首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 150 weanling pigs [(Yorkshire × Landrace) × Duroc] with an average BW of 7.22 ± 0.80 kg (21 d of age) were used in a 28-d trial to determine the effects of dietary fructan and mannan oligosaccharides on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. Pigs were allotted randomly to 1 of 5 dietary treatments: 1) negative control (NC), basal diet; 2) positive control (PC), NC + 0.01% apramycin (165 mg/kg); 3) NC + 0.1% fructan (FC); 4) NC + 0.1% mannan oligosaccharide source (MO); and 5) NC + 0.05% fructan + 0.05% mannan oligosaccharide source (FM). There were 3 replications per treatment with 10 pigs per pen (5 barrows and 5 gilts). From d 0 to 14, ADG and ADFI of pigs fed the PC, MO, and FM diets were greater (P < 0.05) than pigs fed the NC diet. From d 15 to 28, there were no differences (P > 0.05) in ADG, ADFI, and G:F. During the overall period (d 0 to 28), pigs fed the MO diet had a greater ADG than pigs fed the NC diet (P < 0.05). Pigs fed the PC and MO diets increased ADFI (P < 0.05) compared with pigs fed the NC diet. However, no differences were detected among dietary treatments in G:F during the overall experimental period. On d 14, the apparent total tract digestibility (ATTD) of DM and N in pigs fed the PC, MO, and FM diets was greater (P < 0.05) than pigs fed the NC diet. The ATTD of DM increased (P < 0.05) in pigs fed the MO and FM diets compared with pigs fed the FC diet. However, at the end of the experiment, pigs fed the FM diet had a greater (P < 0.05) ATTD of DM compared with pigs fed the NC diet. Additionally, there were no differences in IgG, red blood cells, white blood cells, and lymphocyte counts among dietary treatments on d 0, 14, or 28. The diarrhea score in pigs fed the MO diet was reduced (P < 0.05) compared with pigs fed the NC diet. In conclusion, mannan oligosaccharides have a beneficial effect on growth performance and nutrient digestibility in weanling pigs. Furthermore, mannan oligosaccharides can decrease diarrhea score in weanling pigs.  相似文献   

2.
This experiment was conducted to investigate the efficacy of multistrain probiotics in weaning pigs. A total of 125 28‐day‐old weaning pigs [(Landrace × Yorkshire) × Duroc] with an initial average body weight (BW) of 7.26 ± 0.76 kg were randomly allotted into 5 treatments, 5 replicate pens/treatment with 5 pigs/pen for 42‐day experiment. Dietary treatments were as follows: CON, basal diet; PC1, CON + 0.01% multistrain probiotics; PC2, CON + 0.03% multistrain probiotics; PC3, CON + 0.06% multistrain probiotics; PC4, CON + 0.1% multistrain probiotics. On day 14, pigs fed the PC4 diet had higher BW gain than pigs fed the CON diet. On day 42, pigs fed multistrain probiotics supplementation diets had higher BW gain than pigs fed the CON diet. From days 1 to 14, pigs fed the PC2, PC3 and PC4 diets had higher (p < 0.05) ADG than pigs fed the CON diet. From day 15 to 42, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) average daily gain (ADG) and gain: feed ratio (G:F) than pigs fed the CON diet. In the overall period, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) ADG and pigs fed the PC2 and PC4 diets had higher (p < 0.05) G:F than pigs fed the CON diet. On day 42, pigs fed the PC4 diet had higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and gross energy (GE), faecal Lactobacillus counts and lower (p < 0.05) E. coli counts and NH3 emission than pigs fed the CON diet. Pigs fed the multistrain probiotics supplementation diets had lower (p < 0.05) H2S and total mercaptans emissions than pigs fed the CON diet. Conclusions, dietary supplementation with 0.1% probiotics improved growth performance, nutrition digestibility and intestinal microflora balance and decreased faecal noxious gas emissions in weaning pigs.  相似文献   

3.
A 12‐week trial with 120 [(Landrace×Yorkshire)×Duroc] pigs (45.65 ± 1.93 kg) was conducted to evaluate the effects of Astragalus membranaceus, Codonopsis pilosula and allicin mixture (HM) supplementation on growth performance, nutrient digestibility, faecal microbial shedding, immune response and meat quality in finishing pigs. Pigs were allocated to one of three treatments with 0, 0.025% (HM1) and 0.05% (HM2) HM supplementation in a randomized complete block design according to sex and BW. Each treatment contained 10 replications with four pigs (two barrows and two gilts) per pen. Dietary HM resulted in a higher G:F (p < 0.05) than CON group during weeks 7 to 12 and the overall periods. Pigs fed HM2 diet had higher ADG than pigs fed CON diet. Pigs fed HM2 supplementation diet led to a higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM) and gross energy (GE) than pigs fed CON diet at week 6, while the supplementation of HM led to a higher (p < 0.05) ATTD of DM and GE than pigs fed CON diet at week 12. The faecal E. coli counts were reduced, and Lactobacillus counts were increased by increasing HM supplementation (p < 0.05). Pigs fed HM1 diet had higher (p < 0.05) WBC concentration than those fed CON and HM2 diets at week 6. Pigs fed HM‐supplemented diet had higher (p < 0.05) IgG and IgA concentrations than those fed CON diet at week 12. Pigs fed HM diet noted better (p < 0.05) meat colour and redness value than pigs fed CON diet. Pig fed HM2 reduced (p < 0.05) the lightness value compared with CON group. In conclusion, dietary HM supplementation exerted beneficial effects on growth performance, nutrient digestibility, intestinal microbial balance (increased Lactobacillus counts and decreased E. coli counts), immune response and meat quality.  相似文献   

4.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

5.
Two experiments were conducted to determine the effects of dietary supplementation of exogenous enzymes on growth performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites, fecal VFA, and fecal ammonia-N in growing pigs (Sus scrofa) fed a corn (Zea mays L.)- and soybean [Glycine max (L.) Merr.] meal (SBM)-based diet. In Exp. 1, 240 growing barrows (initial BW: 55.6 ± 0.9 kg) were randomly allotted to 5 treatments on the basis of BW. There were 4 replicates in each treatment with 12 pigs per replicate. The 5 treatments consisted of a corn-SBM-based control diet and 4 additional diets were similar to the control diet, with the exception that 0.05% β-mannanase (M), α-amylase + β-mannanase (AM), β-mannanase + protease (MPr), or α-amylase + β-mannanase + protease (AMP) was added to the diets, which were fed for 28 d. Pigs fed the AM, MPr, or AMP diet had greater (P < 0.05) ADG than pigs fed the control diet. Pigs fed the AMP diet also had greater (P < 0.05) ADG than pigs fed the M, AM, or MPr diet. Pigs fed the AMP diet had greater (P < 0.05) G:F than pigs fed the control diet. The G:F of the pigs fed the M, AM, or MPr diet were not different (P > 0.05) from the G:F in pigs fed the AMP or control diet. The ADFI, ATTD of nutrients, blood metabolites, and fecal VFA and ammonia-N concentrations were not different among treatments. In Exp. 2, 192 growing barrows (initial BW: 56.9 ± 1.0 kg) were allotted to 4 treatments. There were 4 replicates in each treatment with 12 pigs per replicate. Pigs were fed a corn-SBM-based diet (CSD) or a complex diet (CD) that contained corn, SBM, 3% rapeseed (Brassica napus L.) meal, 3% copra (Cocos nucifera L.) meal, and 3% palm (Elaeis guineensis Jacq.) kernel meal. Each diet was prepared without exogenous enzymes or with 0.05% AMP and all diets were fed for 28 d. The ADG and G:F of pigs fed the CSD were greater (P < 0.05) than pigs fed the CD. However, the type of diet had no effect on the ATTD of nutrients, blood metabolites, or fecal VFA and ammonia-N, and there was no diet × enzyme interaction for any of the measured variables. Supplementation of diets with exogenous enzymes resulted in greater (P < 0.05) ADG, G:F, ATTD of DM, GE, and CP, and blood urea nitrogen (BUN) concentration. These results indicate that supplementation of 0.05% of AMP enzymes to a corn-SBM diet or a complex diet may improve the performance of growing pigs.  相似文献   

6.
A total of 144 weaned piglets were used to evaluate the effects of essential oil (EO) supplementation of a low‐energy diet on performance, apparent nutrient digestibility, small intestinal morphology, intestinal microflora, immune properties and antioxidant activities in weaned pigs. Pigs received a low‐energy diet (negative control, NC, digestible energy = 3250 kcal/kg), NC plus 0.025% EO or a positive control diet (PC, digestible energy = 3400 kcal/kg) for 28 days. Growth performance was similar between the EO group and PC group. However, EO supplementation increased (P < 0.05) average daily gain and the apparent digestibility of dry matter, crude protein and energy compared with pigs fed the NC diet. Greater (P < 0.05) villus height and lower (P < 0.05) counts of Escherichia coli and total anaerobes in the rectum in the EO group were observed compared with NC or PC groups. Pigs fed EO diet had higher (P < 0.05) concentrations of albumin, immunoglobulin A (IgA), IgG and total antioxidant capacity and lower fecal score than pigs fed the PC and NC diets. Above all, this study indicates that supplementation of EO to a low‐energy pig diet has beneficial results and obtains similar performance compared with normal energy (PC) diet.  相似文献   

7.
Effect of supplementing wheat dried distillers’ grain with solubles (DDGS)‐containing diet with enzymes on nutrient utilization by growing pigs was evaluated in two experiments. In Experiment 1, 60 pigs weighing ~30 kg were fed five diets that included a corn‐based diet (Control), Control with 10% wheat DDGS (DDGS‐PC), DDGS‐PC without inorganic P source (DDGS‐NC), and DDGS‐NC plus phytase alone or with multi‐carbohydrase for 4 weeks to determine average daily gain (ADG), average daily feed intake (ADFI) and gain‐to‐feed ratio (G:F). In Experiment 2, 30 barrows weighing 22 kg were fed five diets fed in Experiment 1 to determine nutrient digestibility and retention. Pigs fed DDGS‐PC and Control diets had similar ADG and G:F. The ADG and G:F for DDGS‐PC diet were higher (P < 0.05) than those for DDGS‐NC diet. Phytase improved (P < 0.05) ADG, G:F, total tract P digestibility and P retention by 6.6, 8.7, 86.0 and 85.5%, respectively. Addition of multi‐carbohydrase to phytase‐supplemented diet did not affected growth performance, but reduced (P < 0.05) P retention. In conclusion, inclusion of 10% wheat DDGS in growing pig diet may not affect growth performance of growing pigs. Phytase supplementation to wheat DDGS‐containing diet can eliminate the need for inorganic P supplement in pig diets.  相似文献   

8.
This study was conducted to evaluate the effects of dietary supplementation of protease derived from Pseudoalteromonas arctica (PPA) in finishing pigs. A total of 160 pigs were used in this 10‐week trial. Dietary treatment groups were as follows: CON (basal diet); TRT1 (basal diet + 0.1% PPA); TRT2 (basal diet + 0.2% PPA); and TRT3 (basal diet + 0.3% PPA). During weeks 1–5, pigs fed with different levels of PPA‐supplemented diet showed linear increase (p < .05) in the apparent total tract digestibility (ATTD) of nitrogen (N) and linear decrease (p < .05) in the concentrations of serum total protein. During weeks 6–10, pigs fed with different levels of PPA‐supplemented diet showed a linear decrease in feed conversion ratio (p < .05). During the overall period, there was a linear decrease in feed conversion ratio (p < .05) associated with the inclusion of PPA. Pigs fed diets with 0.2% PPA supplementation had lower (p < .05) feed conversion ratio than those fed CON diet during weeks 6–10 and the overall period, and had higher (p < .05) ATTD of N than those fed CON diet during weeks 1–5. Pigs fed diets with PPA supplementation had lower (p < .05) concentrations of serum total protein than those fed CON diet on week 5. In conclusion, dietary supplementation with PPA diet has beneficial effects on growth performance, nutrient digestibility, backfat thickness and the concentrations of serum total protein.  相似文献   

9.
Based on results of a recent meta-analysis, we hypothesized that increased dietary Val, Ile, or Trp could correct possible amino acid interactions because of excess Leu in diets containing high levels of corn protein, namely dried distiller’s grains with solubles (DDGS). A total of 1,200 pigs (PIC TR4 × (Fast LW × PIC L02); initially 33.6 ± 0.6 kg) were used in a 103-d study. The 6 dietary treatments were corn–soybean meal (SBM)-DDGS-based as follows: (1) high SBM and low level of l-Lys HCl (HSBM), (2) high l-Lys HCl and moderate Ile, Val, Trp (AA above NRC 2012 estimates; NC), (3) moderate l-Lys HCl and high Ile, Val, and Trp (PC), and PC with either increased (4) L-Val (PC+Val), (5) L-Ile (PC+Ile), or (6) L-Trp (PC+Trp). Pigs fed the NC diet were predicted to have the poorest average daily gain (ADG), the PC diet to be intermediate, and pigs fed the HSBM, PC+Val, PC+Ile, and PC+Trp have the same and highest predicted ADG. In the grower period (34 to 90 kg), ADG was greater (Ρ < 0.05) for the pigs fed HSBM and PC+Val diets than the NC with pigs fed other diets intermediate. Pigs fed HSBM were more (Ρ < 0.05) efficient (G:F) than the NC and PC with pigs fed other diets intermediate. In the finisher period (90 to 136 kg), ADG was greater (Ρ < 0.05) for pigs fed PC+Ile than that of the NC with pigs fed other diets intermediate. Pigs fed PC+Val had greater (Ρ < 0.05) average daily feed intake (ADFI) than the NC with pigs fed other diets intermediate. However, PC+Ile pigs were more (Ρ < 0.05) efficient than PC+Val with pigs fed other diets intermediate. Overall, ADG was greater (Ρ < 0.05) for pigs fed HSBM, PC+Val, and PC+Ile diets than the NC with pigs fed other diets intermediate. Pigs fed the PC+Val diet had greater (Ρ < 0.05) ADFI than the NC with pigs fed other diets intermediate. No differences were detected between treatments for overall G:F or other carcass characteristics. In conclusion, increasing Val or Ile in high l-Lys-HCl-DDGS-based diets improved growth performance compared with pigs fed diets containing high levels of l-Lys HCl without added Val and Ile. These results present evidence that the recently developed meta-analysis can predict the relative differences in overall ADG for pigs fed the NC, PC, PC+Val, and PC+Ile diets; however, the predicted G:F was less accurate. The data demonstrate that the negative effects of high Leu concentrations in corn-DDGS-based diets can be reversed by increasing the ratios of Val and Ile relative to Lys.  相似文献   

10.
In this study, the effect of a potential multimicrobe probiotic subjected to high-temperature drying was investigated. Potential multimicrobe probiotics produced by solid substrate fermentation were dried at low (LT, 40°C for 72 h) or high (HT, 70°C for 36 h) temperature. In Exp. 1, 288 weaned pigs (BW, 6.43 ± 0.68 kg) were allotted to 4 treatments on the basis of BW (4 pens per treatment with 18 pigs in each pen). Dietary treatments were negative control (NC; basal diet without any antimicrobial), positive control (PC; basal diet + 0.1% chlortetracycline), basal diet with 0.3% probiotic LT, and basal diet with 0.3% probiotic HT. Diets were fed in 2 phases, phase I (d 0 to 14) and phase II (d 15 to 28); and growth performance, apparent total tract digestibility (ATTD, d 28), and fecal microflora (d 14 and 28) were evaluated. Over the 28-d trial, pigs fed PC and probiotic diets had greater ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.01) than pigs fed NC diet. The ATTD of DM and GE was greater (P < 0.05) in pigs fed probiotic diets when compared with pigs fed the NC diet. At d 28, fewer Clostridia (P < 0.01) were identified in the feces of pigs fed PC and probiotic diets than pigs fed the NC diet. However, the performance, ATTD of DM and GE, and fecal Clostridia population were similar among pigs fed probiotic LT and HT diets. In Exp. 2, 288 weaned pigs (initial BW, 5.84 ± 0.18 kg) were allotted to 4 treatments in a 2 × 2 factorial arrangement on the basis of BW. The effects of 2 levels of probiotic HT (0.30 or 0.60%), each with or without antibiotic (chlortetracycline, 0 or 0.1%), on performance, ATTD, intestinal morphology, and fecal and intestinal microflora were investigated. Feeding of 0.60% probiotic HT diet improved (P < 0.05) overall ADG, ATTD of DM and GE, and Lactobacillus population in the feces and intestine, and reduced the population of Clostridium and coliforms in feces (d 14) and ileum. Inclusion of antibiotic improved (P < 0.05) the overall ADG, ADFI, and ATTD of DM at d 14 and reduced fecal Clostridium population at d 28. Increased (P < 0.05) villus height at jejunum and ileum, and villus height:crypt depth at the ileum was noticed in pigs fed 0.60% probiotic HT and antibiotic diets. In conclusion, high drying temperature had no effect on the efficacy of potential multimicrobe probiotic product. However, the probiotic product dried at high temperature was more effective at 0.60% inclusion, whereas inclusion of an antibiotic improved pig performance but did not show any interaction with probiotics.  相似文献   

11.
One hundred pigs (BW = 50.7 ± 1.89 kg) were used to investigate the effects of fermented garlic powder (FGP) in growing‐finishing pigs. Pigs were allotted to one of five treatments, included: (i) NC (basal diet); (ii) PC (NC + 44 mg/kg of Tylosin); (iii) FGP1 (NC + 1 g/kg FGP); (iv) FGP2 (NC + 2 g/kg FGP); and (v) FGP4 (NC + 4 g/kg FGP). Supplemental FGP increased average daily gain (ADG) and gain/feed ratio compared with those fed NC diet throughout the experiment (P < 0.05, linearly). Dietary PC treatment increased the ADG and average daily feed intake during the first 6 weeks (P < 0.05). The inclusion of FGP2 and FGP4 treatments had higher apparent total tract digestibility of dry matter and nitrogen (P < 0.05) than those in the NC treatment. Dietary NC treatment exhibited lower (P < 0.05) lymphocyte count (6 and 12 weeks) and immunoglobulin G (12 weeks) than those in the other treatments. Marbling scores were higher (P < 0.05) in FGP treatment groups than the NC treatments. Pigs fed on FGP2 and FGP4 diets evidenced lower 2‐thiobarbituric acid reactive substances value (P < 0.05) than those in the NC and PC treatments. Collectively, our findings demonstrated that the administration of FGP at a level of 2 or 4 g/kg improved growth performance, nutrient digestibility and meat quality in growing‐finishing pigs.  相似文献   

12.
This study was conducted to evaluate the effects of composite antimicrobial peptide (CAP) on growth performance and health status in weaned piglets. Over 28 days, 36 weaned piglets (body weight, 10.58 ± 0.99 kg) underwent three treatments: negative control (NC, basal diet), positive control (PC, basal diet + 20 mg/kg colistin sulphate + 50 mg/kg kitasamycin), and CAP treatment (CAP, basal diet with 400 mg/kg CAP). Average daily gain of piglets fed the CAP diet was greater (< 0.05) than that of piglets fed the PC or NC diet during days 1–7, 8–14 and 15–21. Diarrhea rates of piglets fed the CAP or PC diet were lower (< 0.05) than those of NC‐fed piglets during days 1–7. Apparent total tract digestibility for dry matter and crude ash in CAP‐fed piglets was greater (< 0.05) than that of NC‐fed piglets. In the CAP group, Lactobacillus and Bifidobacterium counts were greater (< 0.05) and Escherichia coli counts were lower (< 0.05) than numbers for the NC group. Our results indicate that dietary CAP had beneficial effects on growth performance and health status in weaned piglets.  相似文献   

13.
The objective of this study was to evaluate the effects of brown rice particle size on the apparent total tract digestibility (ATTD) of energy and nutrients in diets fed to pigs at four different stages and determine the optimal particle size (OPS) of brown rice for young pigs and adult sows. Eighteen weanling piglets (initial body weight (BW): 10.2 ± 0.4 kg), 18 growing barrows (initial BW: 35.6 ± 1.5 kg), 24 gestating sows (initial BW: 220 ± 2.8 kg), and 24 lactating sows (initial BW: 208 ± 3.8 kg) were allotted to 1 of 3 or 4 diets based on completely randomized design with six replicates per diet. Within each stage, brown rice‐soybean meal diets were formulated, and the only difference among diets was the brown rice used was ground to the specified particle size. Each stage lasted 19 days, including 7 days for cage adaptation, 7 days for diet adaptation, and 5 days for total feces and urine collection. For weanling and growing pigs, the results showed that pigs fed brown rice milled to 600 μm had a greater ATTD of dry matter (DM), gross energy (GE), and crude protein (CP) than pigs fed brown rice ground to 800 μm. However, there was no improvement in the ATTD of energy and nutrients for pigs fed brown rice milled to 600 μm versus 400 μm. The concentration of nitrogen (N) in feces significantly reduced (< 0.01) as brown rice particle size decreased from 800 to 400 μm. However, there were no differences in phosphorus (P) output and absorbed P among diets. For gestating and lactating sows, a reduction in particle size from 1,000 to 800 μm significantly improved (< 0.01) the ATTD of DM, GE, and CP in diets. However, there was also no improvement in the ATTD of energy and nutrients for pigs fed brown rice milled from 800 to 400 μm. In conclusion, considering the energy required for milling and nutrient digestibility, milling brown rice to 600 and 800 μm are recommended in diets for young pigs and adult sows, respectively. The OPS of brown rice for pigs at different physiological stages should be considered to economically and accurately formulate diets.  相似文献   

14.
The effect of high levels of microbial phytase supplementation in diets for growing pigs was studied in a 2‐week performance and nutrient digestibility trial involving 28 growing pigs weighing 16.4 ± 1.06 (mean ± SD) kg. Seven corn‐barley‐soybean meal‐based diets consisting of a positive control (PC) formulated to meet or exceed NRC nutrient requirements; a negative control (NC) with non‐phytate P reduced by 0.1% unit from NRC requirement and fed without or with 500 or 1000 U/kg; a doubled negative control (DNC) with no added inorganic P and fed without or with 2000 or 4000 U/kg. Chromic oxide was added as an indigestible marker and all diets were fed as mash. Pigs fed the PC diet had a higher P digestibility compared with those fed the NC (P < 0.02) and the DNC (P < 0.001) diets. Supplementing the NC diet with pyhtase tended to improve P digestibility (P < 0.10). However, addition of phytase to the DNC diet resulted in linear (P < 0.001) and quadratic (P < 0.03) increases in P digestibility with an overall improvement of 8% and 121% at 4000 phytase U/kg of diet, respectively, compared with the PC and DNC diets. Apparent total tract digestibility of N, OM and DM were higher (P < 0.05) in the PC diet compared with the DNC diet, but not the NC diet (P < 0.10). No effect of phytase addition to NC was observed on Ca, N, DM and OM digestibility. Phytase addition to the DNC diet resulted in a linear increase (P < 0.05) in N, DM and OM digestibility but not Ca. Increasing the levels of phytase supplementation in the NC and the DNC diets linearly decreased fecal P (P < 0.05) content by 45 and 42%, respectively. Adding phytase at 1000 or 4000 U/kg increased P retention (P < 0.05) by 14.3 or 15.6% units, respectively, compared with the PC diet. Urinary P excretion was higher in the group fed the PC diet compared with those fed the NC and DNC diets (P < 0.05). The results of this study show that complete removal of inorganic P from growing pig diets coupled with phytase supplementation improves digestibility and retention of P and N, thus reducing manure P excretion without any negative effect on pig performance.  相似文献   

15.
This experiment was conducted to evaluate the effects of plant extract YGF251 supplementation in different protein level diets on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding, and fecal gas emission in growing pigs. A total of 144 pigs (24.72 ± 1.54 kg) were randomly assigned to the treatments in a 2 × 3 factorial arrangement of dietary protein levels (15.50%, 14.00% or 12.50%) and plant extract YGF251 levels (0 or 0.05%) with 6 replications per treatment and 4 pigs per pen. Pigs fed low protein diets had reduced average daily gain (p < 0.05) and increased feed conversion ratio (p < 0.01) compared with pigs fed high protein diets. The apparent total tract digestibility of nitrogen was decreased (p < 0.05) when reducing dietary protein level. Fecal ammonia and hydrogen sulfide emissions were reduced (p < 0.05) when reducing dietary protein level. In conclusion, the results of the current study indicated that reducing dietary protein level impaired growth performance and nitrogen digestibility but reduced ammonia and hydrogen sulfide emissions in growing pigs. Dietary supplementation with 0.05% herbal extract YGF251 was not effective in improving growth performance, nutrient digestibility, or in decreasing gas emission in different protein diets.  相似文献   

16.
This study evaluated the effects of fermented Ginkgo biloba L. residues (FGBLR) on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Pigs were allotted to five dietary treatments, including negative control (NC: antibiotic free basal diet), positive control (PC) (NC + 30 mg apramycin/kg) and FGBLR‐50, 100, 150 (NC + 50, 100, 150 g FGBLR/kg). Pigs in FGBLR‐100 and PC treatments showed increased final body weight, average daily gain, gain:feed and apparent total tract digestibility of dry matter, N and gross energy (P < 0.05) compared with NC, FGBLR‐50 and FGBLR‐150 treatments, In addition, pigs fed with FGBLR‐100 diet showed higher serum total protein, albumin, alkaline phosphatase, glucose, hemoglobin, total iron, total iron binding capacity, superoxide dismutase and glutathione superoxide dismutase levels, and lower serum blood urea nitrogen, malondialdehyde, glutamic‐pyruvic transaminase, glutamic‐oxalacetic transaminase, triglyceride and total cholesterol levels than those fed with PC and NC diets (P < 0.05). Moreover, feeding FGBLR‐100 could increase levels of immunoglobulin G (IgG), IgA and IgM, as well as lymphocyte transformation rates, ratio of CD4+ to CD8+ cells and proportions of CD2+, CD4+, B, major histocompatibility complex (MHC)‐I and MHC‐II cells, and can decrease proportion of CD8+ cells in blood of piglets compared with PC and NC groups (P < 0.05). These results indicate that dietary supplementation with 10% of FGBLR showed greatest beneficial effects on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets, which were superior to antibiotic supplemental diets.  相似文献   

17.
The capacity of a novel consensus bacterial 6-phytase variant (PhyG) to entirely replace dietary inorganic phosphorus (Pi) source in grower pigs fed diets with reduction of calcium (Ca), net energy (NE), and digestible amino acids (AA) was evaluated, using growth performance and apparent total tract digestibility (ATTD) of nutrients as outcome measures. A total of 352 mixed-sex pigs (initial BW 23.4 kg) were randomized to 4 treatments, 8 pigs/pen, and 11 pens/treatment. Diets were corn-soybean meal-based and formulated by phase (grower 1, 25 to 50 and grower 2, 50 to 75 kg BW). The positive control diet (PC) provided adequate nutrients and a negative control diet (NC) was formulated without Pi (1.2 g/kg ATTD P) and reduced in Ca (-0.12 to -0.13 percentage points), NE (-32 kcal/kg), and digestible essential AA (-0.004 to -0.026 percentage points) vs. PC. Two further treatments comprised the NC plus 500 or 1,000 FTU/kg of PhyG. Data were analyzed by ANOVA, mean contrasts and orthogonal polynomial regression. Nutrient reductions in the NC reduced (P < 0.05) average daily gain (ADG) during grower 1 and overall (73 to 136 d of age), increased (P < 0.05) feed conversion ratio (FCR) during grower 1 and overall and tended to reduce (P < 0.1) average daily feed intake (ADFI) during grower 2 and overall, vs. PC. Phytase supplementation improved (P < 0.05) FCR during grower 1, ADG during grower 2 and overall, ATTD of DM and P, and tended to improve DE (P = 0.053) in a linear dose-dependent manner. PhyG at 1,000 FTU/kg resulted in growth performance (all measures, all phases) equivalent to PC. The findings demonstrate that PhyG at 1,000 FTU/kg totally replaced Pi in complex grower pig diets containing industrial co-products, compensated a full nutrient matrix reduction and maintained performance.  相似文献   

18.
Two experiments were conducted to determine the standardized ileal digestible lysine (SID Lys) requirement for weaned pigs fed with low crude protein (CP) diet. In Experiment 1, 144 pigs were fed a normal CP (20%) diet with 12.3 g/kg SID Lys and five low CP (18.5%) diets providing SID Lys levels of 9.8, 11.1, 12.3, 13.5, and 14.8 g/kg, respectively, for 28 days. Reducing dietary CP from 20% to 18.5% enhanced (< 0.05) the growth performance. The average daily gain (ADG) and gain to feed ratio (G:F) increased (linear and quadratic; < 0.05), serum urea nitrogen (SUN) decreased (linear and quadratic; < 0.05) as SID Lys increased. The SID Lys levels required to maximize ADG and optimize G:F were 12.8 and 13.1 g/kg using a curvilinear plateau model, and to minimize SUN was 13.4 g/kg using a two‐slope broken‐line model, which averaged 13.1 g/kg SID Lys. In Experiment 2, 18 pigs were used in a 12‐day N balance trial and received the same diets of Experiment 1. Total N excretion was decreased when dietary CP reduced and further decreased when SID Lys increased. Collectively, 1.5% dietary CP reduction improved the growth performance and decreased the N excretion; the optimal SID Lys requirement was at 13.1 g/kg of 8–20 kg pigs fed with 18.5% CP diet.  相似文献   

19.
The objectives of this experiment were to (a) determine the effects of fiber increase in diets on heat production (HP), (b) determine the net energy (NE) of oat bran (OB), wheat bran (WB), and palm kernel expellers (PKE) fed to growing pigs using indirect calorimetry (IC). Twenty‐four growing barrows (29.2 ± 2.6 kg) were randomly allotted to one of four diets with six replicate pigs per diet. Diets included a corn‐soybean meal basal diet and three test diets containing 30% OB, WB or PKE, respectively. During each period, pigs were individually housed in metabolism crates for 20 days, including 14 days to adapt to the diets. On day (d) 15, pigs were transferred to the open‐circuit respiration chambers for determination of daily total HP and were fed one of the four diets at 2.3MJ ME/kg body weight (BW)0.6/day. Total feces and urine were collected for the determination of digestible energy (DE) and metabolizable energy (ME) and daily total HP was measured from d 15 to d 19 and fasted on day 20 for the measurement of fasting heat production (FHP). The apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and organic matter (OM) were greater (< 0.01) in pigs fed the basal diet compared with those fed the test diets. The ATTD of neutral detergent fiber (NDF) was lower (< 0.01) in pigs fed the WB diet compared with those fed the basal, OB, or PKE diets. The ATTD of ether extract (EE) in pigs fed the PKE diet was greater (< 0.01) compared with those fed the other diets. The average total HP and FHP in pigs fed the four diets were 1261 and 787 kJ/kg BW0.6/d, respectively, and were not significantly affected by diet characteristics. The NE:ME ratio for diets ranged from 78.1 to 80.9%. The NE contents of OB, WB, and PKE were 10.93, 7.47, and 8.71 MJ/kg DM, respectively.  相似文献   

20.
Two experiments were conducted to determine the effects of crude protein (CP) level in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn (provided by zinc oxide: ZnO) on growth performance and fecal DM of nursery pigs. In experiment 1, 360 barrows (Line 200 × 400, DNA, Columbus, NE, initially 5.6 kg) were allotted to 1 of 6 dietary treatments from d 0 to 21 after weaning with 5 pigs per pen and 12 pens per treatment. Treatments included a positive control diet (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg added Zn, and 4 diets containing 4% CWB and 110 mg/kg added Zn formulated to contain 21%, 19.5%, 18%, or 16.5% CP. The 2 control diets and 21% CP CWB diet contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5%, 18%, and 16.5% CP diets contained 1.33, 1.25 and 1.20% Lys, respectively, in both phases. Pigs fed the positive control diet containing pharmacological ZnO had increased (P < 0.05) ADG and G:F compared with the negative control and the 21% CP CWB diet. Reducing CP (concurrently with SID Lys) in diets containing CWB decreased ADG and G:F (linear, P = 0.002); however, fecal DM increased (linear, P = 0.005). In experiment 2, two groups of 300 and 350 pigs, initially 7.0 and 6.2 kg, respectively, were used with 5 pigs per pen and 26 pens per treatment. The objective was to determine if adding back essential AA would improve growth performance of pigs fed the low CP diets. All dietary treatments were fed for 13 days, contained 4% CWB, and consisted of: (1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); (2) no ZnO and 21% CP; and 3 diets with no ZnO formulated to 18% CP and (3) 1.2% SID Lys; (4) 1.35% SID Lys by the addition of feed grade amino acids (AA), and (5) diet 4 with non-essential amino acids (NEAA; Gly and Glu). Pigs fed 21% CP with ZnO had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) with high levels of feed grade amino acids or those fed the reduced SID Lys (1.2%) diet. Overall, G:F was improved (P < 0.001) for pigs fed 21% CP diets and those fed the 18% CP diet with NEAA compared to pigs fed 1.2% SID Lys and pigs fed high levels of feed grade amino acids. Fecal DM was increased for pigs fed the reduced SID Lys diet. In summary, pharmacological levels of Zn improve pig growth performance, but reducing CP (and subsequently SID Lys) decreased nursery pig growth performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号