首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to evaluate the effects of slow-release urea (SRU) versus feed-grade urea on ruminal metabolite characteristics in steers and DMI, gain, and G:F in growing beef steers. Experiment 1 used 12 ruminally cannulated steers (529 +/- 16 kg of BW) to monitor the behavior of SRU in the ruminal environment. Compared with feed-grade urea, SRU decreased ruminal ammonia concentration (P = 0.02) and tended to increase ruminal urease activity (P = 0.06) without affecting ruminal VFA molar proportions or total concentrations (P > 0.20). After 35 d of feeding, the in situ degradation rate of SRU was not different between animals fed urea or SRU (P = 0.48). Experiment 2 used 180 Angus-cross steers (330 +/- 2.3 kg) fed corn silage-based diets supplemented with urea or SRU for 56 d to evaluate the effects on feed intake, gain, and G:F. The design was a randomized complete block with a 2 x 4 + 1 factorial arrangement of treatments. Treatments included no supplemental urea (control) or urea or SRU at 0.4, 0.8, 1.2, or 1.6% of diet DM. Over the entire 56 d experiment, there were interactions of urea source x concentration for gain (P = 0.04) and G:F (P = 0.01) because SRU reduced ADG and G:F at the 0.4 and 1.6% supplementation concentrations but was equivalent to urea at the 0.8 and 1.2% supplementation concentrations; these effects were due to urea source x concentration interactions for gain (P = 0.06) and G:F (P = 0.05) during d 29 to 56 of the experiment. The SRU reduced DMI during d 29 to 56 (P = 0.01) but not during d 0 to 28, so that over the entire experiment there was no difference in DMI for urea source (P = 0.19). These collective results demonstrate that SRU releases N slowly in the rumen with no apparent adaptation within 35 d. Supplementation of SRU may limit N availability at low (0.4%) concentrations but is equivalent to urea at 0.8 and 1.2% concentrations.  相似文献   

2.
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six catheterized Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.  相似文献   

3.
Effect of supplementation frequency and supplemental urea level on forage use (Exp. 1) and performance (Exp. 2 and 3) of beef cattle consuming low-quality tallgrass-prairie were evaluated. For Exp. 1 and 2, a 2 x 2 factorial treatment structure was used, such that two supplements (30% CP) containing 0 or 30% of supplemental degradable intake protein (DIP) from urea were fed daily or on alternate days. In Exp. 1 and 2, supplement was fed at 0.41% BW daily or at 0.83% BW (DM basis) on alternate days. For Exp. 3, a 2 x 4 factorial treatment structure was used, such that four supplements (40% CP) containing 0, 15, 30, or 45% of supplemental DIP from urea were fed daily or 3 d/wk. Supplements were group-fed at 0.32% BW daily or at 0.73% BW (DM basis) 3 d/wk. In Exp. 1, 16 Angus x Hereford steers (initial BW = 252 kg) were blocked by BW and assigned to treatment. Urea level x supplementation frequency interactions were not evident for forage intake, digestion, or rate of passage. Forage OM intake (OMI) and total digestible OMI (TDOMI) were not significantly affected by treatment. Total-tract digestion of OM (P = 0.03) and NDF (P = 0.06) were greater for steers supplemented daily. In Exp. 2, 48 Angus x Hereford cows (initial BW = 490 kg) grazing winter tallgrass prairie were used. Significant frequency x urea interactions were not evident for BW and body condition (BC) change; similarly, the main effects were not substantive for these variables. In Exp. 3, 160 Angus x Hereford cows (initial BW = 525 kg) grazing dormant, tallgrass prairie were used. Supplement refusal occurred for cows fed the highest urea levels, particularly for cows fed the supplement with 45% of the DIP from urea 3 d/wk, and supplement refusal increased closer to calving. A frequency x urea interaction (P = 0.02) was observed for prepartum BW changes. As supplemental urea level increased, prepartum BW loss increased quadratically (P = 0.02); however, a greater magnitude of loss occurred when feeding supplements containing > or = 30% of DIP from urea 3 d/ wk. Cumulative BC change followed a similar trend. In conclusion, moderate protein (< or = 30% CP) supplements with < or = 30% of supplemental DIP from urea can be fed on alternate days without a substantive performance penalty. However, infrequent feeding of higher protein (> 30% CP) supplements with significant urea levels (> 15% of DIP from urea) may result in decreased performance compared with lower urea levels.  相似文献   

4.
Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of DM) and with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic O2 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.  相似文献   

5.
Effects of growth hormone-releasing factor (GRF) and intake on net nutrient metabolism by portal-drained viscera (PDV) and liver were measured in six growing Hereford x Angus steers fed a 75% concentrate diet at two intakes in a split-plot design with 4-wk saline or GRF injection periods within 8-wk intake periods. Daily rations were fed as 12 equal meals delivered every 2 h. Steers were injected s.c. for 21 d with either saline or 10 micrograms/kg of (1-29)NH2 human GRF at 12-h intervals. Six hourly measurements of net nutrient flux (venous-arterial concentration different [VA] x blood flow) across PDV and liver were obtained 8 to 10 d after injections began. Energy and N balances were measured using respiration calorimetry during the last week of injections. Greater intake increased blood flow (P less than .01) and net visceral release or removal of most nutrients (P less than .10). Exceptions included a decrease (P less than .10) in net PDV glucose release with greater intake in saline-treated steers and a decrease (P less than .01) in net liver removal of lactate with greater intake. Treatment of steers with GRF decreased net liver removal of alpha-amino N (AAN; P less than .05) and ammonia N (NH3N; P less than .10) and release of urea N (UN; P less than .05), increased liver release of glutamate (P less than .05), and decreased net PDV release of NH3 N (P less than .10). Decreased liver extraction ratio for AAN in GRF-treated steers (P less than .01) implies a direct effect of GRF treatment on liver metabolism separate from changes in liver AAN supply. Proportions of body N retention not accounted for by net total splanchnic AAN release increased with GRF treatment. This suggests a change in peripheral utilization of dietary AAN supply or an increase in total splanchnic N retention.  相似文献   

6.
In Exp. 1, 4 ruminally and duodenally cannulated beef steers (444.0 +/- 9.8 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial treatment arrangement to evaluate the effects of forage type (alfalfa or corn stover) and concentrated separator byproduct (CSB) supplementation (0 or 10% of dietary DM) on intake, site of digestion, and microbial efficiency. In Exp. 2, 5 wethers (44 +/- 1.5 kg) were used in a 5 x 5 Latin square to evaluate the effects of CSB on intake, digestion, and N balance. Treatments were 0, 10, and 20% CSB (DM basis) mixed with forage; 10% CSB offered separately from the forage; and a urea control, in which urea was added to the forage at equal N compared with the 10% CSB treatment. In Exp. 1, intakes of OM and N (g/kg of BW) were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had greater (P < 0.08) OM and N intakes (g/kg of BW) compared with 0% CSB-fed steers. Total duodenal, microbial, and nonmicrobial flows of OM and N were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had increased (P = 0.02) duodenal microbial flow (N and OM) compared with 0% CSB-fed steers. Forage x CSB interactions (P < 0.01) existed for total tract N digestibility; alfalfa with or without CSB was similar (67.4 vs. 69.5), whereas corn stover with CSB was greater than corn stover without CSB (31.9 vs. -23.9%). True ruminal OM digestion was greater (P < 0.09) in steers fed alfalfa vs. corn stover (73.0 vs. 63.1%) and in steers fed 10 vs. 0% CSB (70.3 vs. 65.8%). Microbial efficiency was unaffected (P > 0.25) by forage type or CSB supplementation. In Exp. 2, forage and total intake increased (linear; P < 0.01) as CSB increased and were greater (P < 0.04) in 10% CSB mixed with forage compared with 10% CSB fed separately. Feeding 10% CSB separately resulted in similar DM and OM apparent total tract digestibility compared with 10% CSB fed mixed. Increasing CSB led to an increase (linear; P < 0.02) in DM, OM, apparent N digestion, and water intake. Nitrogen balance (g and percentage of N intake) increased (linear; P < 0.08) with CSB addition. Feeding 10% CSB separately resulted in greater (P < 0.01) N balance compared with 10% CSB fed mixed. Using urea resulted in similar (P = 0.30) N balance compared with 10% CSB fed mixed. Inclusion of CSB improves intake, digestion, and increases microbial N production in ruminants fed forage-based diets.  相似文献   

7.
In 2 experiments, 6 ruminally cannulated Holstein steers (205 +/- 23 and 161 +/- 14 kg initial BW in Exp. 1 and 2, respectively) housed in metabolism crates were used in 6 x 6 Latin squares to study the effects of excess AA supply on Met (Exp. 1) and Leu (Exp. 2) use. All steers received a diet based on soybean hulls (DMI = 2.66 and 2.45 kg/d in Exp. 1 and 2, respectively); ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as abomasal infusion of 300 g of glucose/d to provide energy without increasing the microbial protein supply; and abomasal infusions of a mixture of all essential AA except Met (Exp. 1) or Leu (Exp. 2). Periods were 6 d, with 2-d adaptations and 4 d to collect N balance data. All treatments were abomasally infused. In Exp. 1, treatments were arranged as a 2 x 3 factorial, with 2 amounts of l-Met (0 or 4 g/d) and 3 AA supplements (no additional AA, control; 100 g/d of nonessential AA + 100 g/d of essential AA, NEAA + EAA; and 200 g/d of essential AA, EAA). Supplemental Met increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Retained N increased (P < 0.01) with NEAA + EAA only when 4 g/d of Met was provided, but it increased (P < 0.01) with EAA with or without supplemental Met. Both AA treatments increased (P < 0.01) plasma urea and serum insulin. Plasma glucose decreased (P = 0.03) with supplemental Met. In Exp. 2, treatments were arranged as a 2 x 3 factorial with 2 amounts of L-Leu (0 or 4 g/d) and 3 AA supplements (control, NEAA + EAA, and EAA). Supplemental Leu increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Both AA treatments increased (P < 0.01) retained N, and they also increased (P < 0.01) urinary N, urinary urea N, and plasma urea. Serum insulin increased (P = 0.06) with supplemental Leu and tended (P = 0.10) to increase with both AA treatments. Supplementation with excess AA improved Met and Leu use for protein deposition by growing cattle.  相似文献   

8.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

9.
Our objective was to determine the impact of supplemental energy, N, and protein on feed intake and N metabolism in sheep fed low-quality forage. Six Texel x Dorset wethers (16 mo, 63+/-3.1 kg) fitted with mesenteric, portal, and hepatic venous catheters were used in a Latin square design with five sampling periods. Lambs were fed chopped bromegrass hay (4.3% CP) to appetite, and a mineral mixture was given. Treatments were 1) control (no supplement), 2) energy (cornstarch, molasses, and soybean oil), 3) energy plus urea, 4) energy plus soybean meal (SBM), and 5) energy plus ruminally undegraded protein (RUP; 50:50 mixture of blood and feather meals). Supplements were fed once daily (.3% BW). Forage DMI did not differ (P = .13), but intake of total DM, N, and energy differed (P<.01) among treatments. Apparent digestibilities of DM, OM, and energy were less (P<.01) for control than for other treatments. Apparent N digestibility was least for control and energy and greatest for urea treatments (P<.05). As a result, digested DM, OM, and energy ranked from least to greatest were control, energy, urea, SBM, and RUP, respectively. Apparently digested N was 2.44, 2.24, 11.39, 9.80, and 11.25 g/d for control, energy, urea, SBM, and RUP (P<.01; SE = .10). Hour of sampling x treatment was a significant source of variation for blood concentrations of ammonia N and urea N, net ammonia N release from portal-drained viscera (PDV) and liver, and urea N release from splanchnic tissues. These results were primarily because patterns through time for the urea treatment differed from the other treatments. Net PDV release of alpha-amino N did not differ (P>.05) between control and energy treatments. Values for those treatments were about one-half of values for urea, SBM, and RUP treatments, which did not differ (P>.05). Hepatic net uptake (negative release) of alpha-amino N for control was 53% of values for the other treatments, which did not differ (P>.05). Net release of alpha-amino N from splanchnic tissues did not differ among treatments (P = .34) and did not differ from zero. The data indicate that arterial alpha-amino N concentration, hepatic alpha-amino N uptake, PDV release and hepatic uptake of ammonia N, and hepatic release of urea N were greater in energy than in control treatments. We also found that hepatic uptake of alpha-amino N was 187% of PDV release in energy-supplemented lambs. These results suggest that energy supplementation of a protein-limiting diet stimulated mobilization of body protein.  相似文献   

10.
Two experiments evaluated the effects of conventional and natural feedlot management systems (MS) on ractopamine-HCl (RAC) response in yearling steers. Feedlot performance, carcass characteristics, skeletal muscle gene expression, and circulating IGF-I concentrations were measured. The conventional system included a combined trenbolone acetate and estradiol implant, Revalor-S (IMP), as well as monensin-tylosin feed additives (IA). Treatments were arranged in a 2 x 2 factorial and included: 1) natural (NAT): no IMP-no IA, no RAC; 2) natural plus (NAT+): no IMP-no IA, RAC; 3) conventional (CON): IMP-IA, no RAC; and 4) conventional plus (CON+): IMP-IA, RAC. In Exp. 1, one hundred twenty crossbred steers (initial BW = 400 +/- 26 kg) were allotted randomly to treatment in a randomized complete block design (BW was blocking criteria); pen was the experimental unit. In Exp. 2, twenty-four individually fed crossbred steers (initial BW = 452 +/- 25 kg) were used in a randomized complete block design (BW was blocking criteria) and assigned to the same treatments as Exp. 1, with 6 steers/treatment. In Exp. 2, serum was harvested on d 0 and 31 and within the 28-d RAC feeding period, at d 0, 14, and 28. Longissimus biopsy samples were taken on d 0, 14, and 28 of the RAC feeding period for mRNA analysis of beta-adrenergic receptors and steady-state IGF-I mRNA. In Exp. 1, ADG, G:F, final BW, and HCW were greatest for CON+ (P < 0.01). During the final 37 d, RAC increased ADG (P = 0.05) and increased overall G:F (P = 0.02). Marbling score was reduced (P = 0.02), and yield grade was improved with RAC (P = 0.02), but RAC did not affect dressing percentage (P = 0.96) or HCW (P = 0.31). In Exp. 2, MS x RAC interactions were detected in ADG and G:F the last 28 d, overall ADG and overall G:F, final BW, and HCW (P < 0.01). Dressing percentage, yield grade, and marbling score were not altered by MS or RAC (P > 0.10). Circulating IGF-I concentration was increased on d 31 by the conventional MS, and concentration was greater throughout the study than NAT steers (P < 0.01). Circulating IGF-I concentrations were not changed by RAC (P = 0.49). Abundance of beta(1)-AR mRNA tended to increase (P = 0.09) with RAC, but RAC did not affect beta(2)-AR, beta(3)-AR, or IGF-I mRNA (P > 0.40). Management system did not affect beta(1)-AR, beta(2)-AR, beta(3)-AR, or IGF-I mRNA (P > 0.18), yet a trend (P = 0.06) for MS x RAC for beta(2)-AR mRNA was detected. These results indicate that response to RAC is affected by feedlot management practices.  相似文献   

11.
Two experiments were conducted to investigate the effects of proportion of dietary corn silage during periods of feed restriction on performance of steers. In Exp. 1, Simmental x Angus steer calves (n = 107; initial BW = 273 +/- 3.8 kg) were allotted to 12 pens with eight or nine steers/pen and four pens/treatment. Periods of growth were 273 to 366 kg BW (Period 1), 367 to 501 kg BW (Period 2), and 502 to 564 kg BW (Period 3). In two of the dietary regimens, steers were given ad libitum access to feed throughout the experiment and were fed either a 15% corn silage diet in each period or an 85, 50, and 15% corn silage diet in Periods 1, 2, and 3; respectively. In the third feeding regimen, a programmed intake feeding regimen was used. Steers were fed a 15% corn silage diet in each period. However, feed intake was restricted to achieve a predicted gain of 1.13 kg/d in Period 1 and 1.36 kg/d in Period 2, and feed was offered for ad libitum consumption in Period 3. For the entire experiment, ADG was similar (P = 0.41) among treatments and feed efficiency was lower (P < 0.10) for steers in the corn silage regimen than for steers in the programmed intake and ad libitum regimens. In Exp. 2, Simmental x Angus steer calves (n = 106; initial BW = 233 +/- 2 kg) were allotted by BW to 12 pens (three pens/treatment) and fed in three periods similar to those described in Exp. 1. Four feeding regimens were investigated: 1) AL; steers were offered a 15% corn silage diet for ad libitum consumption in all three periods; 2) PI; DMI was programmed to achieve gains as described in Exp. 1; 3) CS-HLL; programmed intake as described above except diets contained 85, 15, and 15% corn silage in Periods 1, 2, and 3, respectively; and 4) CS-HIL; same feeding regimens as CS-HLL, except diets contained 85, 50, and 15% corn silage in Periods 1, 2, and 3, respectively. Steers were given ad libitum access to feed in Period 3. Overall ADG was lower (P < 0.05) for steers in the CS-HLL and CS-HIL feeding regimens than for steers in the AL and PI regimens; feed efficiency was greatest for steers in the PI regimen. Few effects of feeding regimen on carcass characteristics were observed.  相似文献   

12.
Two experiments were conducted with ruminally cannulated Holstein steers to determine effects of N supply on histidine (His) utilization. All steers received 2.5 kg DM/d of a diet based on soybean hulls; abomasal infusion of 250 g/d amino acids, which supplied adequate amounts of all essential amino acids except His; abomasal infusion of 300 g/d glucose; and ruminal infusion of 180 g/d acetate, 180 g/d propionate, and 45 g/d butyrate. Both experiments were 6 x 6 Latin squares with treatments arranged as 3 x 2 factorials. No significant (P < 0.05) interactions between main effects were noted for N balance criteria in either Exp. 1 or 2. For Exp. 1, steers (146 +/- 7 kg) received 0, 1.5, or 3 g/d of L-His infused abomasally in combination with 0 or 80 g/d urea infused ruminally to supply a metabolic ammonia load. Urea infusions increased (P < 0.05) ruminal ammonia concentration from 8.6 to 19.7 mM and plasma urea from 2.7 to 5.1 mM. No change in N retention occurred in response to urea (35.1 and 37.1 g/d for 0 and 80 g/d urea, respectively, P = 0.16). Retained N increased linearly (P < 0.01) with His (31.5, 37.8, and 39.0 g/d for 0, 1.5, and 3 g/d L-His, respectively). Efficiency of deposition of supplemental His between 0 and 1.5 g/d averaged 65%. In Exp. 2, steers (150 +/- 6 kg) were infused abomasally with 0 or 1 g/d of L-His in combination with no additional amino acids (Control), 100 g/d of essential + 100 g/d of nonessential amino acids (NEAA+EAA), or 200 g/d of essential amino acids (EAA). Retained N increased (P = 0.02) from 34.2 to 38.3 g/d in response to His supplementation. Supplementation with NEAA+EAA increased (P < 0.05) N retention (33.9, 39.3, and 35.6 g/d for Control, NEAA+EAA, and EAA, respectively), likely in response to increased energy supply. Plasma urea concentrations of steers receiving NEAA+EAA (3.8 mM) and EAA (3.8 mM) were greater (P < 0.05) than those of Control steers (2.7 mM). The average efficiency of His utilization was 63%, a value similar to the value of 65% observed in Exp. 1, as well as the 71% value predicted by the Cornell net carbohydrate and protein system model. Under our experimental conditions, increases in N supply above requirements, as either ammonia or amino acids, did not demonstrate a metabolic cost in terms of His utilization for whole-body protein deposition by growing steers.  相似文献   

13.
Changes in net portal and hepatic nutrient flux and oxygen consumption in response to 3-d abomasal casein infusions were studied in seven multicatheterized beef steers. Steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals. Blood flow (para-aminohippurate dilution) and net flux (venoarterial concentration difference x blood flow) across portal-drained viscera (PDV) and hepatic tissues were measured on d 3 of the abomasal infusions. In two experiments, the response to 300 (300C) and 150 (150C) g casein/d were compared, respectively, to a control water infusion. The 300C increased (P less than .05) arterial blood concentrations of alpha-amino N (AAN), urea N and ammonia; 150C increased (P less than .05) arterial urea N. Urinary urea N excretion was increased (P less than .01) by 300C and 150C. Although 300C increased net PDV release of AAN (P less than .07) and alanine (P less than .10), there was no net change in total splanchnic (TSP) flux due to an increased net hepatic uptake of AAN (P less than .01) and alanine (P less than .05). Net PDV glucose flux was decreased (P less than .05) by 300C, but net hepatic glucose flux was not affected by either level of casein. The 150C increased TSP oxygen consumption (P less than .05) and hepatic oxygen extraction (P less than .10). Approximately 26 and 30% of the casein N infused abomasally appeared in the portal blood as AAN for 150C and 300C, respectively. The sum of net PDV ammonia and AAN fluxes accounted for 47 and 88% of the N infused for 150C and 300C, respectively. These data emphasize the importance of intestinal and liver tissues in regulating the flux of nitrogenous compounds absorbed from the diet.  相似文献   

14.
We hypothesized that oscillating dietary CP would improve N retention by increasing the uptake of endogenous urea N by portal drained viscera (PDV), compared with static dietary CP regimens. Chronic indwelling catheters were surgically implanted in the abdominal aorta, a mesenteric vein, a hepatic vein, and the portal vein of 18 growing Dorset x Suffolk wethers (44.6 +/- 3.6 kg of BW). Wethers had ad libitum access to the following diets in a completely randomized block design: 1) Low (9.9% CP), 2) Medium (12.5% CP), or 3) Low and High (14.2% CP) diets oscillated on a 48-h interval (Osc). Dry matter intake was greater (P = 0.04) for the Osc diet (1,313 g/d) than the Low diet (987 g/d) and was intermediate for the Medium diet (1,112 g/d). Nitrogen intake was not different between the wethers fed the Osc (25.4 g/d) and Medium diets (22.2 g/d), but was lower (P < 0.01) in wethers fed the Low diet (16.0 g/d). Wethers fed the Osc diet (6.7 g/d) retained more (P < 0.04) N than did those fed the Medium diet (4.0 g/d). Hepatic arterial blood flow was not different (P = 0.81) between wethers fed the Osc (31 L/h) or Medium diet (39 L/h) but was greater (P = 0.05) in wethers fed the Low diet (66 L/h). Net release of alpha-amino N by the PDV did not differ (P = 0.90) between the Low (37.8 mmol/h) and Medium diets (41.5 mmol/h) or between the Osc (53.0 mmol/h) and Medium diets (P = 0.29). Net PDV release of ammonia N was less (P = 0.05) for the Low diet than for the Medium diet, and this was accompanied by a similar decrease (P = 0.04) in hepatic ammonia N uptake. Urea N concentrations tended to be (P = 0.06) less in arterial, portal, and hepatic blood in wethers fed the Low diet compared with those fed the Medium diet. Wethers fed the Osc diet tended (P = 0.06) to have a greater PDV uptake of urea N than did those fed the Medium diet, but there was no difference between the Osc and Medium diets (P = 0.72) in hepatic urea N release. Net PDV uptake of glutamine tended to be greater (P < 0.07) in wethers fed the Low diet (6.7 mmol/h) than those fed the Medium diet (2.7 mmol/h). These data indicate that oscillating dietary protein may improve N retention by increasing endogenous urea N uptake by the gastrointestinal tract.  相似文献   

15.
Two experiments were conducted to determine the effect of degree of corn processing on urinary ammonia and urea N concentrations, serum metabolite and insulin concentrations, and feedlot performance of steers. Corn was processed by either dry rolling to .54 kg/L bulk density (DR42; 42 lb/bushel) or steam flaking to a bulk density of .36 or .26 kg/L (28 [SF28] and 20 [SF20] lb/bushel, respectively). Degrees of processing were selected to generate final products with 25, 50, or 75% enzymatically available starch. Available starch, expressed as a percentage of total starch for DR42, SF28, and SF20, averaged 24.5, 56.4, and 81.1% in Exp. 1 and 22.4, 60.1, and 80.1% in Exp. 2. In Exp. 1, 29 steers were housed in individual outdoor pens and adapted to a 90% concentrate diet over 21 d. Whole blood and urine were collected before feeding and at 4 and 8 h after feeding on d 0, 7, 14, 21, 28, 84, and 140. Daily DMI decreased linearly (P < .03) as degree of processing increased, whereas water intake did not differ (P > .42) among treatments. Average daily gain, ADG:DMI, and hot carcass weight responded quadratically (P < .04) to an increasing degree of processing. Urinary ammonia and urea N concentrations were not influenced (P > .30) by degree of processing. Whole blood packed cell volume, serum glucose, creatinine, D(-)-lactate, L(+)-lactate, and lactate dehydrogenase activity did not differ (P > .15) among treatments. For insulin data, ME intake on the day of sample collection was evaluated as a covariate. On d 28, serum insulin (2.49, 2.95, and 1.80+/-.33 ng/mL) responded quadratically (P = .04) as degree of processing increased. Serum insulin did not differ (P = .52) on d 84, whereas insulin (5.77, 7.51, and 4.12+/-.98 ng/mL) responded quadratically (P = .02) on d 140. In Exp. 2,216 steers were blocked by BW into two blocks (18 pens; 12 steers/pen) and assigned to the same treatments used in Exp. 1. Daily DMI and carcass weight responded quadratically (P < .05), whereas ADG and ADG:DMI increased linearly (P < .04) with increasing degree of processing. Results suggest that the degree of corn processing influences serum insulin concentrations of feedlot steers; however, serum metabolites, urinary nitrogen composition, and carcass characteristics were generally not affected by degree of corn processing.  相似文献   

16.
Effects of a 3-d mesenteric vein n-butyrate infusion (25 mmol/h) on net metabolism of nutrients by portal-drained viscera (PDV) and liver were measured in six Hereford x Angus steers. Steers were fed a pelleted 75% concentrate: 25% alfalfa diet at 135 kcal of ME/kg BW.75. Six measurements of blood flow and net metabolism of nutrients were obtained at hourly intervals immediately before beginning and ending n-butyrate infusion. Measurements were obtained during two trials, with three steers (457 kg BW, 28 mo of age in Trial 1; 478 kg BW, 19 mo of age in Trial 2) in each trial. The infusion of n-butyrate increased (P less than .01) net PDV release of n-butyrate. Infusion increased net liver removal of n-butyrate (P less than .01) and L-lactate (P less than .02) and release of beta-hydroxybutyrate (BOHB; P less than .02) and increased (P less than .03) liver extraction ratio for alanine. Net total splanchnic (PDV plus liver) release of n-butyrate (P less than .03) and BOHB (P less than .01) were increased, and net total splanchnic release of L-lactate (P less than .05) and propionate (P less than .07) were decreased by n-butyrate infusion. The infusion of n-butyrate decreased (P less than .01) net PDV release and liver removal of propionate in five of six steers. Infusion had no effect (P greater than .10) on insulin and glucagon concentration or net flux. In a companion in vitro study, L-lactate metabolism to glucose and CO2 by calf hepatocytes was decreased (P less than .08) by n-butyrate addition (2.5 mM). Effects of n-butyrate on liver L-lactate and alanine metabolism suggest that pyruvate carboxylase activity was increased, but our study failed to show a consistent effect of n-butyrate infusion on liver glucose production.  相似文献   

17.
Two digestion studies were conducted to evaluate the use of pretanned leather shavings as a component of a protein supplement. In Exp. 1, the in situ and in vitro disappearance of pretanned leather shavings and soybean meal was evaluated. Results revealed that less than 18.4% of the pretanned leather shavings was solubilized and disappeared when exposed to McDougall's buffer for 48 h, but there was 90.0% disappearance with 48-h exposure to a .1 N HCl/pepsin treatment and 97.0% disappearance with exposure to a two-stage digestion. In situ disappearance following 72 h in the rumen allowed 6.8% disappearance. Thus, leather shavings seem to be relatively indigestible in the rumen, but postruminal digestion may be possible. In Exp. 2, six Angus x Holstein steers, fitted with ruminal and duodenal cannulas, were used in a replicated 3 x 3 Latin square to evaluate ruminal and digestion effects of the following supplements combined with fescue hay at 1.7% of BW (DM basis): no supplementation (control); supplementation intraruminally with soybean meal at .07% of BW (as-fed basis); and supplementation intraruminally with a combination of soybean meal and pretanned leather shavings (17:8 ratio) at .05% of BW (isonitrogenous to soybean meal; as-fed basis). Ruminal fluid passage rate was greater and fluid turnover time was shorter in steers fed leather shavings than in those fed soybean meal (P = .10). Ruminal pH was lower (P = .04) for supplemented steers than for control steers and ruminal NH3 N concentration was greater (P = .01) in steers fed soybean meal than in those fed leather shavings. Total VFA concentration was increased (P = .02) by supplementation. Supplementation with soybean meal increased (P < .05) ruminal molar proportions of butyrate, valerate, and isovalerate compared with leather shavings. Duodenal OM flow and OM disappearing in the intestines were increased by supplementation (P < .10), but not by the type of supplement fed (P > .10). Ruminal digestion of OM and total tract OM digestion were unaffected (P > .10) by supplementation and the type of supplement fed. Flow and digestion of NDF were unaffected (P > .10) by the treatments. Flow of N and the quantity of N disappearing in the intestines were increased (P < .05) by supplementation but did not differ (P > .10) between supplementation groups. Microbial N flow, N utilization for net microbial protein synthesis, and ruminal N disappearance were unaffected (P > .10) by supplementation and the type of supplement provided. Combining pretanned leather shavings with soybean meal seemed to have no deleterious effects on digestion or fermentation and to allow for escape of some N to the lower tract.  相似文献   

18.
Six ruminally cannulated Holstein steers (initial BW = 189 +/- 11 kg) housed in metabolism crates were used in a 6 x 6 Latin square to study effects of ruminal ammonia load on Leu utilization. All steers received a diet based on soybean hulls (2.7 kg of DM/d), ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as an abomasal infusion of 300 g of glucose/d to provide energy without increasing microbial protein supply and an abomasal infusion of a mixture (238 g/d) of all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial and included Leu (0, 4, or 8 g/d) infused abomasally and urea (0 or 80 g/d) infused ruminally. Abomasal Leu infusion linearly decreased (P < 0.05) both urinary and fecal N excretions and linearly increased (P < 0.05) retained N, but the decreases in urinary N excretion in response to Leu tended (P = 0.07) to be greater, and the increases in retained N in response to Leu were numerically greater in the presence of the urea infusion. Although urea infusions increased (P < 0.05) plasma urea concentrations, urinary N excretions, and urinary urea excretions, retained N also was increased (P < 0.05). The efficiency of deposition of supplemental Leu ranged from 24 to 43% when steers received 0 or 80 g of urea/d, respectively. Under our experimental conditions, increasing ammonia load improved whole-body protein deposition in growing steers when Leu supply was limiting.  相似文献   

19.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

20.
The effect of feed intake level (.6, 1.0, and 1.6 x maintenance energy and protein requirements, M) on splanchnic (portal-drained viscera [PDV] plus liver) metabolism was evaluated in six multicatheterized beef steers (398 +/- 27 kg), using a double 3 x 3 Latin square design. On the last day of each 21-d experimental period, six hourly blood samples were collected from arterial, portal, and hepatic vessels. Due to catheter patency, PDV fluxes were measured on five steers, and liver and splanchnic fluxes on four steers. Increasing intake elevated (P < .01) splanchnic release of total (T) amino acids (AA), through increases (P < .01) in PDV release of both essential (E) and nonessential (NE) AA, in spite of a tendency (P < .20) for increased liver removal of NEAA. The PDV release of AA N represented 27 and 51% of digested N for 1.0 and 1.6 x M, respectively. At 1.0 and 1.6 x M, the liver removed 34% of total AA released by the PDV. For individual AA, portal flux of most EAA increased (P < .05) with feed intake, and the increase (P < .10) in splanchnic flux was accompanied by increased arterial concentration for all EAA except histidine, lysine, and methionine. This suggests that these might be limiting AA for this diet. On a net basis, most individual NEAA were released by the PDV except glutamate and glutamine, which were removed by the digestive tract. There was a net removal of NEAA by the liver, except for aspartate and especially glutamate, which were released. Ammonia release by the PDV tended (P < .20) to increase with intake and represented 69, 53, and 45% of digested N at .6, 1.0, and 1.6 x M, respectively. Urea removed by the PDV, unaffected by intake, represented 32, 33, and 21% of the digested N. Arterial glucose concentration increased linearly (P < .01) with greater intake, whereas net liver and splanchnic glucose release increased in a quadratic (P < .05) manner. Net PDV glucose release represented 26% of net glucose hepatic release at 1.6 x M. Intake elevated (P < .10) both insulin and glucagon arterial concentrations, resulting from a larger increment of portal release (P < .01) than hepatic removal (P < .05). Intake-based variations in IGF-I and NEFA arterial concentrations (P < .05) were not related to changes in splanchnic metabolism. These results clearly show the crucial role of the splanchnic tissues in regulating the profile and quantity of AA and concentrations of glucose and pancreatic hormones reaching peripheral tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号