首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The collagen architecture of M. iliotibialis lateralis in chicken was observed under the scanning electron microscope after muscle maceration in NaOH. 2. Immunohistochemical methods showed Type I and III collagens to be distributed over both perimysium and endomysium. 3. Thick perimysium around secondary myofibre fasciculi was composed of many large longitudinal collagen bundles and a few small circumferential bundles. In contrast, thin perimysium around primary myofibre fasciculi showed mainly circumferential bundles. 4. Endomysium had a honeycomb-like structure and consisted of a fine collagen mesh, its main fibre striation being circumferential. 5. It is suggested that functional demand differs between thick perimysium and thin endomysium.  相似文献   

2.
We studied structural changes in the endomysium and perimysium during postmortem aging of pork using the cell‐maceration/scanning electron microscope method. Immediately post mortem, endomysia sheaths that house individual muscle fibers displayed a honeycomb‐like structure. The sheaths of the endomysium consisted of tightly arranged collagen fibrils in a random network. The perimysium comprised several layers of wavy sheets made up of tightly bundled collagen fibers. While the structure of the intramuscular connective tissues remained almost unchanged up to five days post mortem, the endomysium had resolved into individual collagen fibrils, and the thick sheets of the perimysium had separated into collagen fibers and fibrils at 8 days post mortem. These results provide direct evidence for structural weakening of the endomysium and perimysium during postmortem aging of pork. The shear‐force value of raw pork decreased rapidly within six days post mortem and then decreased slowly until 14 days post mortem. Since the rapid increase in tenderness is mainly due to structural weakening of myofibrils, we conclude that the disintegration of the endomysium and perimysium contributes to tenderization of pork during extended postmortem aging.  相似文献   

3.
1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.  相似文献   

4.
Skeletal muscle is mainly composed of myofibers and intramuscular connective tissue. Bundles composed of many myofibers, with each myofiber sheathed in connective tissue called the endomysium, are packed in the perimysium, which occupies the vast bulk of the intramuscular connective tissue. The perimysium is a major determination factor for muscle texture. Some studies have reported that collagen peptide (Col-Pep) ingestion improves the connective tissue architecture, such as the tendon and dermis. The present study evaluated the effects of Col-Pep ingestion on the chicken iliotibialis lateralis (ITL) muscle. Chicks were allocated to three groups: the 0.15% or 0.3% Col-Pep groups and a control group. Col-Pep was administered by mixing in with commercial food. On day 49, the ITL muscles were analyzed by morphological observation and the textural property test. The width of the perimysium in the 0.3% Col-Pep group was significantly larger than other two groups. Although scanning electron microscopic observations did not reveal any differences in the architecture of the endomysium, elastic improvement of the ITL muscle was observed as suggested by an increase of the width of perimysium and improved rheological properties. Our results indicate that ingestion of Col-Pep improves the textural property of ITL muscle of chickens by changing structure of the perimysium.  相似文献   

5.
The total amount of collagen, the relative distributions of types I and III collagens in perimysium and endomysium, and the collagen fiber architecture were compared among the pectoralis (PT), iliotibialis lateralis (ITL) and puboischiofemoralis (PIF) muscles in Silky cocks. All of the myofibers in the PT muscle were type IIB, the myofibers in the ITL muscle were divided into type IIA, 41.7% and IIB, 58.3%, and the PIF muscle was composed of type I, 24.6%; IIA, 64.6%; and transitional, 10.8%. The total amount of collagen differed significantly among the PT (2.92 mg/g), PIF (4.20 mg/g) and ITL (8.06 mg/g) material, where only the PIF was a whole muscle with epimysium. On the image analysis of the immunohistochemical preparations, the percentage area of perimysial collagen to the total area in each type differed significantly among the PIF, PT and ITL muscles, where it was 26.8, 50.0 and 74.4% for the type I collagen and 27.4, 32.9 and 61.7% for the type III collagen, respectively. In the scanning electron micrography of the perimysium in macerated preparations, thick bundles of collagen fibers were observed in the ITL muscle, thinner but broad platelets in the PT muscle, and a coarse tissue of thinner collagen fibers in the PIF muscle. However, the endomysial fabric of collagen fibrils was similar among the muscles. Small, transverse collagen fibers, which branched off from the thicker perimysia, occupied narrow interendomysial spaces and separated the primary myofiber fasciculi. The results indicate that the ITL muscle, localized in the distorted and overextended part of the leg and subject to strong external forces, had highly developed perimysial collagen fiber bundles, but the ITL endomysial collagen architecture was similar to that of the PT and PIF muscles.  相似文献   

6.
The effect of skeletal muscle decorin on collagen fibrillogenesis was investigated, in order to provide background for understanding the functions of decorin in skeletal muscle. The self‐assembly of type I and III collagen with the addition of decorin or the core protein of decorin from bovine neonatal skeletal muscle was monitored using a spectrophotmeter. Time course changes in the absorbance of collagen solutions showed typical sigmoidal curves composed of three phases. The time of the initial phase was not different between the collagen solution with decorin and that without decorin. The increase rate of the absorbance in the second phase decreased with concentration of decorin added in collagen solutions. Similar effects on fibrillogenesis of type I and III collagens were observed when the core protein of decorin was added in collagen solutions. These results suggest that regulation of collagen fibrillogenesis by decorin depends on its core protein. The networks of reconstructed collagen fibrils with decorin were looser than those without decorin. Bovine skeletal muscle decorin could participate in the regulation of collagen fibrillogenesis and in the arrangement of collagen fibrils in the intramuscular connective tissue.  相似文献   

7.
We investigated changes in structures and properties of the endomysium and perimysium during development of semitendinosus muscle in relation to the increase in toughness of pork using samples from neonates to 55-mo-old pigs. The shear force value of pork increased linearly until 6 mo of age, and the rate of increase slowed down thereafter. The secondary perimysium thickened owing to an increase in the number and thickness of perimysial sheets consisting of collagen fibers, which became thicker and wavy with the growth of the pigs. This increase in thickness of the secondary perimysium was correlated significantly with the increase in the shear force value (r = .98). The endomysial sheaths became thicker and denser in the muscle of 6-mo-old pigs. Maturation of the endomysium was accompanied by hypertrophy of muscle fibers. The amount of heat-soluble collagen decreased almost linearly, indicating that nonreducible cross-links between collagen molecules were formed throughout chronological aging. We conclude that thickening of the perimysium is closely related to an increase in the toughness of pork during growth of pigs.  相似文献   

8.
In order to provide background for understanding biological roles of proteoglycans (PG) in developing skeletal muscle, we have isolated and characterized PG in bovine neonatal skeletal muscle. Two types of PG were isolated from skeletal muscle by density gradient ultracentrifugation and ion‐exchange chromatography. One was a small PG (PG‐S) with a molecular size of 100–130 kDa, another was a large PG (PG‐L) with a molecular size of 300–500 kDa. The glycosaminoglycan chains of PG‐S and PG‐L were dermatan sulfate and chondroitin sulfate, respectively, judged by cellulose acetate membrane electrophoresis. Immunoblot assays revealed that both PG bound to type I, II, III and IV collagen, laminin and fibronectin. Unlike PG‐S, PG‐L bound to type V collagen and hyaluronic acid. Small proteoglycans had a core protein of 45 kDa, which reacted with the antibody against the decorin core protein. The N‐terminal amino acid sequence of the PG‐S core protein was consistent with that of decorin from bovine bone and tendon. Thus, PG‐S from neonatal skeletal muscle was identified as decorin in bovines. Immunohistochemical analysis with antibodies against PG‐L and PG‐S demonstrated that PG‐L was located both in the perimysium and endomysium, but PG‐S was localized exclusively in the perimysium. These findings suggest that the characterized PG may have distinct roles in the ECM construction of developing skeletal muscle.  相似文献   

9.
We investigated changes in structures and mechanical properties of the intramuscular connective tissue during the fattening of Japanese Black steers, using the cell maceration method for scanning electron microscopy. During the early fattening period, from 9 to 20 mo of age, collagen fibrils of the endomysium in longissimus muscle associated more closely with each other, and collagen fibers in the perimysium increased in thickness and their wavy pattern became more regular. These changes were closely related to the increase in mechanical strength of the intramuscular connective tissue and resulted in a toughening of the beef during the period. The shear force value of longissimus muscle decreased after 20 mo of age, concomitantly with the rapid increase in the crude fat content. Scanning electron micrographs of the longissimus muscle dissected from 32-mo-old steers clearly showed that the adipose tissues were formed between muscle fiber bundles, that the honeycomb structure of endomysia was partially broken, and that the perimysium separated into thinner collagen fibers. In semitendinosus muscle, in which the crude fat content was lower (P<.05) than that in longissimus muscle, the structure of the intramuscular connective tissue remained rigid at 32 mo of age. The shear force value of the muscle increased even in the late fattening period, from 20 to 32 mo of age. Thus, the development of adipose tissues in longissimus muscle appears to disorganize the structure of the intramuscular connective tissue and contributes to tenderization of highly marbled beef from Japanese Black cattle during the late fattening period.  相似文献   

10.
1. The characteristics of melanocyte distribution in skeletal muscles in the Silky fowl were investigated in association with growth. 2. Pectoralis (PT) and iliotibialis lateralis (ITL) muscles from 1-, 3-, 5-, 10-, 20- and 30-week-old Silky males were weighed and collagen type I was detected in frozen sections immunohistochemically. 3. Melanocytes were observed in the collagen type I-immunopositive endomysium and perimysium in both muscles. 4. Image analysis indicated that the total area occupied by melanocytes in histological sections sharply decreased from 0.61% to 0.16% in PT muscle and from 1.67% to 0.33% in ITL muscle at 1 to 3 weeks, and then gradually decreased. The melanocyte area was larger in ITL muscle than in PT muscle until 10 weeks of age. 5. We concluded that the proportion of intramuscular melanocytes in the Silky fowl differs between types of muscles in the early stages of development, and it decreases with growth.  相似文献   

11.
Growth‐related changes in the histochemical property and collagen architecture of the iliotibialis lateralis muscle were compared among Silky, layer and meat cockerels. Histochemical and immunohistochemical methods were employed to observe the collagen architecture. The total intramuscular collagen was also determined. The muscle consisted of type IIA, IIB and IIC myofibers, of which type IIB occurred at the highest frequency. The diameter of type IIB myofibers in each week was largest in the layer, followed by the meat, and was smallest in the Silky. The total amount of collagen reached 3.38 mg/g in the meat bird, 3.03 mg/g in the layer and 2.71 mg/g in the Silky by 30 weeks of age, respectively. In the perimysium, the collagen bundles increased in size and density of fibrils with growth. At 30 weeks of age the layer had compact collagen platelets while the Silky had loose collagen bundles. In the meat bird, the collagen bundles were moderately compact. The endomysial collagen network had a large mesh size at 1 week and thereafter accumulated many collagen fibrils to form a felt‐like fabric of fibrils at 30 weeks of age. From these results it appears that growth‐related changes in the iliotibialis lateralis muscle are not necessarily causally affected by the different growth rates of chicken breeds.  相似文献   

12.
Growth‐related changes in the histochemical properties and collagen architecture of the Musculus pectoralis were compared among Silky, layer‐type and meat‐type cockerels. Histochemical and immunohistochemical methods were used and collagen architecture was studied using scanning electron microscopy. The total amount of collagen present was also measured. The diameter of type IIB myofibers was similar or rather larger in the layer‐type birds compared with the meat‐type. The collagen content was generally low for 5–10 weeks across the breeds and then increased in the other breeds except for Silky. In the perimysium, the collagen bundles gradually increased in size and the density of the fibrils also increased during growth. At 30 weeks of age, the layer‐type birds showed compact collagen bundles while the meat‐type had loose bundles. The endomysial collagen network appeared relatively denser in the meat‐type chicks compared to the others at week 1. At 30 weeks of age, compact and felt‐like structure of endomysium was shown by Silky and layer‐type chickens, while the meat‐type showed a relatively loose arrangement of tissue in the endomysial collagen. From these results, it appears that the meat‐type chicken can produce a large M. pectoralis with many, relatively thinner myofibers and a relatively undeveloped form of intramuscular collagen structure.  相似文献   

13.
We studied the relationships between the shear-force value and physical and structural properties of the intramuscular connective tissue (IMCT) in six classes of porcine skeletal muscle to elucidate the contribution of IMCT to toughness of raw pork. The shear-force value of raw pork correlated significantly with that of the IMCT model prepared from each class of skeletal muscle ( P  < 0.05). The correlation suggested that the variable toughness of pork was caused by the mechanical strength of the endomysium and perimysium. The thickness of the secondary perimysium correlated significantly with the shear-force value of raw pork ( P  < 0.05) and with that of the IMCT model ( P  < 0.05). The shear-force value of raw pork correlated significantly with the total amount of collagen ( P  < 0.05) but not with the heat-solubility of collagen. We concluded therefore that the thickness of the secondary perimysium determines the mechanical strength of IMCT and contributes to toughness in raw pork.  相似文献   

14.
We comprehensively evaluated meat quality in chickens fed a diet consisting of wood charcoal and vinegar (WCV) using food scientific and histological approaches. In culled hens, lipid and fatty acid in Musculus semimembranosus, cooking loss and sensory tests of whole thigh meat, and meat texture of breast meat were observed. In male broilers, cross section of M. semimembranosus was used for observations on muscle area, perimysium, non‐collagen total protein and total collagen content, and anti‐collagen I and III reactions. In frozen male broilers, conventional morphology of M. semimembranosus as well as chicken anti‐collagen III reaction to selected muscles of thigh meat and breast meat were compared between the control and WCV‐fed birds. Increased lipid and fatty acids, decreased cooking loss, high score in total evaluation for sensory test of thigh meat, and decreased meat texture values were observed for culled hens fed WCV. The higher values of muscle area, total collagen and collagen III were observed for broilers fed WCV. No perimysium collapse for M. semitendinosus or increased collagen III reactions of M. tensor fasciae latae, the flexor muscle group and M. pectoralis superficialis were observed for frozen muscles in the WCV group. These total results suggest that WCV produces palatable and tender meat by increasing collagen III.  相似文献   

15.
1. Developmental states of the collagen content, distribution and architecture in the pectoralis (PT), iliotibialis lateralis (ITL) and puboischiofemoralis (PIF) muscles of male Red Cornish x New Hampshire (RN, 80 d, body weight 2.9 kg) and normal (3.1 kg) broilers were evaluated. 2. In PT muscle the total amount of collagen was significantly greater in RN broilers (3.33 mg/g) than in normal ones (1.71 mg/g). This higher collagen content in RN broilers was based mainly on the closer mesh sizes of endomysial honeycomb. The collagen structures in the perimysia also differed between broiler types, when more collagen fibres were observed in RN broilers. 3. ITL muscle contained total collagen of 4.10 to 5.00 mg/g. Types I and III collagens were distributed on the perimysia at higher percentages in RN broilers (31.6%, 37.2%) than normal (15.6%, 30.8%), respectively. The thick bands of tough collagen fibres characteristic of ITL muscle perimysium in cockerels had not yet developed in these broilers. 4. Total collagen was 4.63 to 6.29 mg/g in PIF material with fascia. In PIF muscle the perimysial collagen fibres had not yet attained their full growth but consisted of densely packed fibrils. PIF muscle was characterised by the earlier maturing collagen structure. 5. These results show that a perimysial collagen structure in broilers is still in an undeveloped state. It is supposed that tenderness of broiler meat is attributed mainly to characteristics of the collagen distribution, in which the majority of types I and III collagens is distributed on the closer mesh of endomysial honeycomb.  相似文献   

16.
1. The effects of nutritional level on muscle development, histochemical properties of myofibre and collagen architecture in the pectoralis muscle were evaluated using male broilers of Red Cornish x New Hampshire stock, reared on diets of high nutritional value for up to 80 d (H80d) and low nutritional value for up to 80 d (L80d, same age as H80d) or 95 d (L95d, same body weight as H80d). 2. The total live weight and the weight of pectoralis muscle were lower in L80d than in both H80d and L95d. The muscle weight as a percentage of live weight was 8.7% in L80d, 10.7% in H80d and 11.5% in L95d. 3. Pectoralis muscle was composed only of type IIB myofibres and showed no differences in myofibre type composition among the chicken groups. The largest diameter of type IIB myofibres was observed in L95d, followed by H80d and the smallest in L80d. 4. The total amount of intramuscular collagen did not differ among the chicken groups (1.92 to 1.99 mg/g). Types I and III collagens were immunohistochemically detected in both the perimysia and endomysia. The thin perimysia around the primary myofibre fascicles showed larger width in H80d than L80d and L95d, and also the thick perimysia around the secondary fascicles in H80d than L80d. 5. The collagen structure of the perimysium was most developed in H80d, followed by L95d and on the least in L80d. The development of perimysial collagen fibres could be enhanced by a rapid growth rate of the muscle induced by high nutritional level and depressed by a slow growth rate with low nutritional foods. 6. The endomysial collagen architecture was observed as a felt-like tissue of the fibril bundles with many slits. The thinnest endomysial wall was observed in L80d, followed by H80d and the thickest in L95d. 7. From these results, it was indicated that foods of high nutritional value could enhance growth of the pectoralis muscle of broilers, and this is accompanied by hypertrophy of the type IIB myofibres and development of the perimysial collagen architecture.  相似文献   

17.
1. Growth changes of the collagen content and architecture in the pectoralis (PT) and iliotibialis lateralis (ITL) muscles were examined using cockerels from 1 to 14 weeks of age. 2. Total collagen content in PT muscle showed little change, but in ITL muscle reached a maximum at 5 weeks and thereafter decreased slightly until 14 weeks. The collagen content was markedly larger in ITL muscle after 5 weeks. Pyridinoline content of collagen increased abruptly from 5 to 14 weeks in both muscles, but no difference between muscle types was detected. 3. The cell size of the endomysial honeycombs increased with the development of myofibres, and the mesh size of the perimysium around the honeycombs enlarged. 4. In both muscles endomysia were an incomplete network of collagen fibrils with many foramina at one week, became a very thin membrane of felt-like fabric in 2 to 5 weeks and thereafter increased in thickness until 11 to 14 weeks. 5. Perimysial width around the secondary fasciculus differed between the muscle types after 5 weeks. In the wider perimysium of ITL muscle, the collagen fibres increased in number and size to make a stack of collagen bands around the fasciculus. In the narrower perimysium of PT muscle, a few platelets of collagen fibres also developed. 6. The perimysial collagen fibre at 1 to 2 weeks had a smooth surface and appeared to be composed of fine collagen fibrils. The fibre at 11 to 14 weeks showed a rugged surface and was composed of coarser collagen bundles that combined with each other into a net-like configuration with very slim meshes. 7. Our results showed that the collagenous components of chicken intramuscular connective tissue changed markedly during the early period of muscle growth in distribution, architecture and quality but with little difference in quantity.  相似文献   

18.
Growth‐related changes in the histochemical properties and collagen architecture of the Musculus puboischiofemoralis pars medialis were compared among Silky, layer‐type, and meat‐type cockerels. Histochemical and immunohistochemical methods were employed and collagen architecture was studied using scanning electron microscopy. Total intramuscular collagen was also determined. The myofibers were categorized as type I, type IIA and a transitional form, type I‐tr. The proportion of type I‐tr myofibers diminished and these myofibers were transformed entirely into type I myofibers in meat‐type but incompletely in the others. The largest diameter of type I myofiber was found in layer‐type at 30 weeks of age. At 30 weeks of age, layer‐type birds had attained well‐developed perimysial collagen bundles while meat‐type birds had less developed bundles. The endomysial collagen network had a large mesh size at 1 week and then accumulated many collagen fibrils to form a felt‐like fabric of fibrils by 30 weeks of age. Silky birds developed the thickest endomysial collagen plates of all the breeds. From these results it appears that growth‐related changes in the histological structure of M. puboischiofemoralis pars medialis are not necessarily causally affected by the different growth rates of chicken breeds.  相似文献   

19.
Bovine cartilage explants were co-cultured with or without allogenic chondrocytes for 4 weeks. The attachment of the applied chondrocytes to cartilage after labelling with fluorescence was assessed using a confocal laser microscope. Morphological changes and the production of extracellular matrix (ECM) of co-cultured chondrocytes on intact and damaged surfaces of cartilage were evaluated by histological and immunohistochemical methods. Co-cultured chondrocytes attached to and proliferated on the intact and damaged areas of cartilage, and a new layer was created there. The defects were also filled with ECM produced by the co-cultured chondrocytes. Glycosaminoglycans and collagen type II were detected in the newly formed ECM, and large numbers of rounded chondrocytes were observed at primitive lacunae in this matrix at 4 weeks of culture. The results suggest that chondrocytes have the ability to attach to, to proliferate on and to establish a new matrix on the intact and damaged surfaces of cartilage explants.  相似文献   

20.
This study reports an effective method using enzymatic methods to extract collagen from yak rumen smooth muscle. The enzymatic extraction methods were optimized by response surface methodology. Additionally, the properties of the extracted collagen were analyzed by Fourier transform infrared (FT‐IR) spectroscopy and mass spectrometry (MS). The results showed that the optimal conditions were as follows: the pepsin addition was 0.95%, the enzymatic hydrolysis time was 21 hr, and the solid‐to‐solvent ratio was 1:11. Under these conditions, the collagen extraction rate could reach 3.62/100 g. The results of FT‐IR revealed that the amide A, amide B, amide I, amide II, and amide III bands of the collagen appeared at 3,293.18, 3,068.18, 1654.94, 1,540.58, and 1,236.58 cm?1, respectively. The MS identified seven types of collagen, which were type I, type III, type IV, type V, type VI, type VIII, and type XII. The results demonstrated that the enzymatic method can extract collagen from yak rumen smooth muscle with a considerably high yield and can preserve the intact structure of the collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号