首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotational grazing is sometimes promoted for grassland bird conservation, but the benefits to wildlife have not been comprehensively documented. We examined effects of twice-over rotational grazing on nesting success of grassland songbirds in southwestern Manitoba, Canada in comparison to season-long grazing. We monitored nesting attempts and collected structural vegetation data in 2011 (during a 1/300 flood event), and 2012 (average water levels), for five species of obligate grassland bird species (n = 110) and one shrub-nesting species (n = 41). Nesting analyses were conducted using logistic exposure models. Nesting success was 2.4 to 4 times lower in twice-over grazed pastures compared with season-long grazed pastures, perhaps because of the increased cattle density during the short grazing periods of the twice-over system. Nests protected by shrubs from grazing activities of cattle did not show this pattern. The grazing system did not have an effect on vegetation structure. This suggests that twice-over rotational grazing does not benefit grassland songbirds in northern mixed-grass prairies, and that caution must be taken before implementing this grazing system in areas intended to promote biodiversity conservation.  相似文献   

2.
Restoration of grasslands dominated by tall fescue (Schedonorus phoenix [Scop.] Holub) to native tallgrass prairie usually requires burning, herbicides, or reseeding. We tested seasonal grazing by livestock in winter, combined with cessation of fertilization, as a restoration tool for modifying the competitive dynamics among herbaceous plants to restore tallgrass prairie communities in southeastern Kansas. In 2004–2005, we compared responses of grassland plants and birds across a chronosequence of pastures that were winter-grazed from 1 yr to 5 yr. We compared winter-grazed pastures to pastures grazed year-round and to local native prairie remnants as starting and endpoints for restoration, respectively. Abundance of native warm-season grasses increased from 2% to 3% mean relative frequency in pastures grazed year-round to 18% to 30% in winter-grazed pastures, and increased with duration of winter-grazing. Native warm-season grasses accounted for 1–6% of total live aboveground biomass in pastures grazed year-round, 1–34% in winter-grazed pastures, and 31–34% in native prairie remnants. Tall fescue abundance and biomass were similar among grazing treatments, with a trend for tall fescue to be less dominant in winter-grazed pastures. Tall fescue made up 9–40% of total aboveground biomass in year-round grazed pastures and 10–25% in winter-grazed pastures. Grassland birds showed variable responses to winter-grazing. Dickcissels (Spiza americana) and Henslow’s sparrows (Ammodramus henslowii) were more abundant in winter-grazed pastures, whereas eastern meadowlarks (Sturnella magna) and grasshopper sparrows (A. savannarum) had similar abundance in pastures grazed year-round and during winter. Winter-grazing of pastures dominated by tall fescue combined with suspension of nitrogen fertilization could be an effective restoration technique that allows use of prairie rangeland while improving habitat for sensitive grassland birds.  相似文献   

3.
Monoculture and mixed pastures in Florida provide habitat for a variety of resident and migratory bird species. The objectives of this study were to investigate the effects of grazing on vegetation structure and bird species richness and abundance in grazed monoculture and mixed pastures. Study pasture units were subject to four cattle grazing intensities: 0 = nongrazed (control), 15 = low, 20 = medium, or 35 = high animal units (AU) per pasture unit (no cattle, 1.3, 1.0, and 0.6 ha · AU?1, on monoculture pastures and no cattle, 2.1, 1.6, and 0.9 ha · AU?1, on mixed pastures). Monoculture pastures displayed a greater decrease in spatial heterogeneity of the vegetative community in the presence of grazing than mixed pastures. An increase in grazing intensity led to declines in total avian species richness and abundance and species richness within short-distance migrant, neotropical migrant, and permanent resident guilds on monoculture pastures. Declines in total species richness and abundance and neotropical migrant guild species richness and abundance were observed on mixed pastures subject to increasing grazing intensity. However, species richness within short-distance migrant and urban guilds and abundance within the grassland guild increased on this pasture type in the presence of grazing. Loss of spatial heterogeneity typically results in a lack of suitable habitat for birds that occupy the extremes of the vegetation structure gradient. This can lead to a loss of species richness and abundance. For the majority of avian guilds, a low grazing intensity of 1.3 ha · AU?1 and 2.1 ha · AU?1 on monoculture and mixed pasture, respectively, is recommended to maintain abundance. However, these grazing intensities may result in declines in species richness. Ultimately, if a range of avian species are to be supported on monoculture and mixed pastures, spatial heterogeneity of plant structure and composition must be maintained.  相似文献   

4.
Rangelands and hayfields provide a large portion of remaining surrogate habitat for many species of declining grassland birds in North America. We compared late-cut hayfields and continuously grazed pastures at low to moderate cattle densities for providing suitable breeding habitat in eastern Canada for the nationally threatened Bobolink (Dolichonyx oryzivorus). To examine the quality of both habitats, we conducted point counts and monitored 87 nests during the 2015 and 2016 breeding seasons. Bobolink abundance and daily survival rate (DSR) of nests were modeled sequentially by habitat and sex as a function of vegetation structure, prey availability, and agricultural management. Year and habitat were the strongest predictors of abundance. When analyzed separately for pastures and hayfields, vegetation height was most important for female abundance in pastures while pasture size was most important for males. Nests in hayfields had significantly higher daily survival (DSR = 0.98 ± 0.01) than nests in pastures (DSR = 0.94 ± 0.01). Nesting success was highest in hayfields with taller vegetation, while in pastures, no microhabitat variable showed a clear relationship with DSR. Within pastures, cattle stocking densities of ≤ 1 animal units (AU) · ha? 1 were not related to DSR. This study provides evidence that late-cut hay is of highest quality, but that small-scale beef farms with low to moderate stocking densities are suitable targets for conservation efforts of Bobolinks in eastern North America.  相似文献   

5.
We assessed plant interspaces in July 2007 using continuous line intercepts in twice-replicated pastures of northern mixed-grass prairie with contrasting grazing treatments: 1) long-term (25 yr) heavily grazed, dominated by the bunchgrass blue grama (Bouteloua gracilis), and 2) ungrazed, dominated by the rhizomatous grass western wheatgrass (Pascopyrum smithii). The number of plant interspaces was 26% higher in pastures heavily grazed, but the amount of soil surface occupied by plant interspaces was 27% greater without grazing. Plant interspaces were larger without grazing (14.8 ±  cm, mean ± 1 SE) than heavily grazed (8.9 ±  cm). Plant interspaces represented 87% and 68% of the total soil surface in the ungrazed and heavily grazed communities, respectively. The percentage of soil surface covered by plant interspaces < 20 cm was higher for the heavily grazed (94%) compared to the ungrazed (79%). Litter cover in the plant interspaces was higher without grazing (80 ± 1%) compared to the heavily grazed (57 ± 3%). Grazing-induced structural changes from a rhizomatous- to a bunchgrass-dominated vegetation community were manifest in the size and distribution of plant interspaces. Ecological consequences for erosion from raindrop impacts in larger plant interspaces in the ungrazed community are likely offset by greater litter cover in these communities; conversely, lower litter cover in heavily grazed pastures may increase erosion potential despite occurrence of smaller plant interspaces and less proportion of the soil surface covered by interspaces. Management practices that increase the cover of litter in plant interspaces should reduce the potential of erosion from water and wind in this semiarid rangeland.  相似文献   

6.
Cow–calf productivity on 2 lightly (25%–30% use) and 2 conservatively grazed pastures (35%–40% use) were evaluated over a 5-year-period (1997 to 2001) in the Chihuahuan Desert of south-central New Mexico. Spring calving Brangus cows were randomly assigned to study pastures in January of each year. Experimental pastures were similar in area (1 098 ± 69 ha, mean ± SE) with similar terrain and distance to water. Use of primary forage species averaged 28.8% ± 4.3% in lightly stocked pastures and 41.8% ± 4.4% on conservatively grazed pastures. Perennial grass standing crop (168.8 ± 86 vs. 173.6 ±  kg·ha-1) and adjusted 205-day calf weaning weights (279.1 ±  vs. 270.7 ±  kg) did not differ among lightly and conservatively grazed pastures. Cow body condition scores in autumn, winter, and spring were similar among grazing levels as were autumn and winter body weights. However, cow body weights tended to be heavier (P < 0.10) in lightly grazed pastures relative to conservatively grazed pastures (524 vs. 502 ± 9.7 kg) in spring. Lightly grazed pastures yielded greater (P < 0.05) kg of calf weaned·ha-1 and calf crop percent than conservatively grazed pastures in 1998 due to destocking of conservatively grazed pastures during that year's drought. Conversely, pregnancy percent tended to be greater (P < 0.1) in conservatively relative to lightly grazed pastures (92.6% vs. 87.7%); however, this advantage is explained by herd management as cows in the conservatively grazed pastures were removed during drought of 1998, avoiding exposure to the drought stress experienced by cows in the lightly grazed pastures. Nonetheless, pregnancy percents from both grazing treatments would be acceptable for most range beef production systems. Results suggest that consistently applying light grazing use of forage is a practical approach for Chihuahuan Desert cow–calf operations to avoid herd liquidation during short term drought.  相似文献   

7.
An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots were grazed to three levels of forage utilization; (low) 3 heifers · ha?1, (moderate) 6 heifers · ha?1, (high) 9 heifers · ha?1, with a 48-h grazing duration. Grazing treatments were applied in August of 2005 and 2006. Cattle diet composition and masticate samples were collected during 20-min grazing bouts using six ruminally cannulated cows in each experimental unit. Relative preference indices indicated a strong preference for grass regardless of treatment and stocking rate. Grass consumption was lower in control pastures (P < 0.05) and tended (P < 0.095) to decrease with increased stocking rates. Shrub use was higher in control pastures displaying a quadratic effect (P < 0.05) due to stocking, whereas shrub use increased with stocking rate across all treatments. Cattle grazing control pastures consumed diets higher in crude protein compared to cattle grazing treated pastures (P < 0.05). In vitro dry matter digestibility values were lower (P < 0.05) in control sites and tended (P = 0.10) to decrease with increased stocking rates. In both control and treated pastures, bites per minute and grams consumed per minute declined (P = 0.003) with increased stocking, indicating foraging efficiency of cattle decreases with increased stocking rates. Our data indicated cattle grazing late season grand fir habitat types have a strong preference for grasses regardless of treatment or stocking rate. However, as stocking rate increased in both control and treated pastures, grass consumption decreased, shrub consumption increased, and foraging efficiency decreased.  相似文献   

8.
Many grassland species coevolved with large herbivores and require habitats along the entire structural gradient created by grazing. Widespread declines of grassland birds, however, have prompted concerns about rangeland management. Conceptually, rest-rotation grazing functions as a conservation strategy to mimic historic disturbance regimes and create pasture-level heterogeneity in the absence of fire, but its utility for improving wildlife habitat has not been directly tested, particularly in the mesic mixed-grass prairie. We evaluated rest-rotation grazing as a conservation management technique compared with more traditional grazing systems, including summer rotation and season-long grazing, and assessed effects of different grazing systems and stocking rates on nest site selection and nest survival of sharp-tailed grouse (Tympanuchus phasianellus), an indicator species for grassland ecosystems. Both nest site selection and nest survival were directly related to vertical nesting cover, which was only weakly related to grazing management variables, including grazing system and stocking rate, at moderate stocking rates (≤ 2 animal unit month [AUM] ha 1). Cattle presence during the nesting period had a positive effect on daily nest survival, potentially through an effect by either the cows or rancher presence on predator behavior. Overall, our results suggest that rest-rotation grazing did not contribute to pasture-level vegetation heterogeneity and that both the selective foraging of cattle and inherent topographic and edaphic variability in our study area may be stronger drivers of heterogeneity at the small spatial scale required by female grouse.  相似文献   

9.
A study was conducted on upland range in the Nebraska Sandhills to determine differences in plant species frequency of occurrence and standing crop at various topographic positions on pastures grazed with short-duration grazing (SDG) and deferred-rotation grazing (DRG). Pastures within each grazing treatment were grazed at comparable stocking rates (SDG = 1.84 animal unit months (AUM) · ha?1; DRG = 1.94 AUM · ha?1) by cow–calf pairs from 1999 to 2005 and cow–calf pairs and spayed heifers from 2006 to 2008. Plant frequency of occurrence data were collected from permanently marked transects prior to, midway through, and at the conclusion of the study (1998, 2003, and 2008, respectively) and standing crop data were collected annually from 2001 to 2008 at four topographic positions (dune top, interdune, north slope, and south slope). Livestock performance data were collected during the last 3 yr of the study (2006 to 2008). Positive change in frequency of occurrence of prairie sandreed (Calamovilfa longifolia [Hook.] Scribn.) was 42% greater on DRG pastures than SDG after 10 yr. Total live standing crop did not differ between DRG and SDG except in 2001 when standing crop was 23% greater on DRG pastures. Standing crop of forbs and sedge was variable between grazing methods on interdune topographic positions depending on year. Average daily gain of spayed heifers (0.84 ±  kg · d?1 SE) did not differ between SDG and DRG. Overall, SDG was not superior to a less intensively managed grazing method (i.e., DRG) in terms of vegetation characteristics and livestock performance.  相似文献   

10.
The ability to adapt to different environments is critical when livestock are moved because of drought or other management considerations. The impact of previous experience on grazing patterns and diet selection of Brangus cows in desert conditions was evaluated. Cows originating from a humid-subtropical environment (Leona, Texas) were brought to the Chihuahuan Desert (naïve) and evaluated against cows that spent their life in the Chihuahuan Desert (native) and cows that were born and raised in the Chihuahuan Desert but were moved to Leona, Texas during the preceding 3 yr (tourist). In addition, native cows with recent experience in desert conditions were compared with naïve cows and tourist cows that had not been in the Chihuahuan Desert for at least 3 yr. All cows were mature and had similar pedigrees (n = 21). Cows from the three groups were tracked in three extensive pastures (> 1 000 ha) for three 8–10-d periods during winter, early summer, and later summer. Cows never grazed in the experimental pastures before the study, but native and tourist cows had grazed adjacent pastures. Fecal near-infrared spectroscopy was used to estimate diet quality. Naïve cows used 335 ha ± 83 standard error (SE) less area (P = 0.06) and were 479 m ± 105 SE closer to water (P = 0.03) than cows born and raised in the Chihuahuan Desert (native and tourist cows pooled) when first evaluated in winter. After pooling all data, native cows were farther (P = 0.06) from water (730 m ± 283 SE) and spent less time at water (10.53% ± 3.93 SE) than cows that did not spend their entire life in the desert (naïve and tourist pooled). During winter and early summer (drought conditions), naïve cows selected diets with lower (P < 0.05) crude protein (CP) than cows born in the desert, but during late summer after abundant precipitation naïve cows selected a diet with higher (P = 0.07) CP. Although Brangus cows are highly adaptable, animals raised in nearby pastures appear to have advantages over naïve animals when grazing Chihuahuan Desert rangeland.  相似文献   

11.
Horse flies can mechanically transmit Besnoitia besnoiti, the agent of bovine besnoitiosis. Although previously limited to enzootic areas, especially the French Pyrenees Mountains, bovine besnoitiosis is now considered a re-emerging disease in western Europe. To improve understanding of the role of horse flies as mechanical vectors, this study investigated their blood-feeding ecology in the eastern French Pyrenees, in two high-altitude summer pastures whose main domestic ungulates were cattle, and in a wildlife park with native fauna. Species-specific PCR assays were conducted to identify the sources of blood meals: wild boar, horse, cattle (or bison), sheep (or mouflon), goat, red deer, roe deer and izard (or Pyrenean chamois). In La Mouline pasture, tabanids (N = 20) fed on red deer (70%) and cattle (30%). In Mantet pasture, tabanids (N = 24) fed on cattle (52%), red deer (20%), wild boar (16%), horse (8%) and sheep (4%). In the wildlife park, Tabanus bromius (N = 32), the most abundant species collected, fed on red deer (85%), bison (9%) and wild boar (6%). Despite relatively high densities in both the pastures and in the wildlife park, small wild ungulates (izard, mouflon and roe deer) were not detected as a source of blood meals. Only two mixed blood meals were identified in two specimens of T. bromius: cattle/horse for the specimen collected in the pastures, and bison/wild boar for the specimen collected in the wildlife park. Our findings showed that tabanids display a level of opportunistic feeding behaviour, in addition to a preference for red deer, the latter being particularly true for Philipomyia aprica, the most abundant species collected in the pastures.  相似文献   

12.
Management practices are often needed to ensure that riparian areas are not heavily grazed by livestock. A study was conducted in Montana during midsummer to evaluate the efficacy of low-stress herding and supplement placement to manage cattle grazing in riparian areas. Three treatments were evaluated in three pastures over a 3-yr period in a Latin-square design (n = 9). Each year, naïve 2-yr-old cows with calves were randomly assigned to the three treatments: 1) free-roaming control, 2) herding from perennial streams to upland target areas, and 3) herding to upland sites with low-moisture block supplements. Stubble heights along the focal stream were higher (P = 0.07) in pastures when cattle were herded (mean ± SE, 23 ± 2 cm) than in controls (15 ± 3 cm). Global positioning system telemetry data showed that herding reduced the time cows spent near (< 100 m) perennial streams (P = 0.01) and increased the use of higher elevations (P = 0.07) compared with controls. Evening visual observations provided some evidence that free-roaming cows (44% ± 19%) were in riparian areas more frequently (P = 0.11) than herded cows (23% ± 6%). Fecal abundance along the focal stream was less (P = 0.07) with herding (61.9 ±  kg · ha−1) than in controls (113.2 ±  kg · ha−1). Forage utilization within 600 m of supplement sites was greater (P = 0.06) when cows were herded to low-moisture blocks (18% ± 6%) compared with controls and herding alone (8% ± 2%). Moving cattle to uplands at midday using low-stress herding is an effective tool to reduce use of riparian areas. Herding cattle to low-moisture blocks can increase grazing of nearby upland forage but may not provide additional reduction in cattle use of riparian areas compared with herding alone.  相似文献   

13.
Historically, the plains bison (Bison bison Linnaeus) was the most numerous and influential grazer on the Great Plains. Today 500 000 bison occupy North America among more than 100 000 000 cattle. In an attempt to restore their historical ecological role, bison are translocated onto landscapes previously manipulated for cattle use through water and fence development. We hypothesized that bison would use these landscapes similarly to cattle, thus maintaining homogenous grazing and reducing the restoration potential of bison at a landscape scale. We quantified differences between bison populations at different locations and spatial scales (American Prairie Reserve, Malta, Montana, USA, and Grasslands National Park, Val Marie, Saskatchewan, Canada, 2010–2011) and bison and cattle at similar locations and spatial scales using behavioral observations, movement analyses, and resource selection functions. Bison and cattle differed in all behaviors (grazing, standing, bedded, moving, other); however, landscape attributes resulted in behavior differences within species. Cattle spent a higher proportion of time grazing (45–49%) than bison (26–28%) and increased time at water. Bison moved at a 50–99% faster rate than cattle, and first passage time movement analyses identified selection of bison foraging patches (11 690 ha) larger than cattle foraging patches (48–615 ha). Similar to cattle, bison avoided most vegetation communities in relation to riparian communities and selected areas closer to water. Cattle selected for high plant biomass, whereas bison selected for intermediate plant biomass. This study has implications when bison and cattle are used to meet prairie restoration objectives. For bison, large landscapes that include variation in topography and vegetation communities are required. Furthermore, limiting manmade water sources may facilitate bison grazing patterns that more closely approximate historical bison use. For livestock, reduced movement and increased time spent grazing encourage grazing practices that increase heterogeneous grazing at a pasture scale.  相似文献   

14.
Large-scale loss and degradation of North American native prairie coupled with sharp declines in grassland bird populations call for a clear understanding of the effects of livestock production on bird habitat selection. Grassland birds typically select breeding habitat based on a suite of structural and community vegetation features shaped by grazing. Rangeland health indices are a tool for assessing grassland structure and community composition that may offer biologists and range managers common language to achieve grassland bird recovery goals. We used point-count surveys, vegetation measures, and indices of rangeland health to examine bird-habitat relationships on native grassland in southwestern Saskatchewan for 10 grassland bird species. We used an information theoretic approach to compare the support of three hypotheses explaining variation in bird abundance as a function of local vegetation characteristics: bird abundance is best explained by 1) vegetation structure, 2) vegetation structure heterogeneity, or 3) plant community. Vegetation structure variables were present in top-ranking models (i.e., models within four Akaike information criterion units of top model) for eight species and solely comprised top-ranking models for Baird’s sparrow (Ammodramus bairdii), chestnut-collared longspur (Calcarius ornatus), horned lark (Eremophila alpestris), McCown’s longspur (Rhynchophanes mccownii), and savannah sparrow (Passerculus sandwichensis). Structural heterogeneity variables were present in top-ranked models for grasshopper sparrow (Ammodramus savannarum), horned lark (Eremophila alpestris), and western meadowlark (Sturnella neglecta). Plant composition variables solely comprised top-ranking models for clay-colored sparrow (Spizella pallida) and were present in top-ranked models for grasshopper sparrow and vesper sparrow (Pooecetes gramineus). Our results indicate that vegetation structure variables, namely litter mass, vegetation volume, and bare ground cover, best explain variation in bird abundance. Although the rangeland health index received little support as a predictor of bird abundance, vegetation structure components of the index could be used to communicate grazing management guidelines that maintain grassland bird habitat.  相似文献   

15.
《Veterinary parasitology》2015,207(3-4):228-240
Fasciolosis caused by Fasciola hepatica is responsible for major production losses in cattle farms. The objectives of this study were to assess the effect of farm management practices on liver fluke prevalence on Irish dairy farms and to document the current control measures against parasitic diseases. In total, 369 dairy farms throughout Ireland were sampled from October to December 2013, each providing a single bulk tank milk (BTM) sample for liver fluke antibody-detection ELISA testing and completing a questionnaire on their farm management. The analysis of samples showed that cows on 78% (n = 288) of dairy farms had been exposed to liver fluke. There was a difference (P < 0.05) between farms where cows were positive or negative for liver fluke antibodies in (a) the total number of adult dairy cows in herds, (b) the number of adult dairy cows contributing to BTM samples, and (c) the size of the total area of grassland, with positive farms having larger numbers in each case. There was no difference (P > 0.05) between positive and negative farms in (a) the grazing of dry cows together with replacement cows, (b) whether or not grazed grassland was mowed for conservation, (c) the type of drinking water provision system, (d) spreading of cattle manure on grassland or (e) for grazing season length (GSL; mean = 262.5 days). Also, there were differences (P < 0.001) between drainage statuses for GSL with farms on good drainage having longer GSL than moderately drained farms. The GSL for dairy cows on farms with good drainage was 11 days longer than for those with moderate drainage (P < 0.001). The percentage of farmers that used an active ingredient during the non-lactating period against liver fluke, gastrointestinal nematodes, lungworm, and rumen fluke was 96%, 85%, 77% and 90%, respectively. Albendazole was the most frequently used active ingredient for treatment against gastrointestinal nematodes (57%), liver fluke (40%) and lungworm (47%), respectively. There was a difference (P < 0.05) in the use of triclabendazole and albendazole between positive and negative farms, with triclabendazole use being more common in positive farms. This study highlighted differences in dairy management practices between Irish farms with dairy herds exposed or not exposed to liver fluke and stressed the need of fine-scale mapping of the disease patterns even at farm level to increase the accuracy of risk models. Also, comprehensive advice and professional support services to farmers on appropriate farm management practices are very important for an effective anthelmintic control strategy.  相似文献   

16.
Half of the world's land base is grazed by domesticated livestock. Because of the important functional role of ants in grasslands, it is important to understand the effect of livestock grazing on ant abundance and diversity. The objectives of this study were to examine the effect of cattle grazing and site productivity on the abundance, species richness, and species diversity of ants in Lac du Bois Grasslands Provincial Park, British Columbia, Canada. We hypothesized that the measured ant variables would be lowest in grazed areas and at low site productivity. Pitfall trapping was conducted at four sites: two at each low and high site productivity levels. At each site an ungrazed (fenced exclosure) and grazed transect was sampled during May, July, and August of 2008. Captured ants were preserved in ethanol and identified. Eight genuses of ants were collected: Tapinoma, Camponotus, Formica, Lasius, Aphaenogaster, Myrmica, Solinopsis, and Temnotharox. The mean number of ants per pitfall was higher at high site productivity sites that were grazed (15.10 ±  SE) compared to high productivity sites ungrazed (3.28 ±  SE); grazing at low productivity reduced numbers of ants from 5.07 (± 0.70 SE) to 2.20 (± 0.39 SE) (F = 21.806; P [ 0.001). Tapinoma sessile and A. occidentalis had the greatest numbers in the pitfall traps. Species richness (F = 23.330, P [ 0.001) and diversity (F = 11.764, P = 0.001) followed a similar trend. Because productivity and cattle grazing affect ant diversity and abundance, and ants impact ecosystem functioning, these factors should be considered in management of grasslands.  相似文献   

17.
The majority of native prairie has been lost throughout North America. Much of the remaining prairie is used for livestock grazing, so conservation of prairie species depends on sustainable grazing practices. Our objective was to evaluate the benefits of twice-over rotational grazing, in comparison with continuous season-long grazing and ungrazed “idle” fields, in conserving prairie songbirds. Northern mixed-grass prairie in southwest Manitoba, Canada is near the northern range limits for many endangered grassland birds, and thus is an important area for evaluating the contribution of twice-over grazing in the conservation of songbirds, including species at risk. In 2008 and 2009, we compared the relative abundances and diversity of grassland birds on 22 twice-over rotation, 15 season-long, and 8 ungrazed sites, using multiple 100-m fixed-radius point-count plots per site. Analyses were conducted using generalized linear mixed models. Although one obligate grassland bird, Savannah sparrows (Passerculus sandwichensis), had significantly higher relative abundances on twice-over than season-long sites in 2009, season-long pastures had higher species richness and diversity of obligate grassland birds in both years. Season-long grazing may actually benefit grassland bird communities by creating spatially heterogeneous but temporally stable areas of high and low livestock use within the pasture, thus increasing diversity of microhabitats. We found little evidence that twice-over grazing contributed to the conservation of grassland songbirds in subhumid northern mixed-grass prairies.  相似文献   

18.
A study was conducted in Brazil to identify factors affecting grazing distribution of yearling Nelore cross heifers and to evaluate the efficacy of placement of a salt–mineral mix away from water to improve uniformity of grazing. Two pastures (25 ha and 42 ha) were evaluated for four 15-d sessions. Mineral mix was placed 590 m to 780 m from water during two sessions and at water for two sessions. Stubble heights were measured at the beginning and end of each session in 1-ha subunits of each pasture. Cattle locations were recorded on day 13 and 14 of each session by horseback observers. Heifers avoided areas with a preponderance of forbs and taller grass (P < 0.001). For the first 15 days of the study cattle avoided subunits farther from water. Thereafter, horizontal distance from water had no affect on grazing use (P > 0.10). Stubble height reduction was more uniform (P < 0.05) when the mineral mix was at water compared to away from water. In contrast, heifers spent less time farther from water when mineral mix was placed at water (P = 0.02) based on visual observations. Strategic placement of a salt–mineral mix away from water does not appear to be a reliable tool to improve cattle grazing distribution in humid tropical pastures from 25 ha to 45 ha in size.  相似文献   

19.
Patch burning (PB) uses frequent, spatially discrete fires throughout a pasture to create variation in the composition and structure of the plant community. The complex vegetation changes incurred from this type of burning regimen in addition to the focal grazing of cattle induced by PB should reduce tick populations by creating less favorable microhabitats. To determine if a reduction in tick populations occurred on PB pastures, three PB-treated pastures and three control pastures were used. PB pastures were divided into six subplots with one burned rotationally each spring and summer. Control pastures and each PB subplot had a burn interval of 3 yr. Pastures were dragged with 1-m2 flannel cloth panels to estimate tick abundance for 4 yr. (2006, 2007, 2009, and 2010). Infestation levels with ticks (i.e., tick burden) and weight for five calves and three cows per pasture were recorded once a month from April to October in 2009, 2010, and 2011. Differences in tick abundance between PB pastures and control pastures were not significant except in 2006 when fewer adult ticks were detected in PB pastures. A total of 13 609 ticks were observed on cattle. Animals on PB pastures had 4 028 (29.6%) ticks whereas 9 581 (70.4%) ticks were on cattle from control pastures. Tick burden was significantly reduced on animals in PB pastures compared to animals in control pastures in 4 out of 6 mo. Significant differences in average daily weight gain of calves in PB and control pastures were not detected. Although differences were not detected in questing tick abundance on pastures, significant reductions of tick burden on cattle in PB-treated pastures indicates that PB can be used to help control ticks in pastures.  相似文献   

20.
Heavily grazed riparian areas are commonly subject to channel incision, a lower water table, and reduced vegetation, resulting in sediment delivery above normal regimes. Riparian and in-channel vegetation functions as a roughness element and dissipates flow energy, maintaining stable channel geometry. Ash Creek, a tributary of the Bad River in western South Dakota contains a high proportion of incised channels, remnants of historically high grazing pressure. Best management practices (BMP), including off-stream watering sources and cross fencing, were implemented throughout the Bad River watershed during an Environmental Protection Agency (EPA) 319 effort to address high sediment loads. We monitored prairie cordgrass (Spartina pectinata Link) establishment within stream channels for 16 yr following BMP implementation. Photos were used to group stream reaches (n=103) subjectively into three classes; absent (estimated <5% cover; n=64), present (estimated 5–40% cover; n=23), and dense (estimated >40% cover; n=16) based on the relative amount of prairie cordgrass during 2010 assessments of ephemeral channels. Reaches containing drainage areas of 0.54 to 692 ha were delineated with the use of 2010 National Agriculture Imagery Program (NAIP) imagery. Normalized difference vegetation index (NDVI) values were extracted from 5 to 39 sample points proportional to reach length using a series of Satellite Pour l’Observation de la Terre (SPOT) satellite imagery. Normalized NDVI (nNDVI) of 2152 sample points were determined from pre- and post-BMP images. Mean nNDVI values for each reach ranged from 0.33 to 1.77. ANOVA revealed significant increase in nNDVI in locations classified as present prairie cordgrass cover following BMP implementation. Establishment of prairie cordgrass following BMP implementation was successfully detected remotely. Riparian vegetation such as prairie cordgrass adds channel roughness that reduces the flow energy responsible for channel degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号