首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stochastic model was designed to calculate the cost-effectiveness of biosecurity strategies for bovine viral diarrhea virus (BVDV) in cow-calf herds. Possible sources of BVDV introduction considered were imported animals, including the calves of pregnant imports, and fenceline contact with infected herds, including stocker cattle raised in adjacent pastures. Spread of BVDV through the herd was modeled with a stochastic SIR model. Financial consequences of BVDV, including lost income, treatment costs, and the cost of biosecurity strategies, were calculated for 10 years, based on the risks of a herd with a user-defined import profile. Results indicate that importing pregnant animals and stockers increased the financial risk of BVDV. Strategic testing in combination with vaccination most decreased the risk of high-cost outbreaks in most herds. The choice of a biosecurity strategy was specific to the risks of a particular herd.  相似文献   

2.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

3.
OBJECTIVE: To determine whether serologic evaluation of 5 unvaccinated 6- to 12-month-old heifers is a valid method for identifying herds that contain cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV). ANIMALS: 14 dairy herds with a history of BVDV infection, with health problems consistent with BVDV infection, or at risk for contracting BVDV infection. PROCEDURE: 5 unvaccinated 6- to 12-month-old heifers were randomly selected from each herd. Neutralizing antibody titers for type-I and -II BVDV were determined. A herd was classified as likely to contain PI cattle when at least 3/5 heifers had antibody titers > or = 128. Virus isolation was performed on all cattle to identify PI cattle. Genotype of isolated viruses was determined by nested multiplex polymerase chain reaction. RESULTS: 6 of 14 herds contained PI cattle. Sensitivity and specificity of serologic evaluation of 5 heifers for identifying these herds were 66 and 100%, respectively. In herds that contained PI cattle, the predominant BVDV titer in the tested heifers corresponded to the genotype of the isolated virus. CONCLUSIONS AND CLINICAL RELEVANCE: Serologic evaluation of unvaccinated 6- to 12- month-old heifers is an accurate method for identifying herds containing PI cattle. Both type-I and -II BVDV antibody titers should be determined to prevent herd misclassification. The genotype of BVDV found in PI cattle can be predicted by the predominant neutralizing antibody titers found in tested heifers. Serologic evaluation of 5 unvaccinated heifers can be used to determine whether a herd is likely to contain PI cattle.  相似文献   

4.
A herd is a population structured into groups not all equally in contact, which may influence within-herd spread of pathogens. Herd structure varies among cattle herds. However, published models of the spread of bovine viral diarrhoea virus (BVDV) assume no herd structure or a unique structure chosen as a representative. Our objective was to identify--for different index cases introduced into an initially BVDV--free dairy herd - risky (favourable) herd structures, which increased (decreased) BVDV spread and persistence compared to a reference structure. Classically, dairy herds are divided into calves, young heifers, bred heifers, lactating cows and dry cows. In the reference scenario, groups are all equally in contact. We evaluated the effect of isolating or merging groups. Three index cases were tested: an open persistently-infected (PI) heifer, an open transiently-infected heifer, an immune heifer carrying a PI foetus. Merging all groups and merging calves and lactating cows were risky scenarios. Isolating each group, isolating lactating cows from other groups, and merging calves and young heifers were favourable scenarios. In most structures, the most risky index cases were the following: first, the entry of a PI heifer; second, the birth of a PI calf; last, the entry of a transiently-infected heifer. Recommendations for dairy herds are to raise young animals together before breeding and to isolate lactating cows from others as much as possible. These recommendations will be less efficient if a PI adult enters into the herd.  相似文献   

5.
Reproductive efficiency is imperative for the maintenance of profitability in both dairy and cow-calf enterprises. Bovine viral diarrhea virus is an important infectious disease agent of cattle that can potentially have a negative effect on all phases of reproduction. Reduced conception rates,early embryonic deaths, abortions, congenital defects, and weak calves have all been associated BVDV infection of susceptible females. In addition, the birth of calves PI with BVDV as a result of in utero fetal exposure is extremely important in the perpetuation of the virus in an infected herd or spread to other susceptible herds. Bulls acutely or PI with BVDV may bea source of viral spread through either natural service or semen used in artificial insemination. Management practices including elimination of PI cattle, biosecurity measures and strategic use of vaccination can be implemented to reduce the risk of BVDV related reproductive losses.Development of vaccines and vaccine strategies capable of providing better protection against fetal infection would be of benefit.  相似文献   

6.
7.
Detection, genetic characterization, and control of bovine viral diarrhea virus (BVDV) disease in a large commercial dairy herd is reported. Precolostral BVDV serum antibody was detected in 5.3% (12/226) of newborn calves before the test and removal of persistently infected (PI) animals and in 0.4% (2/450) of newborn calves after the removal of PI heifers.  相似文献   

8.
Moen A  Sol J  Sampimon O 《Preventive veterinary medicine》2005,72(1-2):93-8; discussion 215-9
In a closed dairy herd all animals were tested serologically for BVD antibodies twice a year during a 6-year period. Seroconversions were detected every year. At the start of the 6-year monitoring period blood samples from all animals were examined by virus isolation. No persistently infected animals were identified. Entire-herd culturing for BVDV was repeated at the end of the third year. Samples from all newborn female calves were examined for BVDV at approximately 2 months of age and older. During the entire monitoring period BVDV was isolated in one newborn calf twice with an interval of 3 weeks. The mother had seroconverted during pregnancy. Five congenitally infected non-PI calves were identified, the mothers of which had seroconverted during late pregnancy; repeated sampling proved the calves to remain seropositive in a seronegative age cohort. Although direct and indirect introduction of BVDV from outside the herd can never be excluded it seems highly unlikely in this closed herd. The findings indicate that transmission of BVDV can take place over a long period of time in the absence of PI animals. This observation may have serious consequences for control programmes.  相似文献   

9.
OBJECTIVE: To evaluate the efficacy of a commercially available killed bovine viral diarrhea virus (BVDV) vaccine to protect against fetal infection in pregnant cattle continually exposed to cattle persistently infected with the BVDV. ANIMALS: 60 crossbred beef heifers and 4 cows persistently infected with BVDV. PROCEDURES: Beef heifers were allocated to 2 groups. One group was vaccinated twice (21-day interval between the initial and booster vaccinations) with a commercially available vaccine against BVDV, and the other group served as nonvaccinated control cattle. Estrus was induced, and the heifers were bred. Pregnancy was confirmed by transrectal palpation. Four cows persistently infected with BVDV were housed with 30 pregnant heifers (15 each from the vaccinated and nonvaccinated groups) from day 52 to 150 of gestation. Fetuses were then harvested by cesarean section and tested for evidence of BVDV infection. RESULTS: 1 control heifer aborted after introduction of the persistently infected cows. Bovine viral diarrhea virus was isolated from 14 of 14 fetuses obtained via cesarean section from control heifers but from only 4 of 15 fetuses obtained via cesarean section from vaccinated heifers; these proportions differed significantly. CONCLUSIONS AND CLINICAL RELEVANCE: A commercially available multivalent vaccine containing an inactivated BVDV fraction significantly reduced the risk of fetal infection with BVDV in heifers continually exposed to cattle persistently infected with BVDV. However, not all vaccinated cattle were protected, which emphasizes the need for biosecurity measures and elimination of cattle persistently infected with BVDV in addition to vaccination within a herd.  相似文献   

10.
Objective-To determine whether administration of 2 doses of a multivalent, modified-live virus vaccine prior to breeding of heifers would provide protection against abortion and fetal infection following exposure of pregnant heifers to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) and cattle with acute bovine herpesvirus 1 (BHV1) infection. Design-Randomized controlled clinical trial. Animals-33 crossbred beef heifers, 3 steers, 6 bulls, and 25 calves. Procedures-20 of 22 vaccinated and 10 of 11 unvaccinated heifers became pregnant and were commingled with 3 steers PI with BVDV type 1a, 1b, or 2 for 56 days beginning 102 days after the second vaccination (administered 30 days after the first vaccination). Eighty days following removal of BVDV-PI steers, heifers were commingled with 3 bulls with acute BHV1 infection for 14 days. Results-After BVDV exposure, 1 fetus (not evaluated) was aborted by a vaccinated heifer; BVDV was detected in 0 of 19 calves from vaccinated heifers and in all 4 fetuses (aborted after BHV1 exposure) and 6 calves from unvaccinated heifers. Bovine herpesvirus 1 was not detected in any fetus or calf and associated fetal membranes in either treatment group. Vaccinated heifers had longer gestation periods and calves with greater birth weights, weaning weights, average daily gains, and market value at weaning, compared with those for calves born to unvaccinated heifers. Conclusions and Clinical Relevance-Prebreeding administration of a modified-live virus vaccine to heifers resulted in fewer abortions and BVDV-PI offspring and improved growth and increased market value of weaned calves.  相似文献   

11.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

12.
Routine Bovine Viral Diarrhoea Virus (BVDV) monitoring of a commercial beef herd in southern New South Wales over a 10-year period provided an opportunity to assess the impact of the introduction of BVDV on that herd. BVDV antibody testing provided strong evidence that the herd was initially free of BVDV (2009–2011). Testing from 2012 suggested BVDV had been introduced into the herd and this was confirmed in 2015 with the identification of persistently infected (PI) animals. Having become established in the herd, the owners then set out to eliminate BVDV from the herd. Antigen testing aimed at identifying PI animals revealed BVDV was already absent from the herd. Subsequent antibody testing confirmed that the herd was now free from BVDV. Despite the incursion of BVDV in this herd, there was little measurable impact on reproductive performance (pregnancy rates), although suspected increased calf losses from birth to calf marking were reported. This is the first time such self-clearance has been documented as part of a longitudinal study under Australian conditions.  相似文献   

13.
It is well known that, in Switzerland, communal grazing of livestock on alpine pastures plays an important role in the spread of BVD virus. Analogously, we might expect that the communal raising on farms specialising in raising heifers of animals born on different farms would also favour the spread of BVDV. This study investigated whether a persistently infected (PI) breeding heifer kept on this type of farm over a period of 26 months would put the other animals at risk of being infected.The PI-animal was in contact with 75 heifers (here defined as contact animals) on this farm. Thirty-two of the contact animals that were probably pregnant (animals at risk of giving birth to a PI-calf) were moved to 8 different breeding farms (here defined as farms at risk). On these 8 farms, 246 calves were found to be at risk of being infected with BVDV. We examined 78 calves and investigated whether the move of the pregnant animals from their original farm had permitted the virus to spread to these 8 other farms.The contact animals had a seroprevalence of 92% and the animals at risk a seroprevalence of 100%. Only one PI-animal was found on the farms at risk.This BVD infection, however, occurred independently of the PI-breeding animal. Seropositive calves were found only on 2 farms. This study did not provide any proof for a spread of BVDV with the PI-breeding animal as a source; likewise, no persistent infection was proven to exist on the farms at risk. This result is likely to be representative for the endemic situation of BVD in Switzerland. Thus, PI-animals present on heifer raising farms infect calves well before servicing. Hence, no new PI-animals are generated, and the infection becomes self-limiting. When we reconstructed the animal movements between the farms and determined the animals to be examined with the aid of the Swiss national animal traffic database (TVD) we found the data of 37% of the heifers to be incomplete and failed to successfully establish the whereabouts of 3 animals.  相似文献   

14.
Systematic eradication of BVDV without vaccination started in Scandinavia in 1993. In principle, the schemes include; (1) identification of non-infected and infected herds using different combinations of serological herd tests such as bulk milk tests and spot tests (sample of animals in a certain age), (2) monitoring/certification of non-infected herds by repeated sampling, applying one of the above-mentioned methods and (3) virus clearance in infected herds aimed at removing persistently infected (PI) animals in a cost- and time-efficient manner. In the virus clearance protocol described, an initial test is performed on all animals with subsequent follow-up of calves born as well as of dams seronegative in the initial test. It is generally recommended to perform an initial antibody test on all samples. This should be done not only to screen for seronegative animals on which virus isolation should be attempted (i.e. possible PI animals), but more in order to identify non-immune animals in reproductive age, that is, the key animals in herd-level persistence of infection. In Sweden, a common finding has been self-clearance, where the infection ceases without any other intervention than controlled introduction of new animals. Other epidemiological observations concern the course of events following virus introduction. Important risk factors for spreading BVDV are discussed, where livestock trade is perceived as the most central to control. Live vaccines, imported semen and embryos constitute special hazards, since they may act as vehicles for the introduction of new BVDV strains. The importance of making farmers aware of herd biosecurity and their own responsibility for it is stressed, and in order to maintain a favourable situation after a scheme has been concluded, effort must be put into establishing such a persisting attitude in the farming community.  相似文献   

15.
Models have been developed to represent the spread of bovine viral diarrhoea virus (BVDV) in cattle herds. Whereas the herd dynamics is well known, biological data are missing to estimate the parameters of the infection process. Our objective was to identify the parameters of the infection process that highly influence the spread of BVDV in a dairy herd. A stochastic compartmental model in discrete time represented BVDV infection in a typical Holstein dairy herd structured into five groups (calves, young versus older heifers, lactating versus dry cows). Model sensitivity was analysed for variations in the probability of birth of persistently infected (P) calves (b(P)), mortality of P animals (m(P)), within- and between-group transmission rates for P and transiently infected (T) animals (respectively, beta(w)(P),beta(b)(P),beta(w)(T),beta(b)(T)). Three to five values were tested per parameter. All possible combinations of parameter values were explored, representing 3840 scenarios with 200 runs for each. Outputs were: virus persistence 1 year after introduction, time needed to reach a probability of 80% for the herd to be virus-free, epidemic size, mean numbers of immune dams carrying a P foetus, of P and of T animals in infected herds. When considered together, m(P) and beta(b)(P) accounted for 40-80% of variance of all outputs; b(P) and beta(w)(T) accounted each for less than 20% of variance; beta(b)(T) and beta(w)(P) accounted for almost no percent of variance of the outputs. Parameters beta(w)(T) and b(P) needed to be more precisely estimated. The influence of m(P) indicated the effectiveness of culling P calves, the influence of beta(b)(P) indicated the role of the herd structure in BVDV spread, whereas the influence of b(P) indicated the possible role of vaccination programs in controlling within-herd BVDV spread.  相似文献   

16.
Bovine viral diarrhoea virus (BVDV) and infectious bovine rhinotracheitis virus (IBRV) are important viral diseases around the world. The objective of this study was to estimate the incidence of seroconversion to BVDV and IBRV and to identify associated risk factors in dairy herds of Michoacan, Mexico. The longitudinal study included 62 herds and ran from December 2001 to November 2002. The total number of animals enrolled and completing the study were 392 and 342 animals for BVDV and 925 and 899 animals for IBRV. Animals were tested monthly for 12 months, for the presence of antibodies. Risk factors were: herd size (2–9, 10–25 and 26–55 animals), herd serostatus (seropositive or seronegative, only for IBRV), age group of the animal (6 to 12, 13 to 24, 25 to 48 and > 48 months) and animal origin (born in farm, purchased). The cumulative incidences for BVDV and IBRV were 16.4% and 3.4%, respectively; whereas, the incidence density rates for BVDV and IBRV were 15.9 and 2.9 per 1000 animal-months at risk, respectively. Seroconversion curves were statistically different for age group for BVDV and IBRV and for herd status for IBR. The relatively high incidence of seroconversion for BVDV suggests that a successful control programme should be oriented towards the identification and elimination of the PI animals and towards avoiding the introduction of PI cattle to the farm. The scenario of IBRV is favourable to implement a programme directed to reduce the number of new seropositive herds.  相似文献   

17.
18.
In 5 herds in which bovine virus diarrhoea virus (BVDV) had been isolated, all animals were bled for virological and serological examination. After the herd blood test, follow up blood tests were made on calves born up to 6 months later in 1 herd, 9 months later in 1 herd and up to 12 months later in 3 herds. Persistently infected animals (PI animals) were removed and after a time period a small herd sample of 10 animals that were born after removal of the PI animals were examined for BVDV antibodies.At the herd blood test a total of 21 PI animals were detected. During the follow up period another 25 PI animals were born.Among animals in the small herd samples collected after removal of the PI animals, antibody positive animals were found in the 2 herds with the shortest follow up period. In the 3 herds with a 1 year follow up period there were no antibody carriers in the herd sample.It seems possible to prevent further spread of infection with BVDV if all animals in the herds as well as animals born during the following year are examined and PI animals removed.  相似文献   

19.
OBJECTIVE: To evaluate biosecurity practices of cow-calf producers. DESIGN: Cross-sectional survey. SAMPLE POPULATION: 2,713 cow-calf operations were used in phase 1 of the study, and 1,190 cow-calf operations were used in phase 2. PROCEDURE: Producers were contacted for a personal interview between Dec 30, 1996 and Feb 3, 1997 regarding their management practices. Noninstitutional operations with 1 or more beef cows were eligible to participate in the study. Producers who participated in the first phase of the study and who had > or = 5 beef cows were requested to continue in the study and were contacted by a veterinarian or animal health technician who administered further questionnaires. All contacts for the second phase of the study were made between Mar 3, 1997 and Apr 30, 1997. Additional data on use of various vaccines, testing of imported cattle for brucellosis, Mycobacterium paratuberculosis, bovine viral diarrhea, and tuberculosis as well as potential for feed contamination were collected during the second phase of the study. RESULTS: Producers commonly engaged in management practices that increased risk of introducing disease to their cattle such as importing cattle, failing to quarantine imported cattle, and communal grazing. Producers inconsistently adjusted for the increased risk of their management practices by increasing the types of vaccines given, increasing the quarantine time or proportion of imported animals quarantined, or increasing testing for various diseases in imported animals. CONCLUSIONS AND CLINICAL RELEVANCE: Cow-calf herds are at risk for disease exposure from outside sources when cattle are introduced to the herd, and producers do not always adjust management practices such as vaccination schedules and quarantine procedures appropriately to minimize this risk. Veterinary involvement in education of producers regarding biosecurity risks and development of rational and economical biosecurity plans is needed.  相似文献   

20.
In this study, blood serum and leukocyte samples were collected from 400 Holstein heifers, all of which appeared to be healthy. Antibodies (Ab) against bovine viral diarrhea virus (BVDV) were detected in 57 serum samples, and BVDV antigen (Ag) was detected in 38 leukocyte samples. There were statistically important differences between the average first insemination ages (FIT) of the BVDV (Ag-/Ab+) heifers (p<0.0001) (pregnant p<0.05, nonpregnant p<0.0001) and BVDV (Ag-/Ab-) heifers. The average conception rates (CR) of BVDV (Ag-/Ab+) heifers and BVDV (Ag-/Ab-) heifers were not significant statistically. There were statistically important differences in average FIT between persistent infected (PI) BVDV (Ag+/Ab-) heifers (p<0.0001; PI pregnant p<0.05, PI nonpregnant p<0.0001) and BVDV (Ag-/Ab-) heifers. No significant differences in average CR between PI BVDV (Ag+/Ab-) heifers and BVDV (Ag-/Ab-) heifers were found. The differences in average FIT between BVDV (Ag+/Ab+; p<0.0001; nonpregnant p<0.0001) and BVDV (Ag-/Ab-) heifers were important statistically. Although there were no BVDV (Ag+/Ab+) pregnant heifers, the differences in average CR between BVDV (Ag+/Ab+) pregnant heifers and BVDV (Ag-/Ab-) heifers were found to be statistically important (p<0.0001). We conclude that fertility is affected in heifers with BVDV (Ag-/Ab+, Ag+/Ab- and Ag+/Ab+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号