首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The amplified “greenhouse effect” associated with increasing concentrations of greenhouse gases has increased atmospheric temperature by 1°C since industrialization (around 1750), and it is anticipated to cause an additional 2°C increase by mid-century. Increased biospheric warming is also projected to modify the amount and distribution of annual precipitation and increase the occurrence of both drought and heat waves. The ecological consequences of climate change will vary substantially among ecoregions because of regional differences in antecedent environmental conditions; the rate and magnitude of change in the primary climate change drivers, including elevated carbon dioxide (CO2), warming and precipitation modification; and nonadditive effects among climate drivers. Elevated atmospheric CO2 will directly stimulate plant growth and reduce negative effects of drying in a warmer climate by increasing plant water use efficiency; however, the CO2 effect is mediated by environmental conditions, especially soil water availability. Warming and drying are anticipated to reduce soil water availability, net primary productivity, and other ecosystem processes in the southern Great Plains, the Southwest, and northern Mexico, but warmer and generally wetter conditions will likely enhance these processes in the northern Plains and southern Canada. The Northwest will warm considerably, but annual precipitation is projected to change little despite a large decrease in summer precipitation. Reduced winter snowpack and earlier snowmelt will affect hydrology and riparian systems in the Northwest. Specific consequences of climate change will be numerous and varied and include modifications to forage quantity and quality and livestock production systems, soil C content, fire regimes, livestock metabolism, and plant community composition and species distributions, including range contraction and expansion of invasive species. Recent trends and model projections indicate continued directional change and increasing variability in climate that will substantially affect the provision of ecosystem services on North American rangelands.  相似文献   

2.
Understanding fall precipitation effects on rangelands could improve forage production forecasting and inform predictions of potential climate change effects. We used a rainout shelter and water addition to test effects of seasonal precipitation on soil water and annual net primary production of C3 perennial grass, C4 perennial grass, annual grasses, forbs, and all plants combined. Treatments were 1) drought during September−October and April−May (DD); 2) drought plus irrigation during September−October and drought during April−May (WD); 3) year-long ambient conditions (WW); and 4) ambient plus irrigation during September−October (W + W). Treatments created conditions ranking among the driest and wettest September−October periods since 1937. Fall water effects on soil water were not detectable by May at 15 cm and 30 cm. Effects persisted into July at 60 cm and 90 cm, depths below the primary root zone. With spring drought, annual net primary production was 344 kg ha−1 greater when the previous fall was wet rather than dry. No differences were detected between fall water treatments when spring was wet and fall was about 184% (1 938 ± 117 kg ha−1) or 391% of the median (1 903 ± 117 kg ha−1). Fall water increased C3 perennial grass when spring was also wet and had no effect under spring drought, when forage production concerns are greatest. Fall water did not affect C4 perennial grass, and extremely wet fall conditions reduced forb production about 50%. The greatest effect of fall water was increased annual grass production. Even record high levels of fall water had minor effects on biomass, functional group composition, and soil water that were short-lived and overwhelmed by the influence of spring precipitation. Movement of fall water to deep soil by the growing season suggests plants that would most benefit from fall precipitation are those that could use it during fall (winter annuals), or deep-rooted species (shrubs).  相似文献   

3.
Invasive annual grasses, primarily Bromus tectorum, are a severe risk to native vegetation of the intermountain West. Once established, annual grasses alter natural fire regimes and outcompete natives until, in some places, they become the overwhelming dominant. We developed a regional spatial model encompassing eight ecoregions to indicate the relative abundance of invasive annual grass at five levels of canopy cover. We used field sample data representing invasive annual grass abundance to build and calibrate the model. Explanatory variables, represented as map inputs, included image indices, climate, landform, soil, and human-induced surface disturbance. As a novel modeling approach, we built multiple models based on classes of invasive annual grass cover abundance were developed individually and then combined into a final 90-m pixel resolution model that indicates locations relative to invasive annual grass abundance into classes of < 5%, 5−15%, 16−25%, 26−45%, and > 45% cover. Each component model was validated using held-out sample data, and relative accuracy was 86%, 74%, 62%, 62%, and 60%, respectively, with an overall kappa of 0.773. The Columbia Plateau, Northern Basin and Range, and Snake River Plain ecoregions appear to have the greatest overall proportions (48−62%) mapped within at least one of the invasive cover categories. Overlay of the resulting model with major vegetation types indicated > 50 major vegetation types that are affected by current distribution of annual grasses and are at risk of expansion. Among these, Intermountain Basins, Big Sagebrush Steppe, and Columbia Plateau Steppe and Grassland each consistently scored high for invasive risk where they occur. Spatial models of this type should assist with rangeland restoration and for decisions involving placement of infrastructure, vegetation treatments where further surface disturbance could trigger additional cheatgrass expansion. Options exist for extending this model, using climate projections over upcoming decades, to indicate areas of increasing risk for invasion.  相似文献   

4.
Invasive plants are spreading throughout arid and semiarid rangelands of western North America. Long-lived perennial plants that can persist under harsh environmental conditions are needed to compete with invasive species. The objective of this study was to conduct a long-term evaluation of native and introduced grass species planted to suppress and prevent reinvasion of downy brome (Bromus tectorum L.), snakeweed (Gutierrezia sarothrae [Pursh] Britt. & Rusby), and annual forbs. Seeding treatments comprised three introduced grasses: crested wheatgrass (Agropyron cristatum [L.] Gaertner × A. desertorum [Fisch. Ex Link] Schultes), pubescent wheatgrass (Elytrigia intermedia spp. trichophorum [Host] Beauv.), and Russian wildrye (Psathyrostachys junceus [Fisch.] Nevski); a mix of these introduced grass species, three native grasses: bluebunch wheatgrass (Pseudoroegneria spicata [Pursh]), western wheatgrass (Pascopyrum smithii [Rybd.] A. Löve), and squirreltail (Elymus multisetus [J.G. Sm.] Jones); and a mix of these native grass species, or forage kochia (Bassia prostrata [L.] A.J. Scott). The treatments were seeded in October 2003. Frequency and biomass were measured in 2015 and 2017 in Howell, Utah and in 2015 and 2016 in Nephi, Utah. Crested wheatgrass persisted at both locations (> 62% frequency) along with the rhizomatous grass species, pubescent (> 65%) and western wheatgrasses (> 72%). Russian wildrye was still present at Howell (30%) with little remaining at Nephi (7%). Squirreltail frequency was 13% at Howell and 12% at Nephi. Bluebunch wheatgrass was no longer present at either location (< 1%). Forage kochia remained at Nephi (36%) with little remaining at Howell (4%). Downy brome was present at both locations and was suppressed relative to control plots, at Nephi, by crested wheatgrass and the introduced grass mix (< 9%). Downy brome was > 93% in all plots, at Howell, in 2017. In summary, crested, pubescent, and western wheatgrasses were able to persist over 12 yr at both locations.  相似文献   

5.
Community and ecosystem changes are happening in the pristine boreal forest ecosystem of the Yukon for 2 reasons. First, climate change is affecting the abiotic environment (temperature, rainfall and growing season) and driving changes in plant productivity and predator–prey interactions. Second, simultaneously change is occurring because of mammal species reintroductions and rewilding. The key ecological question is the impact these faunal changes will have on trophic dynamics. Primary productivity in the boreal forest is increasing because of climatic warming, but plant species composition is unlikely to change significantly during the next 50–100 years. The 9–10‐year population cycle of snowshoe hares will persist but could be reduced in amplitude if winter weather increases predator hunting efficiency. Small rodents have increased in abundance because of increased vegetation growth. Arctic ground squirrels have disappeared from the forest because of increased predator hunting efficiency associated with shrub growth. Reintroductions have occurred for 2 reasons: human reintroductions of large ungulates and natural recolonization of mammals and birds extending their geographic ranges. The deliberate rewilding of wood bison (Bison bison) and elk (Cervus canadensis) has changed the trophic structure of this boreal ecosystem very little. The natural range expansion of mountain lions (Puma concolor), mule deer (Odocoileus hemionus) and American marten (Martes americana) should have few ecosystem effects. Understanding potential changes will require long‐term monitoring studies and experiments on a scale we rarely deem possible. Ecosystems affected by climate change, species reintroductions and human alteration of habitats cannot remain stable and changes will be critically dependent on food web interactions.  相似文献   

6.
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semiarid grasslands. We evaluated aboveground biomass, cover, and frequency response to summer, fall, and spring fires and no fire on silty and clayey sites in semiarid, C3-dominated grassland. The magnitude of change in biomass between years was greater than any differences among fire treatments. Still, differences existed among seasons of fire. Summer fire reduced non-native annual forb frequency (3% vs. 10% ± 2%) and Hesperostipa comata, reduced native annual forbs the first year, increased Poa secunda and bare ground, and increased Vulpia octoflora the second year. Fall fire increased grass biomass (1224 vs. 1058 ± 56 kg ? ha? 1), but fall fire effects were generally similar to those of summer fire. Spring fire effects tended to be intermediate between no fire and summer and fall fire with the exception that spring fire was most detrimental to H. comata the first growing season and did not increase bare ground. All seasons of fire reduced litter, forb biomass, and frequency of Bromus japonicus and Artemisia spp., and they reduced H. comata, V. octoflora, and native annual forbs the first year, but increased basal cover of C3 perennial grasses (2.2% vs. 0.6% ± 0.4%). Fire during any season increased dominance of native species compared with no fire (6.6% vs. 2.0% ± 1.0% basal cover) and maintained productivity. Seasonal timing of fire manipulated species composition, but increased C3 perennial grass cover and native species dominance with fire during any season indicated that using fire was more important than the season in which it occurred. In addition, fire effects on the vegetation components tended to be counter to previously observed effects of grazing, suggesting fire and grazing may be complementary.  相似文献   

7.
In this study, we present an assessment of the evolutionary history and phylogenetic relationships of Asian mountain voles of the subgenus Aschizomys, genus Alticola, based on extensive sampling and phylogenetic analyses of data from mitochondrial and nuclear markers. Two species of this subgenus are widespread in the mountain areas of north‐eastern Asia. However, both their distribution and taxonomic borders remained questionable for more than 100 years. Our study showed discordance in the phylogenetic patterns between nuclear and mtDNA markers. We found that mtDNA in A. lemminus is paraphyletic relative to A. macrotis, but nuclear markers demonstrated reciprocal monophyly. According to species distribution modeling, ranges of A. macrotis and A. lemminus experienced a secondary contact during the Last Glacial Maximum (approximately 22 kyr BP), and thus a hybridization event seems plausible during that period. Species tree analyses recovered a sister group relationship between the two species of the Aschizomys subgenus, with an estimated divergence date of around 0.8 Ma. Our results provided good support for currently recognized subspecies within both A. macrotis and A. lemminus based on mitochondrial and nuclear datasets. A new, yet undescribed form, supposedly of a subspecific status within A. lemminus, was found in the Bureinskiy Range in the Khabarovsk area. This finding expands the current species distribution range further to the southeast.  相似文献   

8.
Nutritive value of selected grasses in North Sumatra, Indonesia   总被引:1,自引:0,他引:1  
The nutritive values of seven native grass species collected in North Sumatra, Indonesia, during dry and rainy seasons were evaluated. The chemical composition, in vitro dry matter digestibility (IVDMD), in vitro organic matter digestibility (IVOMD), in vitro crude protein digestibility (IVCPD), macro mineral concentrations of calcium, phosphorus and magnesium, in vitro gas production profile and metabolizable energy (ME) content of the grasses varied greatly among species and seasons. The crude protein content ranged from 6.6 (Andropogon gayanus) to 16.2% dry matter (Cynodon plectostachyus) in the rainy season, with a significant (P < 0.05) reduction in the dry season. Data on the fiber fraction showed that the grasses contained more neutral detergent fiber (NDF) and acid detergent fiber (ADF) in the dry season and it significantly (P < 0.05) decreased in the rainy season, except for Panicum maximum and Pennisetum purpureum for NDF content and C. plectostachyus, P. maximum and Brachiaria decumbens for ADF content. Data on the mineral concentration showed that C. plectostachyus in the dry and rainy seasons had a higher calcium content than those of other species. The overall means of the seven grasses for IVDMD, IVOMD and IVCPD were significantly higher (P < 0.05) in the rainy season than in the dry season. The in vitro gas production and ME concentration were numerically higher in the rainy season than in the dry season. In conclusion, the nutritive value of the observed grasses in North Sumatra was relatively higher during the rainy season compared with the dry season. Among the species of grass, P. purpureum and C. plectostachyus had a higher nutritive value in both the dry and rainy seasons.  相似文献   

9.
Leopoldamys edwardsi is a species with wide distribution ranges in southern China but is not discussed in studies on geographic variation and species differentiation. We used 2 mitochondrial (Cytb, CO1) and 3 nuclear (GHR, IRBP and RAG1) genes to clarify species phylogeography and geographical differentiation. Maximum likelihood (ML) and Bayesian phylogenetic inference (BI) trees consistently indicated that L. edwardsi is a species complex containing 3 main lineages with high Kimura‐2‐parameter (K2P) divergences (i.e. lineages LN, LS and LHN) found in the northern and southern China and Hainan Island, respectively. The 3 species delimitation methods, automated barcoding gap discovery, Bayesian poisson tree process analysis and Bayesian phylogenetics and phylogeography, consistently supported the existence of cryptic species. Divergence times among the main lineages were inferred to be during the Pleistocene, with LHN/LS split at 1.33 Ma and LN/(LHN+LS) at 2.61 Ma; the diversifications of L. edwardsi complex might be caused by the rapid uplifts of Tibetan Plateau, paleoclimate change and complex topography. The divergence between LHN and LS was probably related to the separation of Hainan Island from the mainland via the formation of the Qiongzhou Strait. Lineages LN and (LS+LHN) likely diverged due to the Wuyi‐Nanling mountain range forming a dispersal barrier. Our results suggested that L. edwardsi complex contains at least 3 distinct species: LHN represents L. hainanensis, endemic to Hainan Island and previously considered as a subspecies L. e. hainanensis; LS represents a cryptic species distributed throughout the southern Chinese continent; and LN represents the nominotypical species L. edwardsi.  相似文献   

10.
Abstract

A number of grasses were ranked according to the order in which they wilted with diminishing moisture availability, and according to their ability to recover after water replenishment. Digitaria eriantha and Digitaria argyrograpta were the most sensitive to moisture stress, whereas Sporobolus fimbriatus and Panicum stapfianum were last to show signs of wilting. The latter two grass species were the first to recover from wilting during optimum soil water conditions. The leaf water potential and soil water content at which each grass species wilted were recorded.  相似文献   

11.
Ecological studies often suggest that diverse communities are most resistant to invasion by exotic plants, but relatively few local species may be available to a rehabilitation practitioner. We examine the ability of monocultures and diverse assemblages to resist invasion by an exotic annual grass (cheatgrass) and an exotic biennial forb (dyer's woad) in experimental rehabilitation plots. We constructed seven assemblages that included three monocultures of grass, forb, or shrub; three four-species mixtures of grasses, forbs, or shrubs; and a three-species mixture of one species from each growth form in an experimental field setting to test resistance to invasion. Assemblages were seeded with cheatgrass and dyer's woad for two consecutive years and quantified as biomass and density of individuals from each exotic species. Soil NO3- and leaf-area index were examined as predictors of invasive plant abundance. Cheatgrass invasion was greatest in forb and shrub assemblages, and least in mixed grass or grass monoculture; dyer's woad invasion was greatest into mixed grass or grass monoculture, but least into monoculture or mixed-species assemblages composed of forbs or shrubs. The community composed of grasses, forbs, and shrubs suppressed invasion by both species. Consequently, assemblages were most resistant to invasion by species of the same growth form. Moreover, these monocultures and mixtures were generally similar in conferring resistance to invasion, but a monoculture of big sagebrush was more resistant than a mixture of shrubs. Soil NO3- was correlated with invasion by cheatgrass, whereas LAI was correlated with invasion by dyer's woad, suggesting these species were more limited by belowground and aboveground resources, respectively. Overall, increasing diversity with limited species did not necessarily enhance resistance to invasion.  相似文献   

12.
This study was initiated to determine whether a comparative pharmacokinetic (PK) approach could be used to expand the pool of approved anthelmintics for minor ruminant species. Accordingly, the PK profiles of six anthelmintics (levamisole, albendazole, fenbendazole, moxidectin, doramectin, and ivermectin) in sheep, goats, and cattle were determined. The PK values determined for each anthelmintic included Tmax, Tlast, Cmax, AUC, AUC/dose, and Cmax/dose. The results of this study demonstrate that a comparative PK approach does not show commonality in the way these six anthelmintics are individually processed by these three ruminants. While some drugs demonstrated identical PK profiles between sheep and goats, none of these drugs demonstrated PK profiles in sheep and goats comparable to the PK profiles found in cattle. The results from this study suggest drug approval across these three ruminants is not a viable concept. However, the resulting PK profiles for each combination of drug and ruminant species represents a new dataset that can be used to support the US FDA Center for Veterinary Medicine's Minor Use/Minor Species indexing process for drug approvals in minor species such as sheep and goats.  相似文献   

13.
Abstract

Two experiments were conducted, one in the field and the other in the greenhouse, to investigate the effects of the intensity and frequency of grass defoliation on the survival and growth of Acacia karroo seedlings. In the greenhouse, seedlings growing with heavily clipped grasses had higher biomass production than those competing with moderately clipped grasses. Root/shoot ratios were higher in treatments with undipped grasses. There was a negative relationship between grass root production and A. karroo biomass production. The field experiment was carried out in two paddocks, one previously heavily‐grazed and the other lightly‐grazed. Grazing in both paddocks was simulated by artificial defoliation. Generally more A. karroo seedlings emerged under lightly defoliated treatments. Clipping frequency had a strong effect (P=0.066) on the survival of emerged seedlings during the wet season. There were no differences in survival rate at the end of the dry season. Though grass defoliation was shown to enhance seedling growth under controlled conditions, no evidence was found to suggest that seedling establishment during the first year is influenced by the intensity of grass defoliation.  相似文献   

14.
The pharmacokinetics and tissue distribution of quinocetone (QCT) in crucian carp (Carassius auratus), common carp (Cyprinus carpio L.), and grass carp (Ctenopharyngodon idella) were compared after oral administration of QCT (50 mg/kg body weight) at water temperature of 24 ± 1 °C. Similar QCT plasma concentration–time profiles were found in the three species of cyprinid fish at the same dosage regimen and water temperature, which were all fitted two‐compartment open pharmacokinetic model. However, different pharmacokinetic parameters were observed in crucian carp, common carp, and grass carp. The absorption rate constants (Ka) of QCT were 1.65, 1.40 and 1.74/h, respectively and absorption half‐lives (t1/2) were 0.42, 0.49, and 0.40/h, respectively. The distribution half‐life (t1/2α) was 2.83, 0.67, and 0.88 h, respectively, and elimination half‐lives (t1/2β) of QCT were 133.97, 63.55, and 40.76 h, respectively. The maximum concentrations (Cmax) of QCT in plasma were 0.315, 0.182, and 0.139 μg/mL and the time to peak concentrations (Tp) were 1.45, 0.96, and 1.08 h, respectively. The area under the plasma concentration‐time curves (AUC) were 12.35, 5.99, and 4.52 μg·h/mL, respectively. The distribution volumes (Vd/F) of QCT were calculated as 117.81, 128.71, and 220.10 L/kg, respectively. The tissue analysis showed that a similar regularity was obtained in the three species of cyprinids with a single dose of 50 mg/kg body weight after oral administration at the same water temperature. The tissue concentration of QCT in each fish was in order of liver>kidney>muscle, while the residues of QCT in the three species of cyprinid fish were in order of crucian carp>common carp>grass carp.  相似文献   

15.
A key goal in land management is to prevent ecosystem shifts that affect human well-being. Like other types of sagebrush shrublands, large areas dominated by the common but little-studied mountain silver sagebrush may have shifted to a less productive shrub-dominated alternate state under heavy livestock grazing in the 19th century. The goals of this study are to 1) describe long-term vegetation change in a silver sagebrush mountain park and 2) evaluate evidence that these changes constitute alternate states. We examined vegetation change over the last 57 yr in California Park, Colorado, USA, using monitoring data from 15 permanent transects at six sites. We analyzed change in species composition over time and related it to management and climatic drivers using nonmetric multidimensional scaling. We found that management practices influenced species composition. Spraying herbicides resulted in decreases of sagebrush and a dominant, unpalatable forb (Wyethia amplexicaulis), but sagebrush recovered. Spraying also triggered a temporary increase in native palatable grasses and forbs. Native grasses have since decreased again, coinciding with increases in the cattle stocking rate and elk population. The nonnative pasture grass Phleum pratense has increased to become one of the dominant grasses in 2010. Sagebrush and herbaceous understory dynamics were not consistent with a shrub-dominated alternate state: changes were gradual and not persistent. However, historic Wyethia dominance and the widespread increase in the nonnative grass Phleum were persistent and may represent alternate states. We used these findings to update a state-and-transition model of high-elevation silver sagebrush shrubland dynamics for land management decision making. Our analysis differentiated gradual, nonpersistent changes from potentially irreversible changes, as is necessary for identifying alternate states that are important for land management and ecosystem function. The gradual but persistent increase in the nonnative grass Phleum reinforces others' observations that even incremental changes may lead to irreversible shifts.  相似文献   

16.
The application of n-alkanes as faecal markers to estimate feed intake and apparent digestibility (DMDap) of equines and cattle was studied. Additionally, the effect of using different data on diet composition, known proportions of the diet components (DC1) and those estimated using the alkane markers (DC2), on the accuracy of intake and DMDap estimates was evaluated. Six mature horses, divided in two groups of three animals (H1 and H2), and three adult non-lactating cows of Asturiana de los Valles breed (C) were housed in individual stalls. H1 and C groups were fed on a diet composed of Lolium perenne L. (70%) and heather (30%) and H2 received L. perenne (40%), heather (30%) and Ulex gallii Planchon (30%). The dietary component heather represented the field proportions of different plant species of heathland, namely Erica umbellata L., Erica cinerea L. and Calluna vulgaris L., at this experimental period. All animals received a daily dose of paper pellets containing C24, C32 and C36 n-alkanes as external markers with the purpose of using different n-alkane pairs of adjacent chain length for feed intake estimations. The results indicated that a period of 3 and 5 days was sufficient for these external markers to reach a steady concentration in faeces of cattle and equines, respectively. In contrast to the results obtained in cattle, the alkane faecal recovery in equines was unrelated to the carbon chain length. Diet composition only affected the faecal recovery of the alkanes C24 (P < 0.05), C31 (P < 0.05), C32 (P < 0.05) and C36 (P < 0.01) in the faeces of the equines, suggesting a different dispersion of the synthetic n-alkanes in the digesta. In equines, DMDap estimates were not affected by the n-alkane (C27, C29, C31 and C33) used in the calculations, contrasting with the significant (P < 0.001) effect observed in cattle. In both animal species, the data on diet composition (DC1 or DC2) used in the calculations did not affect DMDap estimates. Feed intake estimates were affected by the alkane pair used in the calculations in H1 (P < 0.05), H2 (P < 0.001) and C (P < 0.001). The data on diet composition used in the intake calculations affected the resultant estimates in H1 (P < 0.05) but not in H2 and C. The differences from the known intake values were lower when using C31:C32 alkane pair, overestimating intake in only an average of 4.5, 13.0 and 1.3% in H1, H2 and C, respectively, using DC1 or DC2. The results obtained in this study confirm the accuracy of the n-alkane markers to estimate simultaneously feed intake, apparent digestibility and diet composition of equines and cattle grazing these type vegetation communities.  相似文献   

17.
Measurements were taken at 20 different sites in a relatively homogenous area of open Camelthorn savanna in eastern Namibia. Ordination of grass species composition did not provide a good degradation gradient, due to domination by different species of annual grasses at many of the sites. However a centred PCA ordination of perennial grass species indicated a degradation gradient. This gradient was used to allocate a range condition score to each site, which was then correlated with other measurements. The range condition score did not correlate well with mulch cover, basal cover, proportion of bare soil, above-ground grass biomass, proportion of moribund grass, proportion of seedlings amongst the perennial grasses, density of woody plants lower than O.5m and canopy cover of browsable woody plants over 0.5m tall. A weak correlation (r2 = 0.68, p<0.0001, n = 20) was obtained through a power trend line with woody canopy cover of only the bush thickening species. A better correlation (r2 = 0.90, p<0.0001, n = 20) was obtained with mean distance from sampling point to the nearest perennial grass. This may therefore be an appropriate indicator to include in range condition score for such types of savanna.  相似文献   

18.
Long-term control of the invasive annual grass cheatgrass is predicated on its biological suppression. Perennial grasses vary in their suppressive ability. We compared the ability of a non-native grass (“Hycrest” crested wheatgrass) and two native grasses (Snake River wheatgrass and bluebunch wheatgrass) to suppress cheatgrass. In a greenhouse in separate tubs, 5 replicates of each perennial grass were established for 96 d, on which two seeds of cheatgrass, 15 cm apart, were then sown in a semicircular pattern at distances of 10 cm, 30 cm, and 80 cm from the established perennial bunchgrasses. Water was not limiting. After 60 d growth, cheatgrass plants were harvested, dried, weight recorded, and tissue C and N quantified. Soil N availability was quantified at each location where cheatgrass was sown, both before sowing and after harvest. Relative to cheatgrass grown at 80 cm, all perennial grasses significantly reduced aboveground biomass at 30 cm (68% average reduction) and at 10 cm (98% average reduction). Sown at 10 cm from established perennial grasses, cheatgrass aboveground biomass was inversely related with perennial grass root mass per unit volume of soil. All cheatgrass sown at 10 cm from “Hycrest” crested wheatgrass died within 38 d. Before sowing of cheatgrass, soil 10 cm from established perennial grasses had significantly less mineral N than soil taken at 30 cm and 80 cm. Relative to cheatgrass tissue N for plants grown at 80 cm, cheatgrass nearest to the established perennial grasses contained significantly less tissue N. All perennial grasses inhibited the NO2 to NO3 nitrification step; for “Hycrest” crested wheatgrass, soil taken at 10 cm from the plant had a molar proportion of NO2 in the NO2 + NO3 pool of > 90%. In summary, a combination of reduced nitrogen availability, occupation of soil space by perennial roots, and attenuation of the nitrogen cycle all contributed to suppression of cheatgrass.  相似文献   

19.
Anthropogenic climate change is hypothesized to modify the spread of invasive annual grasses across the deserts of the western United States. The influence of climate change on future invasions depends on both climate suitability that defines a potential species range and the mechanisms that facilitate invasions and contractions. A suite of downscaled climate projections for the mid–21st century was used to examine changes in physically based mechanisms, including critical physiological temperature thresholds, the timing and availability of moisture, and the potential for large wildfires. Results suggest widespread changes in 1) the length of the freeze-free season that may favor cold-intolerant annual grasses, 2) changes in the frequency of wet winters that may alter the potential for establishment of invasive annual grasses, and 3) an earlier onset of fire season and a lengthening of the window during which conditions are conducive to fire ignition and growth furthering the fire-invasive feedback loop. We propose that a coupled approach combining bioclimatic envelope modeling with mechanistic modeling targeted to a given species can help land managers identify locations and species that pose the highest level of overall risk of conversion associated with the multiple stressors of climate change.  相似文献   

20.
The grazing behaviour and forage preferences of blesbok on the Van Riebeek Nature Reserve near Pretoria are described. Species composition of the grass component of this grassland vegetation as well as its utilization by blesbok were determined by means of point surveys. Blesbok feed exclusively on grasses and show preferences for certain species. Their preferences on burned range differ from those on unburned range. Judging by preference ratings, Themeda triandra and Eragrostis curvula are the most important food plants of blesbok in this Reserve. Rotational burning appears to be essential in the management of blesbok herds kept under such conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号