 +/- 4 ng/mL) and BW (GRFi = 71 +/- 3 vs HSAi = 105 +/- 3 kg) and increased (P < .05) backfat depth (GRFi = .38 +/- .03 vs HSAi = .25 +/- .02 mm/kg). Age at puberty was similar in GRFi and HSAi gilts, but ovulation rate was lower (P < .05) after third estrus in GRFi (11.3 +/- .8) than in HSAi (13.8 +/- .8) gilts. Thus, GRFi at 92 or 35 d of age decreased serum ST, IGF-I, and BW in prepubertal gilts without altering age of puberty. However, GRFi at 35 d of age, but not 92 d of age, decreased ovulation rate. These results indicate that alterations in the somatotropic axis at 1 mo of age can influence reproductive development in pubertal gilts.  相似文献   

8.
The effect of adrenal function and flumethasone (FM, a synthetic glucocorticoid) on induction of puberty in crossbred gilts raised in confinement was examined in two experiments. In Exp. 1, gilts were adrenalectomized (Adx) or subjected to sham adrenalectomy (Sham) between 140 and 160 d of age. Twenty days later indwelling jugular catheters were implanted in Adx, Sham and another group of intact gilts designated as Controls, and the gilts were moved from confinement to outdoor pens and checked daily for estrus with a mature boar. Fewer (P less than .05) Adx (1/11) than Sham (9/14) gilts showed estrus and ovulated by 205 d of age. Response of Control gilts (6/14) was not different from the other groups. Although Adx gilts received 40 mg cortisone acetate and 10 mg deoxycorticosterone acetate daily throughout the experiment, mean plasma glucocorticoids were lower (P less than .05) in Adx (24 +/- 4.7 ng/ml) than in either Sham (47 +/- 8.1 ng/ml) or Control (44 +/- 6.1 ng/ml) gilts. Experiment 2 was conducted to determine whether FM given to Adx gilts immediately after surgery could have inhibited estrus and ovulation. Intact gilts received a total of 27.5 (FM1) or 17.5 (FM2) mg FM over 4 d between 150 and 160 d of age before relocation and boar exposure 20 d later. Control gilts received no injections. Nine of 13 FM-treated but none of the Control gilts showed estrus. It is concluded from these results that the adrenal glands may facilitate the onset of puberty in gilts through increases in glucocorticoid production, but that this is not required for puberty to occur.  相似文献   

9.
An experiment was conducted to evaluate the effect of exogenous gonadotropin releasing hormone (GnRH) on ovulation and embryonic survival in pubertal gilts. Gilts were assigned in replicates to a control (n = 10) and treatment (n = 10) group. Treatment consisted of an iv injection of 200 micrograms of GnRH immediately after initial mating on the first day of detected estrus. Control gilts were similarly injected with physiological saline. Blood samples were collected from the anterior vena cava immediately prior to injection, thereafter at 15-min intervals for 90 min, and subsequently, before slaughter on d 30 of gestation. Serum samples were analyzed for luteinizing hormone (LH) and progesterone by radioimmunoassay. Treatment with GnRH increased the quantity of LH released (P less than .05), with highest serum concentrations (ng/ml, means +/- SE) of gonadotropin in treated gilts (17.3 +/- 3.5) occurring at 75 min post-injection. In control gilts, serum concentrations of LH were not affected by injection of saline. Mean number of ovulations in treated gilts was also greater (P less than .05) than that of control animals (14.5 +/- .7 vs 12.1 +/- .6). However, treatment with GnRH did not enhance the number of attached conceptuses (normal and degenerating) present (treated, 10.9 +/- .9 vs control, 10.5 +/- .7) nor the percentage of viable fetuses (treated, 74.7 +/- 6.9 vs control, 83.5 +/- 5.0%) on d 30 of gestation. Although GnRH increased ovulation rate, mean weight of corpora lutea of treated and control gilts did not differ (402.8 +/- 16.3 vs 389.5 +/- 11.3 mg, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Boar exposure has been used for estrus induction of prepubertal gilts, but has limited effect on estrus synchronization within 7 d of introduction. In contrast, PG600 (400 IU of PMSG and 200 IU of hCG; Intervet, Millsboro, DE) is effective for induction of synchronized estrus, but the response is often variable. It is unknown whether boar exposure before PG600 administration might improve the efficiency of estrus induction of prepubertal gilts. In Exp. 1, physical or fence-line boar contact for 19 d was evaluated for inducing puberty in gilts before administration of i.m. PG600. Exp. 2 investigated whether 4-d boar exposure and gilt age influenced response to PG600. In Exp. 1, 150-d-old prepubertal gilts were randomly allotted to receive fence-line (n = 27, FBE) or physical (n = 29, PBE) boar exposure. Gilts were provided exposure to a mature boar for 30 min daily. All gilts received PG600 at 169 d of age. Estrous detection continued for 20 d after injection. In Exp. 2, prepubertal gilts were allotted by age group (160 or 180 d) to receive no boar exposure (NBE) or 4 d of fence-line boar exposure (BE) for 30 min daily before receiving PG600 either i.m. or s.c. Following PG600 administration, detection for estrus occurred twice-daily using fence-line boar exposure for 7 d. Results of Exp. 1 indicated no differences between FBE and PBE on estrus (77%), age at puberty (170 d), interval from PG600 to estrus (4 d), gilts ovulating (67%), or ovulation rate (12 corpora lutea, CL). Results from Exp. 2 indicated no effect of age group on estrus (55%) and days from PG600 to estrus (4 d). A greater (P < 0.05) proportion of BE gilts expressed estrus (65 vs. 47%), had a shorter (P < 0.05) interval from PG600 to estrus (3.6 vs. 4.3 d), and had decreased (P < 0.05) age at estrus (174 vs. 189 d) compared with NBE. Ovulation rate was greater (P < 0.05) in the BE group for the 180-d-old gilts (12.7 vs. 11.9 CL) compared with the NBE group. However, age group had no effect on ovulation (77%) or ovulation rate (12 CL). Collectively, these results indicate that physical boar contact may not be necessary when used in conjunction with PG600 to induce early puberty. The administration of PG600 to 180-d-old gilts in conjunction with 4 d prior fence-line boar exposure may improve induction of estrus, ovulation, and decrease age at puberty.  相似文献   

11.
A replicated trial was conducted with suckled Angus and Polled Hereford cows (110 d postcalving) to determine metabolic and endocrine responses to an energy-restricted diet after cows had re-established postpartum estrous cyclicity. Cows were individually fed 26.5 Mcal ME (H) or 15.2 Mcal ME (L) for a 30-d preliminary period and fitted with an indwelling jugular cannula at synchronized estrus. Average daily weight change during the estrous cycle was .60 +/- .25 and -1.37 +/- .30 kg/d for H and L, respectively (P less than .05). Blood concentrations of cortisol, progesterone and LH during the estrous cycle were not affected by diet, nor did diet affect frequency or amplitude of LH pulses (P greater than .05). No dietary differences were observed for daily concentrations of total protein, glucose, nonesterified fatty acids or acetate. Mean blood concentrations of propionate and butyrate were not different between diets; however, L cows had lower concentrations of propionate and butyrate on d 11 of the cycle (P less than .05). Cows fed L had higher concentrations of blood urea nitrogen (P less than .05), but they had lower concentrations of cholesterol (P less than .05) on d 4, 11, 18 and subsequent estrus (E). Insulin was not different on d 4 and 11; however, cows fed L had lower insulin concentrations on d 18 and d E (P less than .05). Dietary energy restriction in these cyclic cows caused no change in endocrine responses. Of metabolic responses measured, only blood urea nitrogen, cholesterol and insulin showed consistent changes.  相似文献   

12.
Two experiments were conducted to examine responses of gilts to treatment with and withdrawal of exogenous porcine somatotropin (PST). In Exp. 1, 36 prepubertal gilts (79.7 +/- .9 kg; 159.1 +/- .7 d) were allotted randomly to receive daily either 0 micrograms PST (C) or 70 micrograms PST/kg initial BW for either 21 (PST-3) or 42 d (PST-6). Gilts were examined for estrus daily by a mature boar starting on d 22 and continuing for up to 50 d. Gilts that expressed estrus were mated and removed from treatment. PST-treated gilts had higher ADG (P less than .01) and lower feed/gain (P less than .02) than C gilts. Following initiation of boar exposure, C gilts (mean interval to estrus = 2.0 d) exhibited estrus earlier than PST-3 (24.8 d) and PST-6 (24.0 d) gilts (P less than .07); however, only two C gilts were observed in estrus compared with six PST-3 and six PST-6 gilts. In Exp. 2, 40 prepubertal gilts (72.6 +/- 1.0 kg; 141.1 +/- .7 d) were allotted randomly to receive daily either 0 mg PST (C) or 5 mg PST for 30 d. On d 31, half the gilts were comingled with unfamiliar penmates and examined for estrus daily by a mature boar for up to 45 d. Estrual gilts were removed from treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Two experiments were conducted to determine whether oral administration of melatonin alters the onset of puberty in gilts during naturally increasing or decreasing daylength. In Exp. 1, 20 crossbred prepubertal gilts weighing 77.5 +/- .5 kg at 171.8 +/- 1.0 d of age were assigned randomly to receive either a daily oral dose of 3 mg of melatonin (MEL) or ethanol vehicle (ETH) at 1530 from August 31 to December 1, 1987 (decreasing daylength). Gilts were exposed to mature boars for 20 min thrice weekly and blood samples were collected twice weekly. Serum concentrations of progesterone were used to establish age at puberty and length of estrous cycle. In Exp. 2, 20 crossbred prepubertal gilts weighing 67.7 +/- .7 kg at 143.8 +/- 1.1 d of age received either MEL or ETH treatment from February 1 to May 15, 1988 (increasing daylength). Age of puberty was less in gilts that received MEL than in gilts that received ETH in both Exp. 1 (198 +/- 3 vs 228 +/- 7 d; P less than .01) and Exp. 2 (183.8 +/- 2.7 d vs 194.3 +/- 3.3 d; P less than .05). Gilts that received MEL reached puberty at a lighter weight than gilts that received ETH in Exp. 1 (95.6 +/- 2.1 vs 112.4 +/- 3.9 kg; P less than .01) and Exp. 2 (88.1 +/- 1.5 vs 96.0 +/- 1.8 kg; P less than .01). Serum concentrations of LH and FSH, length of estrous cycles, and percentage of muscle of carcasses were similar between MEL and ETH gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This study was designed to determine whether an anti-estrogen can block the negative effect of estrogens on luteinizing hormone (LH) release and therefore decrease the postpartum interval in suckled beef cows. In Exp. I, eight suckled postpartum beef cows were randomly assigned to treatment and control groups. Treatment cows received 1 g/d clomiphene citrate (im) from d 21 to 28 postpartum, while control cows were injected with saline. On d 28 postpartum, there was no difference (P greater than .05) in mean total and basal LH concentrations or LH pulse frequency between treatment and control cows. All control cows exhibited estrus on d 52 +/- 3; treatment cows exhibited estrus on d 134 +/- 12 (P less than .05). In Exp. II, 17 suckled cows were randomly assigned to three treatment groups: 1) control group (n = 6) receiving one empty implant, 2) 10-cm enclomiphene implant group (n = 5) and 3) 30-cm enclomiphene implant group (n = 6). The silastic implants were placed sc on d 20 and removed on d 29 postpartum. Mean total LH concentrations during d 24 to 29 postpartum in the 30-cm enclomiphene implant group were higher than the 10-cm implant (P less than .05) and control group (P less than .05). The postpartum period in the 30-cm enclomiphene group (45 +/- 6 d) was shorter than the 10-cm implant (94 +/- 24 d) and control (96 +/- 20 d) groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Our objective was to determine whether priming with the progestogen norgestomet for 9 d would enhance estrual and ovulatory responses of prepubertal gilts to PG600 (400 IU eCG + 200 IU hCG). Gilts (140 to 190 d old) were assigned by litter, age, and weight to one of three treatments: 1) 9 d of norgestomet implant with an injection of PG600 after implant removal on d 9 (N+PG; n = 43); 2) no implant and an injection of PG600 on d 9 (PG; n = 36); or 3) neither implant nor PG600 (control; n = 29). Beginning on d 0, gilts were exposed once daily to a boar and checked until estrus was observed or until d 45 after the start of the experiment. Ovaries were examined for number of corpora lutea (CL) after estrus or at 45 d. Greater proportions of N+PG (63%, P < .05) and PG (69%, P < .01) gilts expressed estrus than did controls (34%), but proportions did not differ between N+PG and PG (P > .10). Among gilts in estrus following treatment with N+PG or PG, 100% showed estrus within 6 d after PG600 injection. For gilts that expressed estrus within 45 d, the average age at estrus was reduced (P < .05) by PG to 172 +/- 2 d compared with 182 +/- 4 d for controls. Average age at estrus did not differ (P > . 10) between PG and N+PG (177 +/- 2 d). Greater proportions of N+PG (82%; P < .001) and PG (65%; P < .001) gilts ovulated than controls (13%), but proportions did not differ between N+PG and PG (P > .10). The number of CL (20 +/- 2) was not affected by treatment and ranged from 2 to 71. There was no increase in ovarian cysts in response to treatment. Results indicated that norgestomet before PG600 did not enhance estrus expression or ovulation compared with PG600 alone, but use of PG600 increased the proportions of gilts that expressed estrus and ovulated compared with controls.  相似文献   

16.
This study investigated the responsiveness of the pituitary-ovarian axis of prepubertal gilts to hourly injections (i.v.) with GnRH. Six gilts each at 70, 100, 150, and 190 d of age were assigned either to treatment with GnRH or saline. Treatments were given until gilts showed estrus or for 7 d, whichever came first. Hourly pulsing with GnRH resulted in gradually increasing concentrations of estradiol-17 beta (E2), a preovulatory surge of LH, and subsequently increased progesterone (P4) concentrations. The increase in serum P4 was preceded by ovulation and corpora lutea (CL) formation in two gilts 70 d of age and all older gilts. The interval (h) from start of GnRH treatment to peak E2 (88 +/- 3), peak LH (103 +/- 3), and concentrations of P4 greater than or equal to 1 ng/mL (144 +/- 4) did not differ (P greater than .50) for 18 gilts between 100 and 190 d of age. In two ovulating, 70-d-old gilts, the interval from onset of GnRH treatment to peak E2 (171 +/- 6), peak LH (186 +/- 0), and P4 greater than or equal to 1 ng/mL (216 +/- 4) was lengthened (P less than .001). Peak concentrations of E2 (pg/mL) were higher (P less than .01) at 190 d (48 +/- 2) and 150 d (49 +/- 2) than at younger ages and lower (P less than .01) in gilts 70 d of age (31 +/- 1) than in gilts 100 d of age (41 +/- 2). Peak LH (nanograms/milliliter) was higher (P less than .01) in gilts 100 d of age (12.7 +/- 6) than in older gilts. Concentrations of P4 were similar (P greater than .20) for all ovulating gilts. The number of CL (12.7 +/- .7) did not differ (P greater than .20) for 18 gilts 100 d of age or older but was higher (P less than .01) than that (4.5 +/- 1.1) for two gilts 70 d of age. Corresponding endocrine responses or ovulations were not observed in four 70-d-old gilts treated with GnRH or in gilts given saline. These findings indicate that the functional integration of the pituitary-ovarian axis is completed between 70 and 100 d of age. Hourly treatment with GnRH is an adequate stimulus to induce ovulation in prepubertal gilts as early as 70 d of age. Also, the number of follicles reaching ovulatory competency was similar (P greater than .20) in gilts between 100 and 190 d of age, when GnRH was given on a BW basis.  相似文献   

17.
The purpose of this experiment was to determine the ovulation rate after treatment with human chorionic gonadotropin (hCG) in two groups of gilts characterized by different ovarian morphology: grape-type (GT; n = 11) and honeycomb-type (HT; n = 7). At 170 d of age (d 0), gilts were examined by laparoscopy and ovarian type was determined by the distribution of macroscopic follicles present on the ovarian surface. Five to ten minutes after surgery, each gilt received a single injection (i.m.) of 750 IU of hCG. At d 0, GT ovaries had a greater number of large follicles (greater than or equal to 6 mm) than HT ovaries (10.0 +/- .5 vs 2.6 +/- .3; P less than .05), whereas HT ovaries had more small follicles (1 to 3 mm; HT: 42.3 +/- .8 vs GT: 26.7 +/- .9; P less than .05) and total follicles (HT: 59.4 +/- 2.3 vs GT: 52.2 +/- 1.5; P less than .05), although numbers of medium follicles (4 to 5 mm) were similar (GT: 15.6 +/- .8 vs HT: 14.6 +/- 1.7; P greater than .10). Number of induced corpora lutea (CL) per ovary was greater (P less than .05) in gilts with GT ovaries (10.59 +/- 2.9 CL) than in gilts with HT ovaries (5.21 +/- .66 CL). Total weight of luteal tissue (LT) per ovary and serum progesterone concentrations 8 d after induction of ovulation were greater in GT gilts than in HT gilts (GT: 6.37 +/- 1.09 g vs HT: 3.31 +/- .49 g for LT, P less than .05; GT: 21.08 +/- 4.76 ng/ml vs HT: 13.40 +/- 2.05 ng/ml for progesterone, P less than .07).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Three experiments assessed the onset of estrus and ovulation rate in gilts treated with gonadotropins after the withdrawal of an orally active progestin. In Exp. 1, all cycling gilts received the progestin (Regu-mate; Intervet America Inc., Millsboro, DE) at a rate of 15 mg/d for 18 d. Twenty-four hours after the last feeding of Regu-mate, 32 gilts received an i.m. injection of 400 I.U. PMSG and 200 I.U. hCG (P.G. 600, Intervet America, Inc.), and 32 gilts received an i.m. injection of deionized water. The percentage of gilts displaying estrus < or = 7 d (P = 0.64) and the injection-to-estrus interval (P = 0.37) were similar for P.G. 600-treated gilts (93.8% and 4.1 +/- 0.1 d) and controls (90.6% and 4.3 +/- 0.1 d). Ovulation rate was greater (P < 0.01) in P.G. 600-treated gilts (28.8 +/- 1.1) compared with controls (17.4 +/- 1.1). In Exp. 2, 58 cycling gilts received Regu-mate (15 mg/d) for 18 d. Twenty-four hours after Regu-mate withdrawal, gilts received i.m. P.G. 600 or water (n = 29/treatment). Gilts were bred via AI 12 and 24 h after first detection of estrus. The percentage of gilts displaying estrus < or = 7 d (P = 0.45) and the injection-to-estrus interval (P = 0.27) were similar for P.G. 600-treated gilts (82.7% and 4.0 +/- 0.1 d) and controls (89.7% and 4.2 +/- 0.1 d). Ovulation rate was greater (P < 0.01) in P.G. 600-treated gilts (26.2 +/- 1.8) compared with controls (18.1 +/- 1.7). Pregnancy rate (P = 0.71) and the number of live embryos at d 30 postmating (P = 0.40) were similar for P.G. 600-treated gilts (91.7% and 15.6 +/- 1.2) and controls (88.5% and 14.1 +/- 1.2). In Exp. 3, prepubertal gilts (142.6 +/- 0.7 d of age) received Regumate (15 mg/d) (n = 20) or a control diet not including Regu-mate (n = 20) for 18 d. Twenty-four hours after Regu-mate withdrawal, all gilts received i.m. P.G. 600. The percentage of gilts displaying estrus < or = 7 d (P = 0.49) and the P.G. 600-to-estrus interval (P = 0.69) were similar for Regu-mate-fed gilts (95% and 4.3 +/- 0.2 d) and controls (88.9% and 4.2 +/- 0.2 d). Ovulation rate was similar (P = 0.38) for Regu-mate fed gilts (16.6 +/-1.6) and controls (14.4 +/- 1.8). In cycling gilts, administration of P.G. 600 after withdrawal of Regu-mate increased ovulation rate, but not litter size at d 30 postmating. There was no beneficial effect of Regu-mate pretreatment on the response to P.G. 600 in prepubertal gilts.  相似文献   

19.
To determine whether recombinant porcine somatotropin (rpST) alters reproduction, 40 crossbred gilts weighing 59.1 +/- .5 kg at 125 +/- 1 d of age were assigned randomly to an experiment arranged as a 2 x 2 factorial. Eight gilts were given daily injections of diluent until they reached 104 kg BW (DW), and eight received diluent injections until puberty (DP). Twelve gilts were given rpST (4 mg/d) until 104 kg BW (PW) and 12 were given rpST injections until puberty (PP). All gilts were individually fed on an ad libitum basis an 18% CP corn-soybean meal diet (1.2% lysine and 3.1 Mcal/kg of ME). Beginning at 5 mo of age, gilts were exposed 20 min daily to mature boars. Serum concentrations of progesterone were measured weekly from 5 to 8 mo of age to verify age of puberty. Gilts observed in pubertal estrus were mated to two different boars 10 h apart. At 47 +/- 1 d of gestation, gilts were slaughtered to assess fetal development. After 60 d of treatment, serum LH and FSH profiles were determined in blood samples drawn at 20-min intervals for 4 h from eight diluent- and eight rpST-treated gilts fitted with indwelling jugular catheters. By 28 d, feed intake, feed/gain, and blood urea nitrogen were decreased (P less than .005) by rpST. Treatments did not affect (P greater than .05) the proportion of gilts attaining first ovulation (DW = 6/6; DP = 10/10; PW = 7/9; PP = 14/14) or conception rate (DW = 5/6; DP = 7/10; PW = 4/6; PP = 11/12).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Ten trials involving 678 presumed prepuberal gilts (5.5 to 7.5 mo old) were conducted in North Carolina, Illinois and Missouri to evaluate the reproductive performance of gilts given a combination of 400 IU of pregnant mare's serum gonadotropin and 200 IU of human chorionic gonadotropin (P. G. 600). Gilts that were presumed to be prepuberal received P. G. 600 or no treatment (control) on the day of movement from finishing facilities to pens for breeding. Detection of estrus, with the aid of mature boars, was conducted daily for 28 d; gilts in estrus were mated naturally. Treatment with P. G. 600 increased the percentage in estrus within 7 (57.5 vs 40.9%) or 28 d (72.9 vs 59.5%); average interval to estrus was reduced (P less than .05) from 10.4 to 7.5 d. Farrowing rate (78.5 +/- 3.1%), number of pigs born alive (8.6 +/- .2) or dead (.26 +/- .06) and number of pigs weaned (8.0 +/- .2) were unaffected by treatment. Gilts that were heavier than the median for each farm were in heat sooner and more were detected in heat, but no other reproductive traits differed between heavy and light gilts. Overall, the results reveal that P. G. 600 was useful for induction of fertile estrus in prepuberal gilts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号