首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generating techniques to enhance the success of blastomere separation is important for bovine economy, because it increases the number of transferable embryos. This study aimed to identify the optimum cryoprotectants for the vitrification of bovine embryos and the separation of blastomeres at different stages. In experiment 1, expanded blastocysts were vitrified in two different vitrification solutions, either (1) ethylene glycol (EG) + propylene glycol (PG) or (2) EG. The survival rate of blastocysts in the EG + PG was higher than that of the EG. In experiment 2, intact two‐cell and eight‐cell stage embryos were vitrified in the same solutions used in experiment 1. The EG + PG produced more dead embryos than the EG (P < 0.05). In the EG, the rate of blastocyst formation was similar for the vitrified two‐ and eight‐cell embryos and the non‐vitrified ywo‐cell embryos. In experiment 3, separated blastomeres of two‐ and eight‐cell embryos were vitrified in EG. There was no difference in the rate of blastocyst formation and total number of cells between the two vitrified groups. In summary, at the blastocyst stage, EG + PG was superior, based on both survival rates and cell numbers; however, at the 2–8 cell stage, the use of EG alone was better than the other groups.  相似文献   

2.
Camel fertility faces many problems, which could be solved by assisted reproductive technologies (ARTs). We designed the experiment to explore the effect of different cryoprotectant concentrations and combinations on viability and maturation rates of vitrified/warmed camel oocytes. We collected ovaries directly after slaughtering from local abattoir and transported them to laboratory in a thermo‐flask containing normal physiological saline. We aspirated the oocytes from follicles, which is 2–8 mm in diameter, washed three times in TCM‐199 and then examined under stereo‐microscope for selection. We selected morphologically normal oocytes with an evenly granulated cytoplasm and a compact cumulus cell layer. We equilibrated morphologically normal oocytes in equilibration solution (ES), which is half concentration of vitrification one. After equilibration, We transported oocytes to vitrification solution using ethylene glycol (EG, 40%), dimethyl sulphoxide (DMSO, 40%) and EG 40% + DMSO 40%. The obtained results revealed that addition of EG 40% + DMSO 40% resulted in the best quality of vitrified/warmed oocytes, which is demonstrated by higher per cent survival rate (90.16%) and maturation rate (58.95%). While DMSO 40% resulted in 62.79% and 29.54%, respectively, EG 40% reported 86.11% and 53.47%, respectively. We could conclude that vitrification of immature camel oocytes by using 40% EG + 40% DMSO is suitable methods to limit drawbacks of vitrification methods, and we need further studies to assess the ability of in vitro‐produced blastocyst to develop in vivo and establish pregnancy after embryo transfer.  相似文献   

3.
The present study evaluated the effect of supplementation of retinol in the vitrification solution on the viability, apoptosis and development-related gene expression in vitrified buffalo preantral follicles. Preantral follicles isolated from cortical slices of ovaries were randomly assigned into three groups: Group1—Control fresh preantral follicles; Group 2—Vitrification treatment (Vitrification solution 1 (VS1) –TCM-199 + 25 mM HEPES + Foetal bovine serum (FBS) 10%, Ethylene glycol (EG): 10%, Dimethyl sulphoxide (DMSO): 10%, Sucrose-0.3 M for 4 min; VS2- TCM-199 + 25 mM HEPES + FBS10%, EG:25%, DMSO: 25%, Sucrose:0.3 M for 45 s); Group3—vitrification treatment +5 μM of Retinol. Preantral follicles were placed in corresponding vitrification medium and plunged into liquid nitrogen (−196°C). After a week, the follicles were thawed and analysed for follicular viability and gene expression. There was no significant difference in the viability rates among the Group 1(Fresh preantral follicles) (91.46 ± 2.39%), Group 2 (89.59 ± 2.46%) and Group 3 (87.19 ± 4.05%). There was a significantly (p < .05) higher mRNA expression of BCL2L1, GDF-9 and BMP-15 in the vitrification + retinol group compared with the control group. There was a significantly (p < .05) higher expression of Caspase-3 and Annexin-5 in the vitrification group and Vitrification + retinol group compared with control group of follicles. It is concluded that the supplementation of 5 μM of Retinol in Vitrification solution was an efficient vitrification procedure for the vitrification of buffalo preantral follicles.  相似文献   

4.
This study was conducted to examine the utility of vitrification for bovine embryos with low‐quality grade, and simple cryoprotectants dilution method for practitioners. In Experiment 1, survival of frozen embryos was compared with that of vitrified embryos using minimum volume cooling (MVC). Then, vitrified embryos were used to confirm the optimum sucrose concentration in Experiment 2. The survival rates of embryos that had been vitrified following diluted cryoprotectants with the one‐step in‐straw method were compared with those of fresh control embryos in Experiment 3. Frozen‐thawed or vitrified‐warmed blastocysts were cultured with TCM‐199 supplemented with 100 μmol/L beta‐mercaptoethanol +5% fetal bovine serum at 38.5°C in an atmosphere of 5% CO2 in air, their survival after 24 hr were compared. The development to term of fair quality in vivo embryos after vitrification was examined in Experiment 4. Results show that survival rates of frozen‐thawed embryos were lower (< .05) than that of vitrified‐warmed ones. When vitrified embryos were warmed in 0.3 mol/L sucrose in straws, their survival rate was 100%. The total cell numbers of vitrified‐warmed embryos were comparable to those of fresh control embryos. The six calves from 13 vitrified embryos were delivered in Experiment 4. These results indicate that MVC vitrification following one‐step cryoprotectants dilution is utilized to preserve low‐quality bovine embryos.  相似文献   

5.
Three experiments were designed to test a solid‐surface vitrification system for bovine in vitro‐produced embryos and to develop a simple method of in‐straw dilution after warming, which can be potentially used for direct transfer in the field. Experiment 1 evaluated embryo survival rates (i.e. re‐expansion and hatching) after vitrification and warming in three different solutions: VS1 (20% ethylene glycol (EG) + 20% propanediol (PROH) + 0.25 m trehalose (Tr)), VS2 (20% EG + 1M Tr) or VS3 (30% EG + 0.75 m Tr). Re‐expansion and hatching rates were higher (p < 0.05) for embryos vitrified in VS3 (72.2 ± 1.9 and 58.2 ± 0.8) than VS1 (64.4 ± 0.9 and 37.2 ± 2.5) or VS2 (68.5 ± 1.5 and 49.6 ± 1.0; p < 0.05). Experiment 2 was designed to compare two methods of vitrification: glass micropipettes or solid surface, using the VS1 or VS3 solutions. No significant differences were detected between the two methods; but re‐expansion and hatching rates were higher (p < 0.05) with VS3 (73.5 ± 3.1 and 47.1 ± 2.1) than VS1 (63.3 ± 3.3 and 39.7 ± 2.8). In experiment 3, embryos were vitrified by solid surface in VS1 or VS3 solutions and cryoprotectants were diluted in‐straw after warming in a TCM 199, 0.25 m sucrose solution or holding media. Survival rates of embryos vitrified in VS3 did not differ between those exposed to 0.25 m sucrose (74.7 ± 1.3 and 57.2 ± 2.2) or holding (77.3 ± 1.4 and 58.0 ± 2.5) medium after warming; however, survival rates of embryos vitrified in VS1 were higher (p < 0.05) in those exposed to 0.25 m sucrose (67.7 ± 2.3 and 47.0 ± 1.7) than holding medium (54.5 ± 1.0 and 27.7 ± 3.1). In conclusion, solid‐surface vitrification using simplified EG‐based solutions and in‐straw dilution with holding media may be a practical alternative for cryopreservation and direct transfer of in vitro‐produced bovine embryos.  相似文献   

6.
The aim of this study was to assess a vitrification protocol for asinine ovarian tissue, to preserve preantral follicles using different cryoprotectant solutions, composed of various concentrations (EG 3 M or 6 M) of dimethyl sulfoxide or ethylene glycol isolate, or as a combination (DMSO 3 M + EG 3 M). Ten pairs of ovaries from Brazilian north‐eastern breed jennies were obtained through videolaparoscopy, and cortical fragments were submitted to a solid‐surface vitrification (SSV) using each cryoprotectant solution. The ovarian tissue was evaluated for follicular morphology and viability, DNA integrity (TUNEL technique) and the presence of nucleolar organizing regions in granulosa cells (AgNOR technique). After thawing, the percentage of normal preantral follicles was significantly reduced in the vitrified ovarian tissue fragments compared to the fresh control (p < 0.05). When comparing treatments, the use of DMSO 3 M (81.7 ± 37.5%), EG 3 M (83.7 ± 27.4%) and the combination of both DMSO 3 M + EG 3 M (81.8 ± 46.8%) allowed a greater percentage of follicular survival in contrast to DMSO 6 M (69.8 ± 16.5%) and EG 6 M (72.3 ± 18.0%; p < 0.05). When vitrified using the DMSO + EG combination, a higher percentage (62.5 ± 29.1%) of viable follicles (trypan blue) was observed in relation to the other vitrification treatments (p < 0.05). The TUNEL technique identified that all treatments tested showed DNA fragmentation in the follicular cells, except in the case of the DMSO 3 M + EG 3 M treatment. When evaluating the presence of NORs, no significant differences were observed in the amount of NORs between the fresh and vitrified groups using DMSO 3 M + EG 3 M (p > 0.05). We concluded that the combination DMSO 3 M + EG was more efficient for the vitrification of ovarian tissue taken from Equus asinus, allowing adequate preservation of PAFs morphology, viability, DNA integrity and cell proliferative capacity.  相似文献   

7.
The aim of this study was to determine the most efficient vitrification protocol for the cryopreservation of day 7 in vitro produced (IVP) porcine blastocysts. The post‐warm survival rate of blastocysts vitrified in control (17% dimethyl sulfoxide + 17% ethylene glycol [EG] + 0.4 mol/L sucrose) and commercial media did not differ, nor did the post‐warm survival rate of blastocysts vitrified in medium containing 1,2‐propandiol in place of EG. However, vitrifying embryos in EG alone decreased the cryosurvival rate (55.6% and 33.6%, respectively, p < .05). Furthermore, the post‐warm survival rates of blastocysts vitrified with either trehalose or sucrose as the non‐penetrating cryoprotectant did not differ. There was also no significant difference in post‐warm survival of blastocysts vitrified in control (38°C) media and room temperature (22°C) media with extended equilibration times, although when blastocysts were vitrified using control media at room temperature, the post‐warm survival rate increased (56.8%, 57.3%, 72.5%, respectively, p < .05). The findings show that most cryoprotectant combinations examined proved equally effective at supporting the post‐warm survival of IVP porcine blastocysts. The improved post‐warm survival rate of blastocysts vitrified using media held at room temperature suggests that the cryoprotectant toxicity exerted in 22°C media was reduced.  相似文献   

8.
This study was designed to evaluate effects of different combinations of cryoprotectants on the ability of vitrified immature buffalo oocytes to undergo in vitro maturation. Straw and open‐pulled straw (OPS) methods for vitrification of oocytes at the germinal vesicle stage also were compared. The immature oocytes were harvested from ovaries of slaughtered animals and were divided into three groups: (i) untreated (control); (ii) exposed to cryoprotectant agents (CPAs); or (iii) cryopreserved by straw and OPS vitrification methods. The vitrification solution (VS) consisted of 6 m ethylene glycol (EG) as the standard, control vitrification treatment, and this was compared with 3 m EG + 3 m dimethyl sulfoxide (DMSO), 3 m EG + 3 m glycerol, and 3 m DMSO + 3 m glycerol. Cryoprotectants were added in two steps, with the first step concentration half that of the second (and final) step concentration. After warming, oocyte samples were matured by standard methods and then fixed and stained for nuclear evaluation. Rates of MII oocytes exposed to CPAs without vitrification were lower (54.3 ± 1.9% in EG, 47.5 ± 3.4% in EG + DMSO, 36.8 ± 1.2% in EG + glycerol and 29.9 ± 1.0% in DMSO + glycerol; p < 0.05) than for the control group (79.8 ± 1.3%). For all treatments in each vitrification experiment, results were nearly identical for straws and OPS, so all results presented are the average of these two containers. The percentages of oocytes reaching telophase‐I or metaphase‐II stages were lower in oocytes cryopreserved using all treatments when compared with control. However, among the vitrified oocytes, the highest maturation rate was seen in oocytes vitrified in EG + DMSO (41.5 ± 0.6%). Oocytes cryopreserved in all groups with glycerol had an overall low maturation rate 19.0 ± 0.6% for EG + glycerol and 17.0 ± 1.1% for DMSO + glycerol. We conclude that the function of oocytes was severely affected by both vitrification and exposure to cryoprotectants without vitrification; the best combination of cryoprotectants was EG + DMSO for vitrification of immature buffalo oocytes using either straw or OPS methods.  相似文献   

9.
Two-cell stage and blastocyst stage mouse embryos were equilibrated in a medium containing 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for 8–15 min. Vitrification was performed in a medium containing 0.5 M sucrose and either 15% EG + 15% DMSO, 17.5% EG + 17.5% DMSO, or 20% EG + 20% DMSO for 30 s. They were then placed either on a hemi-straw (HS) or a hollow fiber vitrification (HFV) device and vitrified by cooled air inside a 0.5-ml straw. In two-cell embryos, a 100% survival rate was obtained from all groups except the 20% HS group (P > .05). All vitrified two-cell groups showed similar rates of blastocyst development to that of fresh control group (P > .05), except 17.5% and 20% HFV groups, which were significantly lower than the other groups (P < .05). In the blastocyst embryos, the HFV groups were divided into two subgroups (non-collapsed; HFV-NC and collapsed; HFV-C blastocyst). Re-expansion rate in 15% HFV-NC, 17.5% HFV-NC, and 15% HFV-C groups was reduced (P < .05), whereas the rest were similar to control. In conclusion, we established a simplified, reliable, and closed system for HFV vitrification applying hemi-straw, which does not require skilled practitioners.  相似文献   

10.
We evaluated the effects of polyethylene glycol (PEG) and Supercool X‐1000 (SC) as supplements during the vitrification of immature cumulus‐enclosed porcine oocytes in a solution based on 17.5% ethylene glycol + 17.5% propylene glycol. After warming, the oocytes were subjected to in vitro maturation, fertilization and embryo culture. In Experiment 1, equilibration and vitrification solutions were supplemented with or without 2% (w/v) PEG (PEG+ and PEG‐, respectively). The survival rate, cleavage and blastocyst development were similar between PEG+ and PEG‐ groups; however, all values were lower than those in the non‐vitrified control. In Experiment 2, vitrification solution was supplemented with or without 1% (v/v) SC (SC+ and SC‐, respectively). The percentages of survival and blastocyst development were similar between SC+ and SC‐ groups but lower than those in the non‐vitrified control. The percentage of cleavage in the SC‐ group was significantly lower than the control and the SC+ groups, which were in turn similar to one another. In both experiments, the cell numbers in blastocysts were not significantly different among the non‐vitrified and vitrified groups. In conclusion, PEG did not improve oocyte survival and embryo development, whereas SC improved the ability of surviving oocytes to cleave but not to develop into blastocysts.  相似文献   

11.
In contributing to the conservation of wild rodents, the aim of this study was to evaluate the use of distinct cryoprotectants, separately or in combination, for solid surface vitrification (SSV) of red-rumped agouti ovarian tissue. Ovarian cortex from nine females was recovered and fragmented. Fresh fragments (control) were used to analyse the pre-antral follicle (PF) morphology using a histologic procedure, viability using the Trypan blue test, cell proliferation by counting the argyrophilic nucleolar organizing regions (Ag-NORs technique) and DNA integrity using the TUNEL assay. The remaining fragments were vitrified using SSV method with 3 M or 6 M ethylene glycol (EG) or dimethyl sulfoxide (DMSO), or in combination (3 M EG/3 M DMSO), and further evaluated as reported for the fresh samples. All cryoprotectants were effective at preserving PFs morphology compared to the control group (80.7 ± 5.21%), except 6 M EG and 3 M DMSO that provoked a significant (p < .05) decrease on the values of morphologically normal primary (60.0 ± 19.0%) and primordial (44 ± 4.5%) follicles, respectively. Regarding viability, all cryoprotectants provided values similar to that verified for the control group (79.0%), but a significant decrease (p < .05) was observed with EG/DMSO combination (59%). Using Ag-NORs technique, the highest (p < .05) cell proliferative capacity was detected when using EG at each tested concentration. The TUNEL proved the preservation of DNA integrity regardless of the cryoprotectant. In summary, we suggest the use of 3 M EG for the solid surface vitrification of red-rumped agouti ovarian tissue.  相似文献   

12.
Improving pregnancy rates associated with the use of cryopreserved human oocytes would be an important advance in human assisted reproductive technology (ART). Vitrification allows glasslike solidification of a solution without ice crystal formation in the living cells. We have attempted to improve the survival rates of oocytes by a vitrification technique using bovine models. In vitro matured oocytes with or without cumulus cells were vitrified with either 15.0% (v/v) ethylene glycol (EG) + 15% (v/v) dimethylsulfoxide (DMSO) + 0.5 M sucrose or 15% (v/v) EG + 15% (v/v) 1,2-propanediol (PROH) + 0.5 M sucrose, using 'Cryotop' or 'thin plastic sticker', respectively. The oocyte survival rates after vitrifying-warming, and the capacity for fertilization and embryonic development were examined in vitro. The rate of embryonic development to blastocyst was significantly higher (P<0.05) in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) PROH + 0.5 M sucrose than in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) DMSO + 0.5 M sucrose (7.4% +/- 4.1 vs. 1.7% +/- 3.0, respectively). Oocytes vitrified without cumulus cells had a higher survival rate after thawing and a superior embryonic developmental capacity compared with oocytes vitrified with cumulus cells. Prolonged pre-incubation time after thawing adversely affected the rates of embryonic cleavage and development. These results indicate that in vitro matured bovine oocytes can be vitrified successfully with the mixture of the cryoprotectants, EG + PROH, the absence of cumulus cells for vitrification does not affect oocyte survival rate after warming, and vitrified and warmed oocytes do not require pre-incubation before in vitro fertilization.  相似文献   

13.
The cryopreservation of testicular tissue is a potential method for preserving male fertility. However, the effect of cryopreservation on bovine calf testicular tissue is scarce. This study investigated the effect of different cryoprotectants on bovine calf testicular tissue at the molecular level. Testicular tissue from ten immature bovine calves (6 months) was collected after slaughter and cryopreserved in an extender containing different concentrations of the following five cryopreservation solutions (CP): bovine serum albumin (BSA) with 5% dimethyl sulfoxide (DMSO), trehalose with 5% DMSO, DMSO and glycerol and ethylene glycol (EG). After 7‐day cryopreservation, the expression levels of three spermatogonial stem cell (SSC)‐related genes, octamer‐4 (OCT4), KIT ligand (MGF/SCF) and kit oncogene (C‐KIT), were investigated by quantitative PCR (qPCR). The cell viability was highest for the tissues preserved with 30 mg/ml BSA (77.82% ± 1.22) and 40 mg/ml trehalose (74.23% ± 1.16) compared with other groups (p < 0.05), and the level of expression of the three genes was highest with 30 mg/ml BSA (p < 0.05). Compared with other CPs, the 30 mg/ml BSA and 40 mg/ml trehalose have the better cryopreserve protection. The 30 mg/ml BSA is the most viable media for the cryopreservation of testicular tissue from cattle.  相似文献   

14.
The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re‐expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re‐expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p < 0.05). The number of dead cells in vitrified embryos of Gr. 2 and Gr. 3 was higher (42.6 ± 26.2 and 63.2 ± 34.65, respectively) in comparison with Gr. 1 (conventional freezing, 10.1 ± 8.5, p < 0.05). Embryos vitrified with dimethylformamide included the same quality of apoptotic cells that Gr. 1 (conventional freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification.  相似文献   

15.
16.
We previously developed a new vitrification method (equilibrium vitrification) by which two-cell mouse embryos can be vitrified in liquid nitrogen in a highly dehydrated/concentrated state using low concentrations of cryoprotectants. In the present study, we examined whether this method is effective for mouse embryos at multiple developmental stages. Four-cell embryos, eight-cell embryos, morulae, and blastocysts were vitrified with EDFS10/10a, 10% (v/v) ethylene glycol and 10% (v/v) DMSO in FSa solution. The FSa solution was PB1 medium containing 30% (w/v) Ficoll PM-70 plus 0.5 M sucrose. The state of dehydration/concentration was assessed by examining the survival of vitrified embryos after storage at –80°C. When four-cell embryos and eight-cell embryos were vitrified with EDFS10/10a in liquid nitrogen and then stored at –80°C, the survival rate was high, even after 28 days, with relatively high developmental ability. On the other hand, the survival of morulae and blastocysts vitrified in liquid nitrogen and stored at –80°C for four days was low. Therefore, morulae and blastocysts cannot be vitrified in a highly dehydrated/concentrated state using the same method as with two-cell embryos. However, when blastocysts were shrunken artificially before vitrification, survival was high after storage at –80°C for four days with high developmental ability. In conclusion, the equilibrium vitrification method using low concentrations of cryoprotectants, which is effective for two-cell mouse embryos, is also useful for embryos at multiple stages. This method enables the convenient transportation of vitrified embryos using dry ice.  相似文献   

17.
Sperm plasma membrane is an essential structure of sperm resistance to freezing. Signs of cryodamage can be visible on the sperm plasma membrane. The aim of our study was to evaluate the appearance of plasma membrane and acrosome in fresh and frozen‐thawed chicken sperm using electron and fluorescence microscopy. Semen was collected from 12 sexually mature roosters of Ross PM3 heavy line, diluted with Kobidil+ extender with 16% of ethylene glycol (KEG; control) or with KEG in combination with one of following non‐permeating cryoprotectants: trehalose (KEG‐TRE) or glycine (KEG‐GLY). Fluorescence staining was used for detection of the membrane integrity, apoptotic changes and viability (Annexin V, Yo‐PRO‐1, PI, respectively). Ultrathin sections (70 nm) from samples were prepared to examine sperm head ultrastructure. Freezing process significantly worsened the status of the sperm plasma membranes. In all frozen groups, only about a quarter of the evaluated sperm were graded as class I quality. In the KEG and KEG‐GLY groups, about half of sperm had severe plasma membrane damages (III class). In sperm with extensively damaged membranes (III class), the acrosome–sperm head junction was mostly disturbed. The use of trehalose was more beneficial (p < 0.05) for sperm plasma membrane than the use of glycine. In contrast, a decrease (p < 0.05) in the apoptotic sperm ratio (Yo‐PRO‐1) was noted in the KEG‐GLY group when compared to other treatments. In conclusion, we identified different plasma membrane and acrosome damages in cryopreserved chicken sperm. The loss of acrosomes can contribute to diminishing of fertilization ability of cryopreserved chicken sperm.  相似文献   

18.
19.
This study aimed to determine the optimum concentration of trehalose in solutions used for vitrification of in vitro matured (IVM) ovine oocytes. IVM oocytes were randomly divided into four experimental (vitrified) and one control (fresh) groups. Experimental groups were treated with different concentrations (0.0, 0.25, 0.5 and 1.0 M) of trehalose. After warming, some viable oocytes were exposed to 0.25% pronase to test zona pellucida hardening, whereas the others were fertilized and cultured in vitro for 8 days to evaluate their developmental competence. Blastocysts quality was assessed by differential staining and TUNEL test. Survival and developmental rates of oocytes vitrified in the presence of 0.5 M trehalose were significantly higher than those of the other vitrified groups. Furthermore, there was a significant difference between fresh and vitrified groups in total blastocyst rate. Analysis of blastocysts quality also revealed a significant difference between the group treated with 0.5 M trehalose and other groups in terms of apoptotic index. Furthermore,zona pellucida digestion time period was longer in trehalose‐free (0.0 M) group compared to other groups. In conclusion, we found that IVM ovine oocytes vitrified in solutions containing 0.5 M trehalose are fertilization‐competent and are able to produce good‐quality blastocysts with an apoptotic index comparable to that of the fresh oocytes. Therefore, 0.5 M may be considered the optimum concentration of trehalose to be used in solutions prepared for vitrification of oocytes.  相似文献   

20.
This study was conducted to evaluate the effect of nicotinic acid on plasma membrane integrity and fatty acid composition in frozen–thawed boar sperm. Boar semen was cryopreserved using freezing extender containing nicotinic acid (NA), then plasma membrane integrity, osmotic equilibration, lipid peroxidation and fatty acid were analysed. The plasma membrane integrity of frozen–thawed sperm was significantly higher in the 10 mM NA than in the 0 and 20 mM NA treatment groups (p < 0.05). Additionally, the osmotic equilibration ability was not different in treatment groups, but lipid peroxidation was significantly decreased in the 10 mM NA treatment group (p < 0.05). The saturated fatty acids were significantly decreased in the 10 mM NA treatment group, and C18:1n‐9, C18:2n‐6, C20:4n‐6, C22:5n‐6 and C22:6n‐3, and total polyunsaturated fatty acids (PUFAs) were significantly increased in the 10 mM NA treatment groups (p < 0.05). In summary, 10 mM NA improved plasma membrane integrity, inhibited lipid peroxidation and increased PUFAs in frozen–thawed boar sperm. These results suggest that NA may be useful to protect the plasma membrane and inhibit the loss of PUFAs for sperm cryopreservation in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号