首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Vertical transmission of bovine leukemia virus (BLV) and bovine immunodeficiency virus (BIV) was investigated in five dairy cattle herds in Hokkaido, where 36.1 and 17.0% of cattle were BLV and BIV seropositive, respectively, and 9.9% of dams were co-infected with both BIV and BLV. Twenty six cases of offspring born from dams infected with only BLV (17 cases) or with both BIV and BLV (9 cases) were examined for the presence of BLV and BIV before and after colostrum feeding by polymerase chain reaction (PCR) and syncytium assay. After birth, all calves were separated immediately from their dams. The offspring born from BLV-positive dams were BLV-negative before colostrum feeding, suggesting that no transplacental transmission had occurred. Thereafter, these offspring were fed colostrum or milk from their dams, but still remained BLV-negative. The other offspring born from BLV-positive dams were fed with BLV-negative colostrum, or with pasteurized BLV-positive colostrum. All these calves remained negative for BLV infection, suggesting that in utero transmission of BLV is negligible. In the case of offspring born from dams co-infected with BLV and BIV, calves were BIV-positive before colostrum feeding at 1 day after the birth, indicating in utero transmission of BIV. After colostrum feeding from their dams, newborn calves became BLV-positive. In addition, one calf was BLV-positive even before colostrum feeding. These results suggest that BIV can be transmitted to offspring in utero, and that BLV can be transmitted through colostrum or milk if dams are infected with both BIV and BLV.  相似文献   

2.
Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought.  相似文献   

3.
Radioimmunoassay (RIA), using the virion glycoprotein antigen, was applied in an attempt to eradicate bovine leukemia virus (BLV) infection from a herd in which virtually all the adult cattle are infected. Considering that most calves born to BLV-infected cows are negative for BLV at birth and remain negative for the first several months of life, the eradication program was based on the identification and isolation of the BLV-free calves born to infected cows. Twenty-five calves raised on colostrum and milk from their infected dams were classified as BLV-free on the basis of negative results in the RIA at 6 to 8 and 9 to 11 months of age. These animals were maintained in either complete (10 calves) or partial (15 calves) isolation from infected cattle and were examined at regular intervals for BLV and BLV antibodies. With the exception of 1 calf in the group raised in partial isolation, the animals have remained free of BLV up to the time of the last evaluation, when they were 32 to 35 months old. At these ages, more than 90% of the nonisolated cattle in the herd are BLV-positive. The data also show that this eradication trial would have failed if, in the initial procedure used to classify the calves as BLV-free, the agar gel immunodiffusion test instead of the RIA had been used. Inasmuch as the 25 calves in this study were fed colostrum and milk from their dams, the fact that only 1 of the calves became infected during the 26 to 29 months of observation provides further evidence that milk-borne transmission of BLV is infrequent and perhaps inconsequential.  相似文献   

4.
Since its introduction into northern Europe in 2006, bluetongue has become a major threat to animal health. While the efficacy of commercial vaccines has been clearly demonstrated in livestock, little is known regarding the effect of maternal immunity on vaccinal efficacy. Here, we have investigated the duration and amplitude of colostral antibody-induced immunity in calves born to dams vaccinated against bluetongue virus serotype 8 (BTV-8) and the extent of colostral antibody-induced interference of vaccination in these calves. Twenty-two calf-cow pairs were included in this survey. The median age at which calves became seronegative for BTV was 84 and 112 days as assayed by seroneutralisation test (SNT) and VP7 BTV competitive ELISA (cELISA), respectively. At the mean age of 118 days, 13/22 calves were immunized with inactivated BTV-8 vaccine. In most calves vaccination elicited a weak immune response, with seroconversion in only 3/13 calves. The amplitude of the humoral response to vaccination was inversely proportional to the maternal antibody level prior to vaccination. Thus, the lack of response was attributed to the persistence of virus-specific colostral antibodies that interfered with the induction of the immune response. These data suggest that the recommended age for vaccination of calves born to vaccinated dams needs to be adjusted in order to optimize vaccinal efficacy.  相似文献   

5.
The ability of Bluetongue virus serotype 8 (BTV-8) originating from the 2006 European outbreak to cross the ovine placenta during early and mid gestation was investigated in two separate experiments. In the first experiment, 16 ewes were infected with BTV-8 at 70-75 days gestation. The foetuses were collected at 18-19 days after infection (dpi). BTV-8 could be isolated from at least two organs of 19 out of 40 lambs and from 11 out of 16 infected ewes. In the second experiment, 20 BTV-8 infected ewes in early gestation (day 40-45) were euthanized at 10 days (10 ewes) or 30 days (10 ewes) after infection. The presence of BTV could be demonstrated in two foetuses from two ewes at 10 dpi and in 4 foetuses from four ewes at 30 dpi. The main pathological findings in the foetuses in mid gestation were meningo-encephalitis and vacuolation of the cerebrum. In the foetuses early at gestation, haemorrhages in various foetal tissues and necrosis and haemorrhages in the placentomes were found. These experiments demonstrate for the first time the presence of infectious BTV in lamb foetuses at different stages of gestation, combined with a difference in transmission rate depending on the gestation stage. The high transmission rate found at mid term gestation (69%) makes our model very suitable for further research into the mechanisms of transplacental transmission and for research into the reduction of this route of transmission through vaccination.  相似文献   

6.
To determine potential mechanisms of differential disease expression in ruminants infected with bluetongue virus (BTV), clinically normal, BTV-seronegative, yearling sheep and cattle were infected subcutaneously with a standardized insect-source inoculum of BTV serotype 17 (BTV-17) (three infected and one contact control each) or animal adapted BTV serotype 10 (BTV-10) (three sheep only). BTV was isolated from peripheral blood cell components of infected sheep and cattle and all infected animals showed evidence of seroconversion by 14 days post infection (PI). Sheep infected with both serotypes of BTV developed pyrexia, oral lesions, and leukopenia which were most severe on days 7-8 PI. Analysis of peripheral blood mononuclear leukocytes with specific monoclonal antibodies and flow cytometry revealed panlymphocytopenia on day 7 PI. This response was further characterized by an increase in the CD4/CD8 ratio (greater than 3) resultant from a greater decrease in absolute numbers of circulating SBU-T8(CD8+) ("cytotoxic/suppressor") lymphocytes compared to SBU-T4 (CD4)+ ("helper") lymphocytes. SBU-T19+ lymphocytes were also decreased below baseline values on days 5-14 post infection. On day 14 PI there were increased CD8+ lymphocytes and decreased CD4/CD8 ratios (approximately 0.6) in these sheep. Clinical and hematologic changes in cattle infected with BTV-17 were minimal and consisted of mild pyrexia (rectal temperature 103 degrees F) on day 9 PI in two of three infected animals and mild leukopenia on several days PI in one animal. This leukopenia was the result of a pan T lymphocytopenia with CD4/CD8 ratios in the expected range (1-2). Similar to infected sheep, infected cattle did have a shift (decrease, approximately 0.8) in the peripheral CD4/CD8 ratio associated with an increase in circulating BoT8 (CD8)+ lymphocytes on day 14 post infection. Lymphocytes in the peripheral blood of all sheep and cattle infected with BTV-17 proliferated in vitro in response to purified BTV-17. These results confirm and extend those of previous studies that indicate species differences in the hematologic response to an equivalent BTV infection in domestic ruminants.  相似文献   

7.
In 2007, bluetongue virus serotype 8 (BTV-8) re-emerged in the Netherlands and a large number of farmers notified morbidity and mortality associated with BTV-8 to the authorities. All dead cows in the Netherlands are registered in one of the three age classes: newborn calves <3 days, calves 3 days to 1 year, and cows >1 year. These registrations result in a complete data set of dead cattle per herd per day from 2003 until 2007. In this study, the mortality associated with BTV-8 for the Dutch dairy industry was estimated, based on this census data. Default, mortality associated with BTV-8 was estimated for the confirmed notification herds. Moreover, an additional analysis was performed to determine if mortality associated with BTV-8 infection occurred in non-notification herds located in BTV-8 infected compartments. A multivariable population-averaged model with a log link function was used for analyses. Separate analyses were conducted for the three different age groups. Confirmed notification herds had an increased cow mortality rate ratio (MRR) (1.4 (95% CI: 1.2-1.6)); calf MRR (1.3 (95% CI: 1.1-1.4)); and newborn calf MRR (1.2 (95% CI: 1.1-1.3)). Furthermore, in non-notification herds in BTV-8 infected compartments, mortality significantly increased 1.1 times (95% CI: 1.1-1.1) in cows, 1.2 times (95% CI: 1.2-1.2) in calves and 1.1 times (1.1-1.1) in newborn calves compared with BTV-8 non-infected months. Using objective census data over a 5-year period, the MRRs indicated increased mortality associated with BTV-8 infection not only in herds of which the farmer notified clinical signs but also in non-notification herds in infected compartments.  相似文献   

8.
Calves (n = 2) born to dams with experimentally induced brucellosis, and calves (n = 4) born to dams with naturally occurring infection were examined by the delayed-type hypersensitivity (DTH) test for possible B. abortus infection. The results were compared with the serum agglutination test, complement fixation test, and Coombs test. Five calves were nursed by their dams for 8-10 weeks after birth. One calf was separated from its dam and fed artificial milk. Three to five months after birth, four calves tested seropositive in the serologic tests. Antibodies were detected in one calf as early as 1 week after birth. The calf fed on artificial milk was seronegative 4-5 weeks after birth. All calves reacted to the DTH test antigen from week 12 until the end of the experiment, even though serologic tests were negative. We conclude that the DTH test is a valuable technique for diagnosing Brucella in calves born to infected dams.  相似文献   

9.
The efficacy of a bivalent inactivated vaccine against bluetongue virus (BTV) serotypes 2 (BTV-2) and 4 (BTV-4) was evaluated in cattle by general and local examination, serological follow-up, and challenge. Thirty-two 4-month-old calves were randomly allocated into 2 groups of 16 animals each. One group was vaccinated subcutaneously (s/c) with two injections of bivalent inactivated vaccine at a 28-day interval, and the second group was left unvaccinated and used as control. Sixty-five days after first vaccination, 8 vaccinated and 8 unvaccinated calves were s/c challenged with 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 2, while the remaining 8 vaccinated and 8 unvaccinated animals were challenged by 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 4. Three additional calves were included in the study and used as sentinels to confirm that no BTV was circulating locally. At the time of the challenge, only one vaccinated animal did not have neutralizing antibodies against BTV-4, while the remaining 15 showed titres of at least 1:10 for either BTV-2 or BTV-4. However, the BTV-2 component of the inactivated vaccine elicited a stronger immune response in terms of both the number of virus neutralization (VN) positive animals and antibody titres. After challenge, no animal showed signs of disease. Similarly, none of the vaccinated animals developed detectable viraemia while bluetongue virus serotype 2 and 4 titres were detected in the circulating blood of all unvaccinated animals, commencing on day 3 post-challenge and lasting 16 days. It is concluded that administration of the bivalent BTV-2 and BTV-4 inactivated vaccine resulted in a complete prevention of detectable viraemia in all calves when challenged with high doses of BTV-2 or BTV-4.  相似文献   

10.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

11.
Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants that is closely related to bluetongue virus (BTV). The present study examines the outcome of an experimental EHDV-7 infection of Holstein cattle and East Frisian sheep. Apart from na?ve animals that had not been exposed to BTV, it included animals that had been experimentally infected with either BTV-6 or BTV-8 two months earlier. In addition, EHDV-infected cattle were subsequently challenged with BTV-8. Samples were tested with commercially available ELISA and real-time RT-PCR kits and a custom NS3-specific real-time RT-PCR assay. Virus isolation was attempted in Vero, C6/36 and KC cells (from Culicoides variipennis), embryonated chicken eggs and type I interferon receptor-deficient IFNAR(-/-) mice. EHDV-7 productively infected Holstein cattle, but caused no clinical signs. The inoculation of East Frisian sheep, on the other hand, apparently did not lead to a productive infection. The commercial diagnostic kits performed adequately. KC cells proved to be the most sensitive means of virus isolation, but viremia was shorter than 2 weeks in most animals. No interference between EHDV and BTV infection was observed; therefore the pre-existing immunity to some BTV serotypes in Europe is not expected to protect against a possible introduction of EHDV, in spite of the close relation between the viruses.  相似文献   

12.
Summary

Calves (n = 2) born to dams with experimentally induced brucellosis, and calves (n = 4) born to dams with naturally occurring infection were examined by the delayed‐type hypersensitivity (DTH) test for possible B. abortus infection. The results were compared with the serum agglutination test, complement fixation test, and Coombs test. Five calves were nursed by their dams for 8–10 weeks after birth. One calf was separated from its dam and fed artificial milk.

Three to five months after birth, four calves tested seropositive in the serologic tests. Antibodies were detected in one calf as early as 1 week after birth. The calf fed on artificial milk was seronegative 4–5 weeks after birth. All calves reacted to the DTH test antigen from week 12 until the end of the experiment, even though serologic tests were negative. We conclude that the DTH test is a valuable technique for diagnosing Brucella in calves born to infected dams.  相似文献   

13.
BACKGROUND: The relation between calf bovine leukosis virus (BLV) infection status and colostrum ingestion is unclear. Two conclusions have been drawn from previous studies. One suggests that colostrum ingestion transmits BLV to neonatal calves. The second suggests that colostral antibodies are protective. HYPOTHESIS: Colostrum from BLV-positive cattle is protective in naturally exposed calves. ANIMALS: Twelve colostrum-deprived Holstein calves and 20 colostrum-fed Holstein calves born to BLV-infected cows. METHODS: Prospective study. Colostrum-deprived calves were tested weekly by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) tests for BLV antibody and provirus for 12 weeks or until the animal became positive for BLV infection. Colostrum-fed calves were fed colostrum derived from BLV-positive cows. Thereafter, ELISA and PCR tests for BLV antibody and provirus were performed every other week until 2 consecutive negative ELISA tests or 1 positive PCR test was achieved. The proportion of calves that converted to BLV-positive status was calculated for each group and compared between groups by using the Fisher exact test. RESULTS: Four of 12 colostrum-deprived calves (33%) became BLV positive, whereas 0 of 20 colostrum-fed calves (0%) became BLV positive. The proportion of calves that became infected was significantly higher in the colostrum-deprived group (P = .014). CONCLUSIONS AND CLINICAL RELEVANCE: Calves born to BLV-positive cows are exposed during parturition, and a proportion of these calves will become infected with BLV. Administration of colostrum from BLV-positive cows greatly decreases the risk of infection.  相似文献   

14.
Bluetongue (BT) is an infectious disease of wild and domestic ruminants caused by bluetongue virus (BTV). BTV-4 spread through southern Spain from 2004 to 2006, whereas a BTV-1 outbreak that started in southern Spain in 2007 is still ongoing. Vaccination and movement restriction regulations are applied to domestic ruminants to control BT, but the potential reservoir role of wild European ungulates has not been clarified so far. The aim of this study was to describe the epidemiology of BTV in the wild free-ranging red deer (Cervus elaphus) population of Caba?eros National Park (CNP) in central Spain during the BTV-4 and BTV-1 epizootics, assessing the potential role of this deer population as a BTV reservoir. Blood samples from 2885 (2542 adults, 208 calves and 135 undetermined) wild red deer were collected from 2005 to 2010 in CNP and surrounding hunting estates. All sera were tested for antibodies against the BTV VP7 protein by ELISA. Ninety-four of the ELISA-positive samples were analysed by serum neutralization to detect BTV-4 and BTV-1 specific antibodies, and 142 blood samples were analysed by RT-PCR for BTV RNA. A total of 371 (12.9%) out of the 2,885 deer (35/208 calves, 307/2,542 adults, and 29/135 undetermined) were positive for antibodies against BTV. Prevalence increased in adult deer from 2005-2006 to 2008-2009, declining thereafter. No positive samples for BTV-1 were found by serum neutralization, whereas 43 deer (38 adults, four calves and one undetermined) were positive for BTV-4 specific antibodies. No BTV RNA positive deer were found by RT-PCR. Antibody detection throughout the study period suggests a maintained circulation of BTV in red deer. However, the lack of BTV RNA detection suggests a minor transmission risk to livestock.  相似文献   

15.
Bluetongue (BT) is an infectious, non-contagious disease of wild and domestic ruminants. It is caused by bluetongue virus (BTV) and transmitted by Culicoides biting midges. Since 1998, BT has been emerging throughout Europe, threatening not only the na?ve ruminant population. Historically, South American camelids (SAC) were considered to be resistant to BT disease. However, recent fatalities related to BTV in captive SAC have raised questions about their role in BTV epidemiology. Data on the susceptibility of SAC to experimental infection with BTV serotype 8 (BTV-8) were collected in an animal experiment. Three alpacas (Vicugna pacos) and three llamas (Lama glama) were experimentally infected with BTV-8. They displayed very mild clinical signs. Seroconversion was first measured 6-8 days after infection (dpi) by ELISA, and neutralising antibodies appeared 10-13 dpi. BTV-8 RNA levels in blood were very low, and quickly cleared after seroconversion. However, spleens collected post-mortem were still positive for BTV RNA, over 71 days after the last detection in blood samples. Virus isolation was only possible from blood samples of two alpacas by inoculation of highly sensitive interferon alpha/beta receptor-deficient (IFNAR(-/-)) mice. An in vitro experiment demonstrated that significantly lower amounts of BTV-8 adsorb to SAC blood cells than to bovine blood cells. Although this experiment showed that SAC are generally susceptible to a BTV-8 infection, it indicates that these species play a negligible role in BTV epidemiology.  相似文献   

16.
European Community national reference laboratories participated in two inter-laboratory comparison tests in 2006 to evaluate the sensitivity and specificity of their 'in-house' ELISA and RT-PCR assays for the detection of bluetongue virus (BTV) antibodies and RNA. The first ring trial determined the ability of laboratories to detect antibodies to all 24 serotypes of BTV. The second ring trial, which included both antisera and EDTA blood samples from animals experimentally infected with the northern European strain of BTV-8, determined the ability of laboratories to detect BTV-8 antibodies and RNA, as well as the diagnostic sensitivity of the assays. A total of six C-ELISAs, six real-time RT-PCR and three conventional RT-PCR assays were used. All C-ELISAs were capable of detecting the BTV serotypes currently circulating in Europe (BTV-1, 2, 4, 8, 9 and 16), however some assays displayed inconsistencies in the detection of other serotypes, particularly BTV-19. All C-ELISAs detected BTV-8 antibodies in cattle and sheep by 21 dpi, while the majority of assays detected antibodies by 9 dpi in cattle and 8 dpi in sheep. All the RT-PCR assays were able to detect BTV-8, although the real-time assays were more sensitive compared to the conventional assays. The majority of real-time RT-PCR assays detected BTV RNA as early as 2 dpi in cattle and 3 dpi in sheep. These two ring trails provide evidence that national reference laboratories within the EC are capable of detecting BTV antibodies and RNA and provide specificity and sensitivity information on the detection methods currently available.  相似文献   

17.
18.
19.
Infection with bluetongue virus serotype (BTV)-8 occurred in ruminants in 2006 in Central-Western Europe. The trans-placental passage of this virus has been demonstrated in naturally- and experimentally-infected cattle and in experimentally-infected sheep. Trans-placental transmission is potentially important in the ‘over-wintering’ of this virus and its subsequent impact on reproductive performance. This epidemiological study was carried out on a sheep flock in Belgium that had experienced a severe outbreak of BTV-8 infection, and where the seroprevalence had increased from 1.3% to 88% between January and November 2007. In total, 476 lambs and 26 aborted fetuses from 300 ewes, lambing at four distinct time periods, were investigated between November 2007 and May 2008.The following evidence suggested that BTV-8 infection occurred in utero: (1) positive PCR results from splenic tissue from aborted fetuses (n = 4); (2) fetal malformations suggestive of BTV infection (n = 10); (3) positive PCR results from red blood cells in-lambs (n = 7), and (4) the presence of antibody at birth in viable lambs prior to the intake of colostrum (n = 9). The evidence provided by this investigation strongly suggests that trans-placental BTV-8 infection occurs in naturally-infected sheep and the impact of infection on the reproductive performance of such a naïve flock was considerable, with up to 25% of ewes aborting and with flock fertility reduced by 50%. The contribution of in utero-infected lambs to the over-wintering of BTV appears limited.  相似文献   

20.
The objective of this study was to elucidate whether calves born to infected dams had been primed against Schistosoma mattheei antigens. Infection-confirmed, pregnant cows were randomly selected for monitoring their offspring. Pre-colostral serum was collected from the neonates for the detection of specific antibodies at birth, as they indicate a transplacental transfer of schistosome-specific antibodies and antigen. At the age of approximately 2 months, peripheral blood mononuclear cells (PBMC) of calves were analysed for specific memory by antigen-specific stimulation in vitro. Twenty-six of the 30 calves demonstrated S. mattheei-specific proliferation. All 12 seropositive-born, as well as 14 of the 18 seronegative-born (before colostrum uptake) calves displayed mattheei-specific proliferation. The results indicate that the calves were primed against S. mattheei and might explain why seropositive-born calves from infected dams are better protected against S. mattheei, and query the impermeability of the damaged ruminant placenta with consequences for antigen transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号