首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the reproductive and lifetime performances of Kagoshima Berkshire gilts and sows. We examined 20 605 parity records of 4419 pigs for 2008 to 2012 on a farrow‐to‐finish commercial farm. The mean parity (± SD) of all animals was 3.0 ± 2.1. For farrowing performance, the highest numbers of total pigs born and pigs born alive were found in sows with parities 5 and 6 and with parity 3–6, respectively (P < 0.05). Regarding weaning and mating performance, sows with parity 2 had the lowest preweaning mortality (P < 0.05). The longest weaning‐to‐first‐mating interval was found in parity 1 pigs, and the interval decreased as parity increased (P < 0.05). Parities 0 and 1 pigs had the lowest farrowing rate and those with parity 4 had the highest farrowing rate (P < 0.05). The mean parity at culling, total number of pigs born alive in a lifetime, and nonproductive days in a lifetime were 5.5 ± 2.93, 49.2 ± 24.72 pigs, and 132.1 ± 83.34 days, respectively. These animals had a lower litter size and fertility that the F1 crossbred sows mainly used in Japan, but a similar tendency for performance by parity.  相似文献   

2.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

3.
血促性素(PMSG)是母猪繁殖调控的重要激素,文章采用效价为220单位/mg和2 580单位/mg PMSG,对后备母猪排卵数和繁殖性能影响进行了研究。高效价试验组与低效价对照组对杜长大后备母猪排卵数影响的试验中,静立发情率和排卵率虽有增高趋势,但差异不显著;平均每头母猪排卵数增加1.47枚,差异显著。高效价试验组与低效价对照组的定时输精试验中,待配分娩率提高11.27个百分点,差异显著;试验组的窝产总仔数和活仔数比对照组分别提高了0.39头和0.69头,差异均显著;试验组的窝产死胎数比对照组虽减少了0.30头,但差异不显著。  相似文献   

4.
The aim of this study was to further investigate the effect of using progestin altrenogest and hCG to synchronize the oestrous cycle and its effect on follicular development, ovulation time and subsequent reproductive performance. Thirty crossbred gilts were divided into three groups. Group A (control) received a 5 ml of normal saline for 18 consecutive days by individually top-dressing. Groups B and C gilts received 20 mg (5 ml) of progestin altrenogest for 18 consecutive days by individually top-dressing. On day 3 (72 h) after withdrawal of progestin altrenogest, Group C gilts received hCG (500 IU, im). The follicular development and ovulation time were examined by transabdominal ultrasonography. Subsequent reproductive performances, i.e. number of total born per litter (NTB), number of live born per litter (NBA), number of stillbirth per litter (NSB), average piglet birth weight (ABW), lactation length (LL) and weaning to oestrous interval (WOI), were recorded. None of the gilts in Group A showed oestrus within 10 days after withdrawal of normal saline. Groups B (eight of 10) and C gilts (four of 10) came into oestrus at 5.6 +/- 0.5 and 6.5 +/- 0.6 days after withdrawal of progestin altrenogest, respectively. The ovulation time of Groups B and C gilts took placed at 25.0 +/- 4.7 and 25.0 +/- 5.0 h after standing oestrus, respectively. The pre-ovulatory follicular size (diameter) of Groups B and C gilts was 8.0 +/- 2.0 and 11.0 +/- 3.0 mm, respectively. A tendency of larger litter size (NTB) in Group B gilts was found when compared with Group A gilts. To conclude, using progestin altrenogest alone can be used to synchronize the oestrous cycle in gilts without unenthusiastic effect on the follicular development, ovulation time and subsequent reproductive performances. However, treatment of gilts with hCG at day 3 (72 h) after withdrawal of altrenogest had unenthusiastic effect on oestrus synchronization.  相似文献   

5.
As in other species, the reproductive tract in pigs increases in size with age and body weight, and the development of the reproductive tract depends on a balance between development of the pituitary–ovarian axis and the influence of metabolic hormones. Two experiments were conducted in prepubertal Duroc gilts, 150–180 days of age, to determine whether litter size is related to vaginal–cervix catheter penetration length during insemination. In experiment 1, oestrus was induced in 452 gilts with a combined dose of 400 IU Pregnant Mare Serum Gonadotrophine (PMSG) + 200 IU human chorionic gonadotropin (hCG). The gilts were classified into three catheter penetration length groups: Ih, ≤ 21 cm; IIh, > 21 and < 28 cm; IIIh, > 28 cm. The litter size was lowest in group Ih (7.35 ± 0.15) compared with groups IIh (7.81 ± 0.12; p < 0.05) and IIIh (10.0 ± 0.36; p < 0.001). In experiment 2, first oestrus was induced in 162 gilts by boar exposure. The gilts were classified into three catheter penetration length groups at insemination during their second oestrus: In, ≤ 24 cm; IIn, > 24 and < 26 cm; IIIn, > 26 cm. As in experiment 1, the litter size was lowest in the group with the shortest catheter penetration length (8.32 ± 0.19). The litter size was not different among gilts of groups IIn and IIIn (8.84 ± 0.35 and 9.56 ± 0.46, respectively), but litter size was lower (p < 0.05) in group In than in group IIn. Based on the combined data from both experiments, the correlation between the catheter penetration length and total number of piglets born was expressed as: y=5.346 ± 0.104x; r=0.361 (p < 0.05). Fertility rate was not different among the groups of gilts induced into oestrus by hormone treatment or inseminated in the second oestrus; however, the total fertility rate of boar‐exposed gilts was higher (p < 0.0001) than PMSG/hCG treated animals. Thus, it is possible to conclude that litter size at first farrowing is associated with vaginal–cervix catheter penetration length during insemination of the gilt.  相似文献   

6.
Two trials involving 128 gilts were conducted to determine the effect of nutritional status during the first 28 d postnatally on subsequent growth and reproductive performance. Nutritional status was altered by adjusting litter size at birth to either 6 or 12 pigs and maintaining a lactation length of either 13 or 28 d. Pigs weaned at d 13 were fed on an ad libitum basis or at 50% of ad libitum through d 28. After d 28, all pigs were fed the same diets through the first parity. By market weight (d 154) pigs recovered differences in body weight imposed during the early postnatal period. Postnatal nutritional status did not alter age at puberty. Gilts weaned at d 28 from litter size 6 produced 2.4 more (P less than .05) ova than gilts from litter size 12; however, when weaned at d 13, gilts from litter size 6 produced 2.3 fewer ova than gilts from litter size 12. Feed restriction for 15 d postweaning did not depress ovulation rate in gilts. Subsequent litter size was not affected by postnatal litter size, lactation length or feed restriction, even though growth rate and ovulation rate had been altered by treatments imposed during the first 28 d postnatally. Assuming no difference in fertilization, these data suggest that prenatal mortality was altered by the early postnatal treatments and was the limiting factor for litter size. Until factors that influence prenatal losses are characterized and controlled, the alteration of nutritional status by changes in postnatal litter size, lactation length or feeding level will not detrimentally affect subsequent litter size in gilts.  相似文献   

7.
The response per generation to 10 generations of mass selection for ovulation were 0.49 ova, ?1.6% in embryo survival and 0.06 piglets per litter at birth. Line differences (select-control) in generation 9 and 10 gilts and sows ranged from 3.4 to 5 ova. Control line gilts and sows had 5.4 to 10.6% higher embryo survival to days 30 and 70 of gestation than did select line females. One generation of random selection followed by four generations of litter size selection, selection for decreased age at puberty or relaxed ovulation rate selection in the high ovulation rate line has resulted in lines that differed from the control line in litter size at birth by 0.78 ± 0.22, 0.37 ± 0.39 and 0.84 ± 0.52 pigs per litter at first, second and third parity, respectively. These results were used to derive a selection index to increase litter size by selection for its components (ovulation rate, OR, and embryo survival, ES). A technique of selection based on laparotomy to increase the number of females tested with a given set of farrowing places is presented. Rate of response in LS from use of the selection index, I = 10.6 OR + 72.6 ES, in a population of 40 farrowing females and 15 males per generation, is expected to increase litter size 2.5 times faster than selection on LS due to higher selection intensity and optimum emphasis on the component traits.  相似文献   

8.
Contents
The reproductive performance of gilts transported for long distances from three high-health breeding farms to six commercial farms was tested after the use of a Parapox-ovis-virus-based immunomodulator, Baypamun N (Bayer AG, Germany). Sixty (60) gilts were injected with Baypamun N, three times (2 days before departure, 2 h before departure and 2 days after their arrival at the commercial farms), while the remaining 60 gilts were injected with placebo at the same times. The results indicated that: (i) no adverse reactions or adverse effects were noticed related to the treatment with Baypamun N, (ii) treatment with Baypamun N improved the reproductive performance of gilts; the proportion of gilts farrowed/total gilts examined, the total number of piglets born, the number of piglets born alive and the body-weight of piglets at farrowing were significantly increased (p < 0.05), and (iii) treatment with Baypamun N reduced (p < 0.05) the cost of medication per gilt examined and per served gilt.  相似文献   

9.
The objective of this study was to evaluate the effect of development diet on first-parity reproductive performance across different genetic types of females. Gilts (n = 708) 8 to 15 d of age from five genetic lines were assembled using a segregated early weaning protocol. Genetic types represented industry variation for reproductive capacity and lean growth potential. Sampling procedures were not designed to evaluate performance differences among the genetic lines. When the gilts weighed approximately 20 kg, they were moved from the nursery facilities to a slotted-floor, environmentally controlled facility, and seven to eight animals within a genetic type were penned together. When the gilts weighed approximately 40 kg, they were moved to a modified open-front facility. Nineteen gilts were allotted to each pen (.92 m2 per pig). Gilts were assigned to one of three development diets at 120 d of age. Diet 1 (high energy, 18% CP) and Diet 2 (high energy, 13% CP) were provided for ad libitum consumption to the assigned gilts until they weighed approximately 113 kg. Gilts receiving Diet 3 (23% CP) were fed 1.8 kg/d from 82 kg until they reached 180 d of age (approximately 100 kg). Gilts were fed 2 kg daily of a gestation diet from 180 d to 200 d of age and 2.7 kg daily from 200 d until mating. To stimulate the estrus cycle, gilts were commingled and exposed to vasectomized boars beginning at 180 d of age. Gilts that were in estrus and 210 d of age or older were artificially inseminated with commercial semen. Gilts not detected in estrus within the first 50 d of observation were injected with PG600 and estrus detection continued for 30 additional days. Of the 657 gilts entering breeding pens, 422 farrowed. Bred gilts were distributed to 10 cooperator facilities before farrowing. Mixed model procedures were used to analyze the data. Significant (P < .05) genetic type x gilt development diet interactions were found for number of pigs born, number of pigs born alive, total litter birth weight, and litter birth weight of pigs born alive. Significant interactions consistently involved one genetic line and gilt development Diets 1 and 2. Gilts from this genetic line-diet subclass had poorer farrowing performance (P < .05) than gilts from the same line fed development Diet 3. Only two other significant genetic line x gilt development diet interactions were found. Gilt development diet had little influence on first-parity reproductive performance.  相似文献   

10.
The literature on the effects of nutrition during the growing period and the oestrous cycle on the reproductive performance of the pig is reviewed. It is concluded that the age at which the gilt reaches puberty is influenced much less by nutrition than by other environmental factors. This being so it would be advisable to feed the gilt at a level of intake which optimises food conversion efficiency. By extrapolation from the recent work of Davies and Lucas (1972) this might be expected to occur when dietary energy intake was approximately three times the maintenance requirement.In some circumstances ovulation may be a limiting factor to litter size therefore in order to maximise ovulation rate it would be advisable to feed gilts ad libitum for 11–14 days before the oestrus at which they are to be mated.Following mating the feed intake of the gilt should be reduced to provide an intake of approximately 5 Mcal ME/day.On the limited evidence available at present it would appear likely that reducing the age at which gilts reach puberty and are mated will produce small reductions in litter size, but that such a practice may be justifiable in terms of savings in food consumption.From the evidence that is available it would appear that nutritional variations during the weaning to remating period and the post weaning oestrous period may influence ovulation rate. However, ovulation rate does not seem to be the factor which limits litter size. Post weaning nutrition may be of significance in determining if and when the female returns to oestrus and also in influencing conception rate. There is certainly a case for feeding the primiparous sow liberally between weaning from her litter and conception. However in the older sow the effects are less clearly defined. The precise requirements of the sow between weaning and conception still await definition.  相似文献   

11.
Uterine Insemination with a Standard AI Dose in a Sow Pool System   总被引:1,自引:0,他引:1  
The effect of uterine AI with a standard dose of spermatozoa on fertility of the sow was studied in a field trial. The trial involved a sow pool system with 440 sows using AI as the primary method of breeding. Sows were twice a day checked for oestrus symptoms by back pressure test in front of a boar on days 3–6 after weaning. When in standing heat, sows were randomly allocated into either a uterine insemination group (UTER, n = 157) or standard AI group (CONT, n = 169) and bred accordingly using 3 billion spermatozoa in 80 ml of extender. In both treatment groups, insemination was repeated once if the sow was still receptive 24 h later. Using pregnancy (farrowed or not) and live‐born litter size as the outcome variables, a logistic and linear regression approach, respectively, was taken to study the effect of the following factors: treatment (UTER vs CONT), AI operator, breed, satellite herd preceding weaning, parity, weaning‐to‐oestrus interval and length of lactation. Overall, live‐born litter size was 11.3 ± 2.9, repeat breeding rate 4.2% and farrowing rate 91.2%. In the UTER group, 93.6% of inseminated sows farrowed, whereas farrowing rate for the CONT group was 88.8% (p = 0.13). Intrauterine insemination with a standard AI dose did not result in a significant improvement in the live‐born litter size (11.5 ± 2.8 for the UTER and 11.1 ± 3.0 for the CONT sows, respectively, p = 0.13). However, the preceding satellite herd had a highly significant effect on the live‐born litter size (12.4 ± 2.6; 11.1 ± 2.9; 10.8 ± 2.9 and 10.9 ± 2.9 for the four satellite herds, p < 0.01). We conclude that uterine insemination did not have a significant effect on live‐born litter size and farrowing rate and we also conclude that satellite herd appears to have a major effect on fertility in a sow pool system.  相似文献   

12.
Previous comparisons between the cDNA and gene sequences for secreted folate binding protein (sFBP) indicated a 12-bp insertion/deletion (ins/del) polymorphism in exon 1 and a SNP that altered (Ser-Arg) the protein AA sequence. The effect of the Ser-Arg SNP on reproductive traits was examined in three groups of Meishan-White European breed crossbred gilts. The gilts for all three groups were unilaterally hysterectomized-ovariectomized (UHO) at 100 d of age. Group 1 gilts (n = 77) were mated at estrus, slaughtered at d 105 of pregnancy, and a blood sample was collected from each fetus to determine fetal hematocrit. The number of corpora lutea and fetuses and the fetal and placental weights were recorded. Group 2 gilts (n = 46) were mated, the remaining uterine horn was flushed with 20 mL of saline on d 11 of pregnancy, conceptuses were counted, and flushings were measured for total sFBP. Gilts were allowed an estrous cycle to recover, mated again at estrus, slaughtered at 105 d of gestation, and the data as described for Group 1 were collected. Groups 1 and 2 gilts were genotyped for the Ser-Arg SNP. In Group 3, gilts (n = 70) and boars (n = 30) were genotyped for the Ser-Arg SNP before mating, and like genotypes were mated. Gilts were then treated as described for Group 2. The effect of the 12-bp ins/del on reproductive traits was examined in 407 white crossbred UHO gilts from a randomly selected control line and from lines selected for ovulation rate (OR) and uterine capacity (UC). Gilts were mated and slaughtered at 105 d of age, and the numbers of corpora lutea and live fetuses, and fetal and placental weights and fetal hematocrits were recorded. The 12-bp ins/del also was evaluated in 131 intact gilts from the OR selected line. These gilts were mated at approximately 250 d of age and farrowed. The numbers of fully formed and live piglets were recorded. A significant effect (P < 0.05) of the Ser-Arg SNP was detected on the number of embryos present on d 11 of pregnancy and on UC. The sFBP 12-bp ins/del was associated with UC (P < 0.01) and the number of CL (P < 0.05) in UHO gilts, but not with litter size in intact gilts from the OR line. Results suggest that the 12-bp ins/del polymorphism could be exploited to increase litter size in swine, provided that the negative effect of the polymorphism on OR is overcome.  相似文献   

13.
The aim of this study was to evaluate the effect of porcine luteinizing hormone (pLH) given at oestrous onset in gilts, by different routes and doses, on the interval between onset of oestrus and ovulation (IOEO) and reproductive performance using a single fixed‐time artificial insemination (FTAI). A total of 153 gilts were submitted to oestrous detection at 8‐h intervals and assigned to three groups: control – without hormone application and inseminated at 0, 24 and 48 h after oestrous onset; VS2.5FTAI – 2.5 mg pLH by the vulvar submucosal route at oestrous onset and a single FTAI 16 h later; IM5FTAI – 5 mg pLH by the intramuscular route at oestrous onset and a single FTAI 16 h later. More VS2.5FTAI gilts (47.1%; p < 0.05) ovulated within 24 h after oestrous onset than control gilts (25.5%) whereas IM5FTAI gilts had an intermediate percentage (31.4%; p > 0.05). The IOEO tended to be shorter (p = 0.06) in VS2.5FTAI (30.2 ± 1.4 h) than in control (34.7 ± 1.4 h) gilts, but there was no difference (p > 0.05) between control and IM5FTAI (32.8 ± 1.4 h) gilts. Farrowing rate was not different (p > 0.05) among treatments. Total born piglets (TB) was lower (p < 0.05) in VS2.5FTAI (12.3 ± 0.4) than in control gilts (14.1 ± 0.4), whereas intermediate TB was observed in IM5FTAI gilts (13.3 ± 0.4). Due to the advancement of ovulation, reduction of the hormonal dose and the ease of application, the vulvar submucosal route would be the best option for FTAI protocols, but their negative impact on litter size remains to be elucidated. Taking into account the good fertility results obtained in IM5FTAI gilts whose ovulation was not advanced, the possibility of a single FTAI without any hormonal treatment should be further investigated, to establish reliable FTAI protocols for gilts.  相似文献   

14.
An investigation of the reproductive performance of first parity sows is described. In a retrospective study it was found that the size of the second litter was significantly greater in those sows with a prolonged weaning to oestrus interval of more than 15 days. Deliberately delaying mating until at least 12 days after weaning produced a similar increase in second litter size. This improvement was not associated with an increase in ovulation rate.  相似文献   

15.
Groups of six, six and eight miniature gilts, respectively, received 5, 10 or 15 mg/day of altrenogest for 18 days, and the numbers of corpora lutea and residual follicles were counted approximately 14 days after the treatment by an exploratory laparotomy. They were compared with the numbers in a control group of eight gilts which were examined six to eight days after oestrus. The interval between the last dose of altrenogest and the onset of oestrus increased with the dose of altrenogest, and was significantly longer after the treatments with 10 or 15 mg/day than after 5 mg/day (P < 0.01). Significantly more corpora lutea were observed in the gilts receiving 5 or 10 mg/day of altrenogest than in the control gilts (P < 0.1). Groups of six, seven and six miniature gilts that had respectively received 5, 10 or 15 mg/day of altrenogest were artificially inseminated; four, six and five of the gilts in these groups farrowed, and their mean (sd) litter sizes were 5.5 (2.4), 6.8 (1.2) and 5.0 (2.3), respectively. All six of a group of control gilts farrowed and their mean litter size was 5.8 (1.2).  相似文献   

16.
We previously reported that ovulation rate, but not pregnancy rate or litter size at d 30 after mating, was enhanced by treatment with P.G. 600 (400 IU of PMSG and 200 IU of hCG, Intervet America, Inc., Millsboro, DE) in gilts fed the orally active progestin, altrenogest (Matrix, Intervet America, Inc.) to synchronize estrus. We hypothesized that in addition to increasing ovulation rate, P.G. 600 may have altered the timing of ovulation. Therefore, mating gilts 12 and 24 h after first detection of estrus, as is common in the swine industry, may not have been the optimal breeding regimen, and as a consequence, pregnancy rate and litter size were not altered. The objective of the present study was to determine the effect of P.G. 600 on the timing of ovulation in gilts treated with altrenogest. Randomly cycling, crossbred gilts (5.5 mo old, 117 kg BW, and 14.7 mm of backfat) were fed a diet containing altrenogest (15 mg/d) for 18 d. Twenty-four hours after altrenogest withdrawal, gilts received i.m. injections of P.G. 600 (n = 25) or saline (n = 25). Gilts were checked for estrus at 8-h intervals. After first detection of estrus, transrectal ultrasonography was performed at 8-h intervals to determine the time of ovulation. Gilts were killed 9 to 11 d after the onset of estrus to determine ovulation rate. All gilts displayed estrus by 7 d after treatment with P.G. 600 or saline. Compared with saline, P.G. 600 increased (P = 0.07) ovulation rate (14.8 vs. 17.5, respectively; SE = 1.1). The intervals from injection to estrus (110.9 vs. 98.4; SE = 2.7 h; P < 0.01) and injection to ovulation (141.9 vs. 128.6; SE = 3.2 h; P < 0.01) were greater in gilts treated with saline than in gilts treated with P.G. 600. Duration of estrus (54.4 vs. 53.7; SE = 2.5 h), the estrus-to-ovulation interval (30.2 vs. 31.7; SE = 2.2 h), and the time of ovulation as a percentage of estrus duration (55.8 vs. 57.5; SE = 3.0%) did not differ for the P.G. 600 and saline-injected gilts, respectively. In summary, P.G. 600 advanced the onset of estrus and ovulation following termination of altrenogest treatment and increased ovulation rate; however, treatment of gilts with P.G. 600 had no effect on the timing of ovulation relative to the onset of estrus.  相似文献   

17.
The Kunming dog is the first and only working dog breed from China to be recognized worldwide. As a domestic working dog, its excellent working performance has been well established; however, its normal reproductive parameters are not well understood. Therefore, this study was conducted to document the main reproductive parameters of this purebred working dog in field breeding conditions. Data on 1004 heats (753 with mating) from 203 bitches between 2008 to 2014, were collected and analyzed. The pregnancy rate and whelping rate was 79.42% and 75.30%, respectively. Finally, for 567 litters (4298 puppies), the mean litter size was 7.19 ± 0.12 puppies (range 1–15). The mean gestation period and birth weight were approximately 61.64 ± 0.10 days and 407.25 ± 1.21 g. The mean sex ratio was 1.03 males to 1.00 female. Estrus occurred throughout the year with no significant differences between seasons and months (P > 0.05), which confirms that Kunming dogs are non‐seasonal breeders; births occurred in every month of the year. Pregnant bitches exhibited significantly longer inter‐estrus intervals than non‐pregnant bitches (220.85 ± 2.05 vs. 180.19 ± 2.94 days, P < 0.05). Bitch parity influenced litter size, and the gestation length and birth weight of the puppies were negatively affected by litter size. This study helps elucidate the reproductive potential of this breed and provides reference values for reproductive performance in the Kunming dog.  相似文献   

18.
A total of 29 SPF Large White prepuberal gilts (mean age 152 days at treatment) were examined for estrous and ovulatory responses after PG 600 treatment. After treatment, 85.2% of the gilts showed standing estrus within 6 days. Whereas the treatment-to-estrus interval and duration were 3.7 and 1.9 days respectively. As ovulation occurred on Day 5 to 6, appropriate timing of artificial insemination would be about 4 days after treatment. Fertility of gilts revealed to be excellent, giving rise to a high percentage of normal embryos, 85.3%. Meanwhile, development and growth of fetuses were mostly normal. Other reproductive performances recorded were: mean litter size 6.8; mean birth weight 1.26 kg; weaning-to-return estrus interval 5 to 8 days. In conclusion, PG 600 was found to be useful in inducing fertile estrus in prepuberal gilts, a result which will be of interest for commercial pig farms.  相似文献   

19.
Two experiments were conducted to evaluate the effects of the immunization of gilts against ovarian steroids on ovulation rate and litter size. In Exp. 1, gilts (n = five gilts/treatment) at 165+/-1.6 d of age were immunized against either carrier (Control), androstenedione, or 17alpha-hydroxyprogesterone. Age at puberty and estrous cycle length averaged 208+/-5.5 (P = 0.67) and 20.3+/-2.8 d (P = 0.41), respectively, and were not affected by treatment. The androstenedione- and 17alpha-hydroxyprogesterone immunized gilts had higher (P < 0.02) ovulation rates than Controls (14.2, 14.2, and 11.4+/-0.8, respectively). Total pigs born (P = 0.66) and pigs born live (P = 0.65) for the androstenedione-treated group were not different from Controls. Gestation length was not different (P = 0.36) between any of the treatments and the Controls (115+/-0.9 d). Procedures used in Exp. 2 were similar to those in Exp. 1, except that only Control (n= 18) and 17alpha-hydroxyprogesterone (n = 16) treatments were included and only litter size at farrowing was measured. Total pigs and pigs born live were higher in the 17a-hydroxyprogesterone-treated gilts than in the Controls (12.6 vs 10.5+/-0.6, P < 0.02; and 11.4 vs 9.2+/-0.6; P < 0.01, respectively). Data from this study indicate that litter size in gilts can be increased by immunization against 17alpha-hydroxyprogesterone.  相似文献   

20.
Experimental objectives were to measure the effect of ovulation rate on litter size at 86 d of gestation and at farrowing in 110 unilaterally hysterectomized-ovariectomized (UHO) gilts and in 142 intact, control gilts and to evaluate postnatal survival and development of progeny. Surgery (UHO) was performed on gilts 8 to 12 d following first estrus. Control and UHO gilts were mated and then randomly assigned to be slaughtered at d 86 of gestation or allowed to farrow. Gilts scheduled to farrow were observed by laparoscopy on d 40 of gestation to count corpora lutea (CL). Ovulation rate (number of CL) was similar for control (12.1 CL) and UHO (11.9 CL) gilts, thus indicating that compensatory ovarian hypertrophy had occurred in UHO gilts and resulted in a near doubling of ova per uterine horn relative to control gilts. Average litter size at 86 d of gestation and farrowing was greater (P less than .01) for control than UHO gilts. At farrowing, litter size for control and UHO gilts was 9.0 +/- .3 and 5.7 +/- .3 pigs, respectively. Fetal losses were greater and pig weights at birth were less in litters by UHO gilts. Postnatal pig survival, growth rate to 14 d of age and 14-d individual pig weight did not differ for progeny of control and UHO gilts, and performance of UHO pogeny did not appear to compromise the usefulness of this animal model. Regression of litter size on ovulation rate was .41 +/- .15 pigs/CL for UHO and .60 +/- .12 pigs/CL for control gilts at d 86 of gestation. Regression was .07 +/- .17 pigs/CL for UHO and .42 +/- .14 pigs/CL for control gilts at farrowing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号