首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
The transmission risk of foot-and-mouth disease (FMD) in Japan was evaluated using a mathematical FMD transmission model. The distance-based transmission rate between farms, which was parameterized using the FMD epidemic data in 2010 in Japan, was used to calculate the local-level reproduction numbers—expected numbers of secondary infections caused by one infected farm—for all cattle and pig farms in the country, which were then visualized as a risk map. The risk map demonstrated the spatial heterogeneity of transmission risk in the country and identified risk areas with higher possibility of disease spread. This result suggests that, particularly in high-risk areas, it is important to prepare for the smooth and efficient implementation of control measures against FMD outbreaks.  相似文献   

2.
Several routes contribute to the spread of classical swine fever (CSF) during outbreaks of this disease. However, for many infected herds in recent epidemics, no route of virus introduction could be indentified. To obtain more insight into the relative importance of secretions and excretions in transmission of CSF virus, a model was developed. This model quantified the daily transmission probabilities from one infectious pig to one susceptible pig, using quantitative data on: (a) virus excretion by infected pigs, (b) survival of virus in the environment and (c) virus dose needed to infect susceptible pigs. Furthermore, the model predicted the relative contribution of secretions and excretions to this daily probability of infection of a susceptible pig. Three virus strains that differed in virulence were evaluated with the model: the highly virulent strain Brescia, the moderately virulent strain Paderborn and the low virulent strain Zoelen. Results suggest that it is highly probable that susceptible pigs in contact with Brescia or Paderborn infected pigs will be infected. For a pig in contact with a Zoelen infected pig, infection is less likely. When contact with blood is excluded, the predicted overall probability of infection was only 0.08 over the entire infectious period. The three strains differed in the relative contribution of secretions and excretions to transmission, although blood had a high probability of causing infection of a susceptible pig when in contact with a pig infected with any strain. This supports the statement that during outbreaks, control measures should ideally be based on the characteristics of the specific virus strain involved, which implies the development of strain-specific measures.  相似文献   

3.
We describe an approach to modelling the spatio-temporal spread of foot and mouth disease through feral animal and unfenced livestock populations. We used a susceptible-infected-recovered model, implemented in a cellular automata framework, to assess the spread of FMD across two regions of Queensland, Australia. Following a sensitivity analysis on the infectious states, scenario analyses were conducted using feral pigs only as the susceptible population, and then with the addition of livestock, and initiated in the wet season and in the dry season. The results indicate that, depending on the season the outbreak is initiated, and without the implementation of control measures, an outbreak of Foot and Mouth Disease around Winton could continue unchecked, while an outbreak around Cape York may die out naturally. The approach explicitly incorporates the spatial relationships between the populations through which the disease spreads and provides a framework by which the spread of disease outbreaks can be explored through varying the model parameters. It highlights the emergence and importance of spatio-temporal patterns, something that previous modelling of FMD in feral animal and unfenced livestock populations has lacked.  相似文献   

4.
The results of investigations of 11 outbreaks of foot-and-mouth disease in villages in northern Thailand are described. The causative virus was Asia in one in seven outbreaks, Type O in two outbreaks and unknown in two outbreaks. The most probable sources of the outbreaks were co-mingling of cattle and/or buffalo with livestock from an infected neighbouring village (four) and recent introductions of infected cattle from a public livestock market (two) while the probable source could not be determined in five outbreaks. Attack rates in cattle and buffalo ranged from 0.28% to 50.9% but no pigs became sick during any of the outbreaks. Most outbreaks lasted 4 weeks or less. Adult cattle and buffalo were at higher risk of becoming a case when compared with work cattle. Beef cattle were at higher risk than buffalo and adult cattle and buffalo were at higher risk than calves less than 1 year of age. There was significant clustering of cases within households. Serological investigations indicated that many unaffected animals were probably not exposed to virus during the outbreaks. We concluded that close contact between animals was the main method of spread and that differences in attack rates between animal classes reflected differences in animal management. We further concluded that simple quarantine of early cases during outbreaks is likely to be effective in reducing spread within and between villages.  相似文献   

5.
6.
ABSTRACT: Lumpy skin disease (LSD) is a severe viral disease of cattle. Circumstantial evidence suggests that the virus is transmitted mechanically by blood-feeding arthropods. We compared the importance of transmission via direct and indirect contact in field conditions by using mathematical tools. We analyzed a dataset collected during the LSD outbreak in 2006 in a large dairy herd, which included ten separated cattle groups. Outbreak dynamics and risk factors for LSD were assessed by a transmission model. Transmission by three contact modes was modelled; indirect contact between the groups within a herd, direct contact or contact via common drinking water within the groups and transmission by contact during milking procedure. Indirect transmission was the only parameter that could solely explain the entire outbreak dynamics and was estimated to have an overall effect that was over 5 times larger than all other possible routes of transmission, combined. The R0 value induced by indirect transmission per the presence of an infectious cow for 1 day in the herd was 15.7, while the R0 induced by direct transmission was 0.36. Sensitivity analysis showed that this result is robust to a wide range of assumptions regarding mean and standard deviation of incubation period and regarding the existence of sub-clinically infected cattle. These results indicate that LSD virus spread within the affected herd could hardly be attributed to direct contact between cattle or contact through the milking procedure. It is therefore concluded that transmission mostly occurs by indirect contact, probably by flying, blood-sucking insects. This has important implications for control of LSD.  相似文献   

7.
Bighorn sheep currently occupy just 30% of their historic distribution, and persist in populations less than 5% as abundant overall as their early 19th century counterparts. Present-day recovery of bighorn sheep populations is in large part limited by periodic outbreaks of respiratory disease, which can be transmitted to bighorn sheep via contact with domestic sheep grazing in their vicinity. In order to assess the viability of bighorn sheep populations on the Payette National Forest (PNF) under several alternative proposals for domestic sheep grazing, we developed a series of interlinked models. Using telemetry and habitat data, we characterized herd home ranges and foray movements of bighorn sheep from their home ranges. Combining foray model movement estimates with known domestic sheep grazing areas (allotments), a Risk of Contact Model estimated bighorn sheep contact rates with domestic sheep allotments. Finally, we used demographic and epidemiologic data to construct population and disease transmission models (Disease Model), which we used to estimate bighorn sheep persistence under each alternative grazing scenario. Depending on the probability of disease transmission following interspecies contact, extirpation probabilities for the seven bighorn sheep herds examined here ranged from 20% to 100%. The Disease Model allowed us to assess the probabilities that varied domestic sheep management scenarios would support persistent populations of free-ranging bighorn sheep.  相似文献   

8.
SUMMARY: A study was undertaken in northern Thailand to examine the involvement of pigs in outbreaks of foot-and-mouth disease (FMD). Data were collected by surveying selected villages, by serological monitoring of pigs and by investigating outbreaks. Fifty-three of 58 villages (91%) surveyed reported that pigs did not develop FMD during the most recent outbreak. The source of 49/60 (82%) outbreaks was attributed to either recent purchases of infected cattle and buffalo or commingling of cattle and buffalo with stock from an infected neighbouring village. One of 60 villages (1.7%) reported that the source was introduced infected pigs. There was no association between the various hypothesised risk factors relating to the management of pigs and the frequency of FMD outbreaks in the survey. The percentage of seropositive pigs during 3 rounds of serological monitoring conducted at 6-monthly intervals in selected villages was 3.5%, 2.6% and 0%, respectively. No clinically affected pigs were observed in 11 outbreak investigations. It was concluded that pigs did not commonly become infected when there were outbreaks of FMD in village cattle and buffalo in northern Thailand. This was probably due to the pig feeding and housing practices employed by villagers that protected pigs from exposure to virus from infected cattle or buffalo, or their products.  相似文献   

9.
Many economically important cattle diseases spread between herds through livestock movements. Traditionally, most transmission models have assumed that all purchased cattle carry the same risk of generating outbreaks in the destination herd. Using data on bovine viral diarrhoea virus (BVDV) in Scotland as a case example, this study provides empirical and theoretical evidence that the risk of disease transmission varies substantially based on the animal and herd demographic characteristics at the time of purchase. Multivariable logistic regression analysis revealed that purchasing pregnant heifers and open cows sold with a calf at foot were associated with an increased risk of beef herds being seropositive for BVDV. Based on the results from a dynamic within-herd simulation model, these findings may be partly explained by the age-related probability of animals being persistently infected with BVDV as well as the herd demographic structure at the time of animal introductions. There was also evidence that an epidemiologically important network statistic, “betweenness centrality” (a measure frequently associated with the potential for herds to acquire and transmit disease), was significantly higher for herds that supplied these particular types of replacement beef cattle. The trends for dairy herds were not as clear, although there was some evidence that open heifers and open lactating cows were associated with an increased risk of BVDV. Overall, these findings have important implications for developing simulation models that more accurately reflect the industry-level transmission dynamics of infectious cattle diseases.  相似文献   

10.
This article discusses risk analysis of infectious diseases in a cattle population. Heck cattle living in nature reserve 'De Oostvaardersplassen' were studied as an example of the risk analysis approach. Twenty-five adult cattle were tested for every infectious disease agent that the risk analysis indicated might be prevalent. All sampled cattle tested positive for Bovine Herpesvirus 1, whereas the prevalence of antibodies against other infectious disease agents was below the level that was assumed to be the threshold for spread of the disease to cattle in the surrounding areas. Risk management of infectious diseases was expressed in a so-called 'low-risk profile'. The risk of introduction or spread of infectious diseases was estimated to be very low as long as the population was kept strictly enclosed.  相似文献   

11.
Classical swine fever (CSF) outbreaks in domestic pig herds lead to the implementation of standard control measures according to legislative regulations. Ideal outbreak control entails the swift and efficient culling of all pigs on premises detected positive for CSF virus. Often all pig holdings around the detected cases are pre-emptively destroyed to exclude transmission into the neighbourhood. In addition to these measures, zones are defined in which surveillance and protection measures are intensified to prevent further distant disease spread. In particular, all movements are prohibited within standstill areas. Standstill also excludes the transport of fattened pigs to slaughter. Historical outbreaks provide evidence of the success of this control strategy. However, the extent to which the individual strategy elements contribute to this success is unknown. Therefore, we applied a spatially and temporally explicit epidemic model to the problem. Its rule-based formulation is tailored to a one-by-one model implementation of existing control concepts. Using a comparative model analysis the individual contributions of single measures to overall control success were revealed. From the results of the model we concluded that movement restrictions had the dominant impact on strategy performance suggesting a reversal of the current conceptual thinking. Additional measures such as pre-emptive culling only became relevant under imperfect compliance with movement restrictions. The importance of movement restrictions for the overall control success illustrates the need for explicit consideration of this measure when contingency strategies are being amended (e.g. emergency vaccination) and associated risks assessed.  相似文献   

12.
Radio-tracking and direct observation were used over 18 months in 1990-92 to investigate both the use of sleeping dens and foraging activity by possums (Trichosurus vulpecula) on a 21 ha site in the Wairarapa used for a longitudinal study of bovine tuberculosis. Males had larger home ranges than females, and both sexes had larger activity areas during the autumn mating season than at other times of the year. Possums typically foraged in only a small area of their home ranges (termed an activity area) on any one night, and the areas used by individuals were commonly very similar over a series of nights. Activity areas overlapped extensively among possums. Possums used a limited number of dens, commonly in a small and in most cases a circumscribed part of their home range. No simultaneous den-sharing was found, with the exception of mother-joey pairs. The mortality of juveniles after independence was 36%. Only two of 25 juveniles under surveillance to detect dispersal dispersed more than 500 m off the study site, and both subsequently died. Grazing patterns of cattle meant that almost all accessible areas of the paddock were covered by at least some grazing cattle, and so all activity areas of possums within the paddock were covered by areas where cattle foraged. However, possums avoided contact with cattle, and when some cattle were excluded from access to the part of the paddock principally used by both tuberculous and healthy possums for denning, transmission of Mycobacterium bovis from possums to these cattle ceased, although there was subsequent transmission to deer. Cattle which grazed the area used principally for possum denning continued to become infected, and these denning areas appeared to be of importance in the transmission of tuberculosis.  相似文献   

13.
14.
Rodents are reservoirs of various types of hantavirus, some of which are agents of hantavirus pulmonary syndrome in humans. Each hantavirus is associated with a single rodent host species but successive spill‐over events may eventually lead to host‐switching and new species’ becoming host of a given pathogen. This study aims to gain an understanding of the spatial ecology of two hantavirus‐host species, Akodon azarae, and Oligoryzomys flavescens, by identifying factors modulating their home range sizes and stability, and by evaluating intra‐ and interspecific spatial aggregation for these species and a third one—Oxymycterus rufus—living in sympatry. For this, eleven capture‐mark‐recapture surveys were carried out, spanning 22 months. We found that A. azarae males have larger and more mobile home ranges than females, independently of the season. Consequently, males could likely have a more relevant role in the transmission of hantavirus because of their greater exposure both to a higher number of contacts between individuals and viral contamination of the environment. Contrasting, O. flavescens individuals showed negligible displacements of their home range through time, which could limit the range of hantavirus spread in host populations. Since O. flavescens is host to Lechiguanas hantavirus (pathogenic to humans) this result encompasses epidemiological relevance, for it may imply the existence of local foci of infection. Additionally, individuals of both species performed excursions outside their home ranges. These events could enable hantavirus spread over distances beyond the normal range of movements and lead to new hantavirus outbreaks in formerly non‐infected rodent populations, favoring the persistence of the virus in nature.  相似文献   

15.
ABSTRACT: Disease modelling is one approach for providing new insights into wildlife disease epidemiology. This paper describes a spatio-temporal, stochastic, susceptible- exposed-infected-recovered process model that simulates the potential spread of classical swine fever through a documented, large and free living wild pig population following a simulated incursion. The study area (300 000 km2) was in northern Australia. Published data on wild pig ecology from Australia, and international Classical Swine Fever data was used to parameterise the model. Sensitivity analyses revealed that herd density (best estimate 1-3 pigs km-2), daily herd movement distances (best estimate approximately 1 km), probability of infection transmission between herds (best estimate 0.75) and disease related herd mortality (best estimate 42%) were highly influential on epidemic size but that extraordinary movements of pigs and the yearly home range size of a pig herd were not. CSF generally established (98% of simulations) following a single point introduction. CSF spread at approximately 9 km2 per day with low incidence rates (< 2 herds per day) in an epidemic wave along contiguous habitat for several years, before dying out (when the epidemic arrived at the end of a contiguous sub-population or at a low density wild pig area). The low incidence rate indicates that surveillance for wildlife disease epidemics caused by short lived infections will be most efficient when surveillance is based on detection and investigation of clinical events, although this may not always be practical. Epidemics could be contained and eradicated with culling (aerial shooting) or vaccination when these were adequately implemented. It was apparent that the spatial structure, ecology and behaviour of wild populations must be accounted for during disease management in wildlife. An important finding was that it may only be necessary to cull or vaccinate relatively small proportions of a population to successfully contain and eradicate some wildlife disease epidemics.  相似文献   

16.
A stochastic simulation model to investigate the transmission of classical swine fever (CSF) virus within an infected farm is described. The model is structured according to the processes that occur within and between management groups (pig units or houses). It uses the individual pig as the unit of interest and estimates the number of animals in the states 'susceptible', 'infected', 'infectious', and 'removed' for each day of the disease incident. Probabilities are assigned to the transitions between states. The probability of a pig becoming infected is made dependent on the probability of contact between a susceptible and an infectious pig as well as the probability of transmission. The more pigs become infected in one unit, the more likely is subsequent spread to another management group on the farm. Ultimately, the probability that a shipment of pigs from the farm will include at least one infected pig can be estimated in order to identify high-risk movements during a CSF epidemic. The model results were compared with experimental data on CSF transmission within one pig unit (management group). It could be shown that the model was capable of reproducing the experimentally observed infection and mortality rates. To improve the input parameters and for further model validation, more experimental data and field data from CSF outbreaks are needed.  相似文献   

17.
Controlling infectious diseases at the wildlife/livestock interface is often difficult because the ecological processes driving transmission between wildlife reservoirs and sympatric livestock populations are poorly understood. Thus, assessing how animals use their environment and how this affects interspecific interactions is an important factor in determining the local risk for disease transmission and maintenance. We used data from concurrently monitored GPS-collared domestic cattle and wild boar (Sus scrofa) to assess spatiotemporal interactions and associated implications for bovine tuberculosis (TB) transmission in a complex ecological and epidemiological system, Doñana National Park (DNP, South Spain). We found that fine-scale spatial overlap of cattle and wild boar was seasonally high in some habitats. In general, spatial interactions between the two species were highest in the marsh-shrub ecotone and at permanent water sources, whereas shrub-woodlands and seasonal grass-marshlands were areas with lower predicted relative interactions. Wild boar and cattle generally used different resources during winter and spring in DNP. Conversely, limited differences in resource selection during summer and autumn, when food and water availability were limiting, resulted in negligible spatial segregation and thus probably high encounter rates. The spatial gradient in potential overlap between the two species across DNP corresponded well with the spatial variation in the observed incidence of TB in cattle and prevalence of TB in wild boar. We suggest that the marsh-shrub ecotone and permanent water sources act as important points of TB transmission in our system, particularly during summer and autumn. Targeted management actions are suggested to reduce potential interactions between cattle and wild boar in order to prevent disease transmission and design effective control strategies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0122-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
In Southwest Alberta, beef cattle and wild elk (Cervus elaphus) have similar habitat preferences. Understanding their inter-species contact structure is important for assessing the risk of pathogen transmission between them. These spatio-temporal patterns of interactions are shaped, in part, by range management and environmental factors affecting elk distribution. In this study, resource selection modeling was used to identify factors influencing elk presence on cattle pasture and elk selection of foraging patches; furthermore, consequences for inter-species disease transmission were discussed.  相似文献   

19.
The aim of this study was to evaluate a range of statistical and geostatistical methods for their usefulness in providing insights into how highly pathogenic avian influenza (HPAI) subtype H5N1 might spread through a national population of village poultry. The insights gained allow the generation of disease dispersion hypotheses. The case study data set consisted of 161 outbreaks of HPAI subtype H5N1 in village poultry reported in Romania between October 2005 and June 2006. Reports of village outbreaks (%) occurred in three waves: October-December (14%), February-March (16%), and May-June (68%). Risk mapping - based on variography and kriging - was used to visualize the evolution of the epidemic. Outbreaks first appeared in eastern and southern Romania, particularly within an area that forms part of the Danube River Delta. The largest phase of the epidemic affected villages in all parts of central, southern, and eastern Romania, but outbreaks were clustered in central Romania. Outbreaks spread in an east to west direction. By using geostatistical visualisation and spatial statistics, the evolution of the epidemic could be characterised into two parts: disease introduction, local spread, and sporadic outbreaks, and long-distance disease spread with rapid epidemic propagation. This is consistent with the hypothesis that the environment and landscape (specifically the Danube River Delta) played a critical role in the introduction and initial spread of HPAI subtype H5N1 during the autumn and winter of 2005, and that the movement of poultry might have introduced the infection into central Romania during the spring and summer of 2006. Further research focusing on the spatio-temporal interface between the two parts of the epidemic might reveal how and why it progressed from a confined, local epidemic to a large, national epidemic. Such information would assist efforts to limit the global spread of HPAI subtype H5N1.  相似文献   

20.
Since March 1997 two strains of foot and mouth disease (FMD) virus have found their way into Taiwan, causing severe outbreaks in pigs and in Chinese yellow cattle. Outbreaks occurred in March 1997 were caused by a pig-adapted virus strain (O/Taiwan/97) which did not infect other species of cloven-hoofed animals by natural route. The epidemic spread over the whole region of Taiwan within two months and the aftermath was 6,147 pig farms infected and 3,850,746 pigs destroyed. In June 1999, the second strain of FMD virus (O/Taiwan/99) was isolated from the Chinese yellow cattle in the Kinmen Prefecture and in the western part of Taiwan. By the end of 1999, Chinese yellow cattle were the only species infected and those infected cattle did not develop pathological lesions. Seroconversions of serum neutralization antibody and on non-structural protein (NSP) antibodies were the best indicators for infection in non-vaccinated herds. The infected animals, however, excreted infectious levels of virus to infect new hosts. Based on the detection of the specific antibody to FMD virus, and virus isolation from oesophageal-pharyngeal (OP) fluid samples, ten herds of Chinese yellow cattle located in Kinmen and Taiwan were declared to have been infected. During the period of January to March 2000, however, five outbreaks caused by FMD virus similar to the O/Taiwan/99 virus occurred in four prefectures of Taiwan. The infected species included goats, Chinese yellow cattle and dairy cattle. Those outbreaks have caused high mortality in goat kids under two weeks old and also developed typical clinical signs of infection in dairy cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号