首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.  相似文献   

2.
选用杜洛克公猪血缘9个(含精液),母猪50头,组成S04系核心选育群。采用闭锁与开放相结合的选育方法,应用GBS软件进行遗传评估,主选产仔数、日增重与活体背膘厚等性状。经过多个世代的选育,经产母猪产仔数达10.36头,公猪达100kg体重日龄165.67d,活体背膘厚11.16mm,瘦肉率达64.22%,肌内脂肪含量2.88%;主选性状全面达到或超过育种目标,达配套系审定要求,成功培育了一个棕黑色的高瘦肉率专门化父系(S04系)。  相似文献   

3.
Evaluation of strategies for selection for lean growth rate in pigs   总被引:1,自引:0,他引:1  
Lean growth rate (LGR) in pigs is a nonlinear biological function of growth rate and lean quantity. According to animal breeding theory, genetic progress for LGR is maximized with selection on a linear index of its component traits, but selection on direct EBV for LGR is also common. In this study, the performance of five criteria for selection on estimated LGR in pigs was evaluated through simulation over five generations: linear indexes of multiple-trait EBV of component traits with or without updating index weights in each generation; a nonlinear index of multiple-trait EBV of component traits; and direct selection on EBV for LGR from a single-trait model or a multiple-trait model that included LGR and component traits. The nonlinear index yielded the highest response in LGR in Generation 5, but the linear index with updating performed almost as well. Not updating weights for the linear index reduced response in LGR by 1.1% in Generation 5 (P < 0.05). Direct selection on single-trait EBV for LGR yielded the lowest responses in Generation 5. Direct selection on EBV for LGR from a multiple-trait animal model yielded a 3.1% greater response in LGR in Generation 5 than direct selection on EBV for LGR based on a single-trait animal model (P < 0.05), but yielded a 1.9% lower response than the nonlinear index. Although differences in response in LGR were limited, alternative selection criteria resulted in substantially different responses in component traits. Linear index selection for LGR placed more emphasis on lean quantity, whereas direct selection for LGR emphasized growth rate. Based on the relative changes in the responses in LGR, selection for estimated LGR based on a nonlinear index or a linear index with updating is recommended for use in the swine industry.  相似文献   

4.
The objective of this study was to determine whether the linear regression (LR) method could be used to validate genomic threshold models. Statistics for the LR method were computed from estimated breeding values (EBVs) using the whole and truncated data sets with variances from the reference and validation populations. The method was tested using simulated and real chicken data sets. The simulated data set included 10 generations of 4,500 birds each; genotypes were available for the last three generations. Each animal was assigned a continuous trait, which was converted to a binary score assuming an incidence of failure of 7%. The real data set included the survival status of 186,596 broilers (mortality rate equal to 7.2%) and genotypes of 18,047 birds. Both data sets were analysed using best linear unbiased predictor (BLUP) or single‐step GBLUP (ssGBLUP). The whole data set included all phenotypes available, whereas in the partial data set, phenotypes of the most recent generation were removed. In the simulated data set, the accuracies based on the LR formulas were 0.45 for BLUP and 0.76 for ssGBLUP, whereas the correlations between true breeding values and EBVs (i.e. true accuracies) were 0.37 and 0.65, respectively. The gain in accuracy by adding genomic information was overestimated by 0.09 when using the LR method compared to the true increase in accuracy. However, when the estimated ratio between the additive variance computed based on pedigree only and on pedigree and genomic information was considered, the difference between true and estimated gain was <0.02. Accuracies of BLUP and ssGBLUP with the real data set were 0.41 and 0.47, respectively. This small improvement in accuracy when using ssGBLUP with the real data set was due to population structure and lower heritability. The LR method is a useful tool for estimating improvements in accuracy of EBVs due to the inclusion of genomic information when traditional validation methods as k‐fold validation and predictive ability are not applicable.  相似文献   

5.
The term functionality in animal breeding is used for traits that increase the efficiency of production by lowering the input cost, such as animal health and leg weakness related to longevity. The main objective of the study was to investigate the impact of genomic information, in a multivariate variance component analysis, on some of these traits. In addition, the effect of the inclusion was studied by testing the model's prediction ability based on best linear unbiased estimates for fixed and random effects. The material in this study consists of phenotypes from 76 683 animals, of which 4933 animals are genotyped. The heritabilities for front leg conformation, stayability, osteochondrosis and arched back, estimated using the traditional pedigree, were found to be between 0.12 and 0.29. When using the combined genomic and pedigree relationship matrix, the heritabilities were between 0.14 and 0.36. The results show that the combined relationship matrix can be used for the estimation of (co)variance components, and that the predictive ability of the model in this study marginally increases with the inclusion of genomic information.  相似文献   

6.
The present study investigated the effects of the choices of animals of reference populations on long‐term responses to genomic selection. Simulated populations comprised 300 individuals and 10 generations of selection practiced for a trait with heritability of 0.1, 0.3 or 0.5. Thirty individuals were randomly selected in the first five generations and selected by estimated breeding values from best linear unbiased prediction (BLUP) and genomic BLUP in the subsequent five generations. The reference populations comprise all animals for all generations (scenario 1), all animals for 6‐10 generations (scenario 2) and 2‐6 generations (scenario 3), and half of the animals for all generations (scenario 4). For all heritability levels, the genetic gains in generation 10 were similar in scenarios 1 and 2. Among scenarios 2 to 4, the highest genetic gains were obtained in scenario 2, with heritabilities of 0.1 and 0.3 as well as scenario 4 with heritability of 0.5. The inbreeding coefficients in scenarios 1, 2 and 4 were lower than those in BLUP, especially within cases with low heritability. These results indicate an appropriate choice of reference population can improve genetic gain and restrict inbreeding even when the reference population size is limited.  相似文献   

7.
We investigated the effects of different strategies for genotyping populations on variance components and heritabilities estimated with an animal model under restricted maximum likelihood (REML), genomic REML (GREML), and single‐step GREML (ssGREML). A population with 10 generations was simulated. Animals from the last one, two or three generations were genotyped with 45,116 SNP evenly distributed on 27 chromosomes. Animals to be genotyped were chosen randomly or based on EBV. Each scenario was replicated five times. A single trait was simulated with three heritability levels (low, moderate, high). Phenotypes were simulated for only females to mimic dairy sheep and also for both sexes to mimic meat sheep. Variance component estimates from genomic data and phenotypes for one or two generations were more biased than from three generations. Estimates in the scenario without selection were the most accurate across heritability levels and methods. When selection was present in the simulations, the best option was to use genotypes of randomly selected animals. For selective genotyping, heritabilities from GREML were more biased compared to those estimated by ssGREML, because ssGREML was less affected by selective or limited genotyping.  相似文献   

8.
Pedigree recording and genetic selection in village flocks of smallholder farmers have been deemed infeasible by researchers and development workers. This is mainly due to the difficulty of sire identification under uncontrolled village breeding practices. A cooperative village sheep-breeding scheme was designed to achieve controlled breeding and implemented for Menz sheep of Ethiopia in 2009. In this paper, we evaluated the reliability of pedigree recording in village flocks by comparing genetic parameters estimated from data sets collected in the cooperative village and in a nucleus flock maintained under controlled breeding. Effectiveness of selection in the cooperative village was evaluated based on trends in breeding values over generations. Heritability estimates for 6-month weight recorded in the village and the nucleus flock were very similar. There was an increasing trend over generations in average estimated breeding values for 6-month weight in the village flocks. These results have a number of implications: the pedigree recorded in the village flocks was reliable; genetic parameters, which have so far been estimated based on nucleus data sets, can be estimated based on village recording; and appreciable genetic improvement could be achieved in village sheep selection programs under low-input smallholder farming systems.  相似文献   

9.
The benefit of using genomic breeding values (GEBV) in predicting ADG, DMI, and residual feed intake for an admixed population was investigated. Phenotypic data consisting of individual daily feed intake measurements for 721 beef cattle steers tested over 5 yr was available for analysis. The animals used were an admixed population of spring-born steers, progeny of a cross between 3 sire breeds and a composite dam line. Training and validation data sets were defined by randomly splitting the data into training and testing data sets based on sire family so that there was no overlap of sires in the 2 sets. The random split was replicated to obtain 5 separate data sets. Two methods (BayesB and random regression BLUP) were used to estimate marker effects and to define marker panels and ultimately the GEBV. The accuracy of prediction (the correlation between the phenotypes and GEBV) was compared between SNP panels. Accuracy for all traits was low, ranging from 0.223 to 0.479 for marker panels with 200 SNP, and 0.114 to 0.246 for marker panels with 37,959 SNP, depending on the genomic selection method used. This was less than accuracies observed for polygenic EBV accuracies, which ranged from 0.504 to 0.602. The results obtained from this study demonstrate that the utility of genetic markers for genomic prediction of residual feed intake in beef cattle may be suboptimal. Differences in accuracy were observed between sire breeds when the random regression BLUP method was used, which may imply that the correlations obtained by this method were confounded by the ability of the selected SNP to trace breed differences. This may also suggest that prediction equations derived from such an admixed population may be useful only in populations of similar composition. Given the sample size used in this study, there is a need for increased feed intake testing if substantially greater accuracies are to be achieved.  相似文献   

10.
目前,基因组选择(genomic selection,GS)技术已经在种猪育种中开展,但为获得较高的收益,还需研究一些应用策略,如确定仔猪基因分型个体比例和早期仔猪留种比例。本试验选择温氏集团出生于2011—2016年的大白种猪作为研究对象,共有超过4.5万条的生长测定记录,超过7万条繁殖记录,和2 090个个体的简化基因组测序(GBS)数据,其中,出生于2016年7~12月的440个体作为候选群体。研究性状包括两个生长性状(校正100 kg日龄和校正100 kg背膘厚)和一个繁殖性状(总产仔数)。为对比预测效果,在候选群体进行育种值预测时,按照是否利用其基因型或表型信息分为4种预测方案,比较不同方案的预测可靠性和个体选择指数的排名情况。结果显示,在预测候选群育种值时,利用其表型或基因型信息均比不利用时的预测结果更加可靠。对生长性状终测前、后进行基因组选择指数计算,发现,终测后指数排名前30%的个体都位于终测前指数排名前60%内。若仔猪出生后仅选择常规BLUP预测指数排名前60%的个体,会导致有接近15%的具有优秀潜力的个体被遗漏。本研究建议,对所有新生健康仔猪都进行基因分型并计算基因组选择指数,然后对指数排名靠前60%的个体进行性能测定。  相似文献   

11.
At present, genomic selection (GS) has been applied in pigs breeding, but some implementation strategies, such as the determination of genotyping ratios or early selection rates for piglets, are required to obtain a higher benefit using this technology. The Large White pigs born from 2011 to 2016 at WENS Foodstuff Group Co.,Ltd were chose as the research objects, including more than 45 000 growth measurement records, more than 70 000 reproduction records and 2 090 individuals with genotyping-by-sequencing (GBS) data. The 440 individuals born from July to December in 2016 were used as the candidate individuals. The traits included two growth traits, age at 100 kg and backfat thickness at 100 kg, and one reproduction trait, number of total born. To compare the prediction effects, four prediction scenarios were designed according to including or ignoring the phenotypic or genotypic information of candidate individuals when predicting their breeding values. The predictive reliability of different scenarios and rankings of selection indices of individuals would be compared. The results showed that the results using the phenotypic and genotypic information was more reliable than ignoring them to predict the breeding values of candidate individuals. When genomic selection indices were calculated before and after performances testing for the growth traits, the individuals ranking in the top 30% of indices after testing were all found in the individuals ranking in the top 60% of indices before testing. If the piglets with the top 60% of traditional BLUP indices were only selected, around 15% of individuals with good genetic potentials would be omitted. This study suggests that all healthy piglets after birth are genotyped and their genomic selection indices are calculated, and then the individuals ranking in the top 60% of indices are chose to perform growth measurement.  相似文献   

12.
The objective of this study was to determine the relationship between individual sire estimated breeding values (EBV) for litters/sow/year (LSY) and sire progeny means for farrowing rate (FR), removal parity and lifetime born alive (LTBA). Genetic parameters and breeding values were estimated using ASREML. The heritability estimate for LSY was 0.11. When all sires with 10 or more daughters with records were included in the analysis, Spearman rank correlations between the sire's LSY EBV and the sires' daughter means for FR, removal parity and LTBA were 0.49, 0.23 and 0.25 (p < 0.01). The sire EBV for LSY was favourably correlated with sires' daughter means for all three traits. This provides evidence that selecting sires with high EBV for LSY could improve herd FR, removal parity and LTBA. By including LSY as part of the selection criterion, the LTBA may be indirectly improved. The positive genetic correlation between LTBA and LSY may be a result of the improved longevity of sows with greater LSY compared with sows with lower LSY. The relationships between LSY and FR, removal parity and LTBA are strongly supported by the correlations between the sire progeny means for each trait and the sire LSY EBV.  相似文献   

13.
A method of approximating estimated breeding values (EBV) from a multivariate distribution of true breeding values (TBV) and EBV is proposed for use in large-scale stochastic simulation of alternative breeding schemes with a complex breeding goal. The covariance matrix of the multivariate distributions includes the additive genetic (co)variances and approximated prediction error (co)variances at different selection stages in the life of the animal. The prediction error (co)variance matrix is set up for one animal at a time, utilizing information on the selection candidate and its offspring, the parents, as well as paternal and maternal half- sibs. The EBV are a regression on TBV taking individual uncertainty into account, but with additional 'free' variation drawn at random. With the current information included in the calculation of the prediction error variance of a selection candidate, it is concluded that the method can be used to optimize progeny-testing schemes, where the progeny-tested sires are utilized with large progeny groups, e.g. through artificial insemination.  相似文献   

14.
Population structure, performance testing and breeding scheme of the sire breed Piétrain in Bavaria were analyzed as a basis for further optimization studies of the breeding programme. To evaluate the current breeding programme, genetic trends and effective population size were estimated. Four data sets were used which contained breeding animals born between 1981 and 2005, estimated breeding values of traits in the breeding goal, records from young boars in field test and records from purebred and crossbred progeny on test stations. The population is subdivided in many small herds. That has disadvantages with respect to a uniform breeding goal used across herds and with respect to selection intensity and the avoidance of inbreeding. The idealized selection practice consists of three selection stages. On the first two stages information from half and full sibs on test stations is most important so that the risk of co-selecting related animals is increased. The breeding scheme is a mixture of a half sib design and a progeny testing design, but both have disadvantages. Nevertheless, genetic trends are in the desired directions. To improve accuracy and intensity of selection, only AI-boars should be used instead of natural service sires. Though the effective population size is high, the recent trend of inbreeding shows that the extensive use of popular AI-boars can lead to a rapid increase of inbreeding.  相似文献   

15.
In pig breeding, as the final product is a cross bred (CB) animal, the goal is to increase the CB performance. This goal requires different strategies for the implementation of genomic selection from what is currently implemented in, for example dairy cattle breeding. A good strategy is to estimate marker effects on the basis of CB performance and subsequently use them to select pure bred (PB) breeding animals. The objective of our study was to assess empirically the predictive ability (accuracy) of direct genomic values of PB for CB performance across two traits using CB and PB genomic and phenotypic data. We studied three scenarios in which genetic merit was predicted within each population, and four scenarios where PB genetic merit for CB performance was predicted based on either CB or a PB training data. Accuracy of prediction of PB genetic merit for CB performance based on CB training data ranged from 0.23 to 0.27 for gestation length (GLE), whereas it ranged from 0.11 to 0.22 for total number of piglets born (TNB). When based on PB training data, it ranged from 0.35 to 0.55 for GLE and from 0.30 to 0.40 for TNB. Our results showed that it is possible to predict PB genetic merit for CB performance using CB training data, but predictive ability was lower than training using PB training data. This result is mainly due to the structure of our data, which had small‐to‐moderate size of the CB training data set, low relationship between the CB training and the PB validation populations, and a high genetic correlation (0.94 for GLE and 0.90 for TNB) between the studied traits in PB and CB individuals, thus favouring selection on the basis of PB data.  相似文献   

16.
In the pig industry, purebred animals are raised in nucleus herds and selected to produce crossbred progeny to perform in commercial environments. Crossbred and purebred performances are different, correlated traits. All purebreds in a pen have their performance assessed together at the end of a performance test. However, only selected crossbreds are removed (based on visual inspection) and measured at different times creating many small contemporary groups (CGs). This may reduce estimated breeding value (EBV) prediction accuracies. Considering this sequential recording of crossbreds, the objective was to investigate the impact of different CG definitions on genetic parameters and EBV prediction accuracy for crossbred traits. Growth rate (GP) and ultrasound backfat (BFP) records were available for purebreds. Lifetime growth (GX) and backfat (BFX) were recorded on crossbreds. Different CGs were tested: CG_all included farm, sex, birth year, and birth week; CG_week added slaughter week; and CG_day used slaughter day instead of week. Data of 124,709 crossbreds were used. The purebred phenotypes (62,274 animals) included three generations of purebred ancestors of these crossbreds and their CG mates. Variance components for four-trait models with different CG definitions were estimated with average information restricted maximum likelihood. Purebred traits’ variance components remained stable across CG definitions and varied slightly for BFX. Additive genetic variances (and heritabilities) for GX fluctuated more: 812 ± 36 (0.28 ± 0.01), 257 ± 15 (0.17 ± 0.01), and 204 ± 13 (0.15 ± 0.01) for CG_all, CG_week, and CG_day, respectively. Age at slaughter (AAS) and hot carcass weight (HCW) adjusted for age were investigated as alternatives for GX. Both have potential for selection but lower heritabilities compared with GX: 0.21 ± 0.01 (0.18 ± 0.01), 0.16 ± 0.02 (0.16 + 0.01), and 0.10 ± 0.01 (0.14 ± 0.01) for AAS (HCW) using CG_all, CG_week, and CG_day, respectively. The predictive ability, linear regression (LR) accuracy, bias, and dispersion of crossbred traits in crossbreds favored CG_day, but correlations with unadjusted phenotypes favored CG_all. In purebreds, CG_all showed the best LR accuracy, while showing small relative differences in bias and dispersion. Different CG scenarios showed no relevant impact on BFX EBV. This study shows that different CG definitions may affect evaluation stability and animal ranking. Results suggest that ignoring slaughter dates in CG is more appropriate for estimating crossbred trait EBV for purebred animals.  相似文献   

17.
统计昆明犬家系3个世代兴奋性测试记录和系谱数据,对昆明犬兴奋性状不同选育方法进行模拟研究。利用家系系谱资料及F3和F4世代兴奋性状数据,估算个体育种值,依据表型和育种值,对F4犬群按照个体表型、家系表型、个体育种值、家系育种值排序,各选择30%个体,寻找其在F5代中的个体,计算各种选择方法所产生后代的表型和遗传进展,评估各种选择方法对昆明犬兴奋性状选育最优方法。研究表明:选择昆明犬个体育种值好于选择昆明犬家系育种值好于选择家系表型好于选择个体表型,选择昆明犬公犬效果好于选择昆明犬母犬效果。  相似文献   

18.
The aim of this experiment was to investigate the effect of body condition and selection for prolificacy on the reproductive life span of female rabbits. The body condition was obtained by ultrasound measurement of the perirenal thickness of 166 crossbred does at day 10 after parturition in 6 consecutive parities. Two genetic groups were included: the current generation of does crossbred between two lines, both selected within line for number of pups at weaning, and a control group consisting of animals from the same cross but from 12 generations earlier. This control population was obtained by use of cryopreservation techniques, and made a simultaneous comparison between animals of different generations possible. A proportional Cox model was used to obtain estimates of survival characteristics. Twelve generations of selection for litter size at weaning did not significantly affect reproductive life span. Animals in poor body condition were found to have a significantly (P < 0.05) higher risk of dying than animals in better condition. Also, animals with high body fat mobilisation had a higher risk of culling (P < 0.05) than animals with intermediate mobilisation. Animals with zero pups born alive were also found to have a high risk of culling (P < 0.001).  相似文献   

19.
Method R and Restricted Maximum Likelihood (REML) were compared for estimating heritability (h2) and subsequent prediction of breeding values (a) with data subject to selection. A single-trait animal model was used to generate the data and to predict breeding values. The data originated from 10 sires and 100 dams and simulation progressed for 10 overlapping generations. In simulating the data, genetic evaluation used the underlying parameter values and sires and dams were chosen by truncation selection for greatest predicted breeding values. Four alternative pedigree structures were evaluated: complete pedigree information, 50% of phenotypes with sire identities missing, 50% of phenotypes with dam identities missing, and 50% of phenotypes with sire and dams identities missing. Under selection and with complete pedigree data, Method R was a slightly less consistent estimator of h2 than REML. Estimates of h2 by both methods were biased downward when there was selection and loss of pedigree information and were unbiased when no selection was practiced. The empirical mean square error (EMSE) of Method R was several times larger than the EMSE of REML. In a subsequent analysis, different combinations of generations selected and generations sampled were simulated in an effort to disentangle the effects of both factors on Method R estimates of h2. It was observed that Method R overestimated h2 when both the sampling that is intrinsic in the method and the selection occurred in generations 6 to 10. In a final experiment, BLUP(a) were predicted with h2 estimated by either Method R or REML. Subsequently, five more generations of selection were practiced, and the mean square error of prediction (MSEP) of BLUP(a) was calculated with estimated h2 by either method, or the true value of the parameter. The MSEP of empirical BLUP(a) using Method R was greater than the MSEP of empirical BLUP(a) using REML. The latter statistic was closer to prediction error variance of BLUP(a) than the MSEP of empirical BLUP(a) using Method R, indicating that empirical BLUP(a) calculated using REML produced accurate predictions of breeding values under selection. In conclusion, the variability of h2 estimates calculated with Method R was greater than the variability of h2 estimates calculated with REML, with or without selection. Also, the MSEP of EBLUP(a) calculated using estimates of h2 by Method R was larger than MSEP of EBLUP(a) calculated with REML estimates of h2.  相似文献   

20.
Genetic improvement of pigs in tropical developing countries has focused on imported exotic populations which have been subjected to intensive selection with attendant high population‐wide linkage disequilibrium (LD). Presently, indigenous pig population with limited selection and low LD are being considered for improvement. Given that the infrastructure for genetic improvement using the conventional BLUP selection methods are lacking, a genome‐wide selection (GS) program was proposed for developing countries. A simulation study was conducted to evaluate the option of using 60 K SNP panel and observed amount of LD in the exotic and indigenous pig populations. Several scenarios were evaluated including different size and structure of training and validation populations, different selection methods and long‐term accuracy of GS in different population/breeding structures and traits. The training set included previously selected exotic population, unselected indigenous population and their crossbreds. Traits studied included number born alive (NBA), average daily gain (ADG) and back fat thickness (BFT). The ridge regression method was used to train the prediction model. The results showed that accuracies of genomic breeding values (GBVs) in the range of 0.30 (NBA) to 0.86 (BFT) in the validation population are expected if high density marker panels are utilized. The GS method improved accuracy of breeding values better than pedigree‐based approach for traits with low heritability and in young animals with no performance data. Crossbred training population performed better than purebreds when validation was in populations with similar or a different structure as in the training set. Genome‐wide selection holds promise for genetic improvement of pigs in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号