首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the ability of a 17.6 Tesla magnetic resonance (MR) microscope to determine external and internal structures and three-dimensional (3D) volume rendering of premature bovine brain tissue. Two bovine embryos (Carnegie-stages 16 and 21) were examined. 3D magnetic resonance imaging (MRI) was performed with a high field MR-scanner at a field strength of 17.6 Tesla. Images with isotropic nominal resolutions up to 39.1 μm were acquired. The MR images corresponded very well with histological slices. 3D virtual models of the embryonic brain were easily produced in a relatively short time and the high field scanner provided highly detailed images of formalin fixed brain tissue. Manual segmentation and automatic volume rendering is a valuable tool for the fast generation of 3D brain models and, to some degree, can replace conventional techniques in comparative embryology.  相似文献   

2.
The intention of the comparison of both low and high field was to examine which anatomical brain structures of cats were visible on low field images, as in clinical veterinary practice, 3 Tesla (T) magnets were of limited availability. The research was performed on 20 European short‐haired male and female cats, aged 1–3 years, with body weight of 2–4 kg. 0.25 T magnetic resonance images of neurocranium were acquired in all using T2‐weighted fast spin echo sequences with repetition time (TR) of 4010 ms and echo time (TE) of 90 ms in dorsal and transverse plane, and T2‐weighted fast spine echo sequences with TR of 4290 ms and TE of 120 ms in sagittal plane. Based on a detailed catalogue of feline brain structures visible at 3 T in previously published studies, it was examined which structures were visible on low field images. Anatomic structures were identified and compared to assess the reliability of diagnoses made based on low‐field magnetic resonance imaging. In low‐field scans, 92 structures were identified. Elements of auditory, visual, motor pathways, hippocampus and cerebral ventricular system were distinguished. Low‐field as well as high‐field magnetic resonance imaging support the identification of local tissue lesions, metastasis, focal ischaemia and haemorrhage, disorders associated with ventricular system dilation and hydrocephalus. It also produced accurate images of the hippocampus, which contributes to reliable diagnoses of various forms of epilepsy in cats. Due to technical limitations, a low‐field scanner is unlikely to visualize microtraumas, local inflammations, small haematomas or metastatic tumours.  相似文献   

3.
Distal forelimb specimens of eight skeletally mature horses were imaged using proton density turbo spin echo, T1-weighted spoiled gradient echo, T2*-weighted gradient echo, short tau inversion recovery and T2-weighted fast spin echo sequences with the limb parallel to the main magnetic field, and with angulation of the limb relative to the main magnetic field. The magic angle effect can be identified in the collateral ligaments of the distal interphalangeal joint when imaged in a high-field magnetic resonance (MR) imaging system with a horizontally oriented main magnetic field. This effect has previously been described in the collateral ligaments of the distal interphalangeal joint in a low-field system with a vertically oriented main magnetic field. The curvature of the ligaments places the fibers at the magic angle in both horizontally and vertically orientated main magnetic fields. This effect can be identified on short time of echo sequences and impacts the signal pattern of the ligaments at the level of the middle phalanx with the limb in a neutral position and with angulation of the limb. Magic angle effect should be considered as a possible cause of an asymmetrical signal pattern, depending on the positioning of the limb and the sequences used for imaging, when evaluating the collateral ligaments of the distal interphalangeal joint on images acquired with a high-field MR imaging system that has a horizontally oriented main magnetic field.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Obtaining magnetic resonance images of the inner hoof wall tissue at the microscopic level would enable early accurate diagnosis of laminitis and therefore more effective therapy. OBJECTIVES: To optimise magnetic resonance imaging (MRI) parameters in order to obtain the highest possible resolution of the structures beneath the equine hoof wall. METHODS: Magnetic resonance microscopy (MRM) was performed in front feet from 6 cadaver horses using T2-weighted fast spin echo (FSE-T2), and T1-weighted gradient echo (GRE-T1) sequences. RESULTS: In T2 weighted FSE images most of the stratum medium showed no signal, however the coronary, terminal and sole papillae were visible. The stratum lamellatum was clearly visible and primary epidermal lamellae could be differentiated from dermal lamellae. CONCLUSION: Most structures beneath the hoof wall were differentiated. Conventional scanners for diagnostic MRI in horses are low or high field. However this study used ultra-high field scanners currently not available for clinical use. Signal-to-noise ratio (S/N) increases as a function of field strength. An increase of spatial resolution of the image results in a decreased S/N. S/N can also be improved with better coils and the resolution of high field MRI scanners will increase as technology develops and surface array coils become more readily available. POTENTIAL RELEVANCE: Although MR images with microscopic resolution were obtained ex vivo, this study demonstrates the potential for detection of lamellar pathology as it occurs. Early recognition of the development of laminitis to instigate effective therapy at an earlier stage and may improve the outcome for laminitic horses. Clinical MR is now readily available at 3 T, while 4 T, 7 T and 9 T systems are being used for human whole body applications.  相似文献   

5.
The purpose of this study was to describe the normal magnetic resonance (MR) imaging characteristics of the palmar structures of the equine podotrochlear apparatus by means of retrospective evaluation of MR imaging studies of 16 cadaver limbs. The articular aspect of the distal sesamoid bone was not evaluated in this study. Equine digits were imaged with a human knee radiofrequency coil in a 1.5 T magnetic field, using spin echo (SE) T1-weighted, turbo spin echo proton density (TSE PD)-weighted with and without fat saturation (FS), and FS TSE T2-weighted sequences. The limbs were dissected after imaging to validate the absence of gross abnormalities of the flexor aspect of the distal sesamoid bone, of the deep digital flexor tendon, and the distal impar sesamoidean ligament. Seven deep digital flexor tendons were subjected to histologic examination to exclude any microscopic tendon pathology. The anatomic structures of the podotrochlear apparatus were easily identified on MR images. Compact bone of the flexor cortex of the distal sesamoid bone had low intensity signal on all sequences. In 11 digits an increased signal was seen within the thickness of the sagittal eminence of the flexor cortex in SE T1-weighted images and in TSE PD-weighted images without FS. Trabecular bone had a granular appearance and high signal in SE T1-weighted sequences and TSE images without FS. The deep digital flexor tendon had low signal on FS T2-weighted images, while on short echo time sequences (T1- and PD-weighted sequences), the tendon signal varied depending on the relative orientation between its fibers and the static magnetic field. Seven tendons had stippled appearance due to small intratendonous foci of slightly increased signal on transverse T1-weighted images. MR imaging provides a thorough evaluation of the anatomical structure of the podotrochlear apparatus: A good knowledge of the MR imaging appearance and anatomy and an awareness of potential pitfalls will improve diagnostic specificity for the detection of pathologic changes.  相似文献   

6.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

7.
Three dogs with multilobular osteochondrosarcoma of the skull were evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2, proton weighted and post contrast T1W images were obtained with a 1.5 Tesla magnet. The MR imaging findings were similar in all three dogs with mixed signal intensities in the T1W, T2W and proton weighted images and fairly large areas of contrast enhancement in the post contrast T1W images. The extent of brain and soft tissue involvement were well delineated and provided useful information concerning surgical planning. MR imaging provided a useful method of evaluating dogs with skull tumors.  相似文献   

8.
9.
通过磁共振(magnetic resonance imaging,MRI)影像技术探讨湖羊颅脑影像解剖结构。使用1.5 T磁共振扫描仪对10只健康湖羊进行扫查,采用自旋回波(SE)序列,快速自旋回波(FSE)序列以及液体衰减反转恢复(FLAIR)3种序列对湖羊脑部矢状面、横断面及冠状面进行成像。对获得的影像进行详细的解剖结构注释,并且测量了湖羊间脑、颅脑、端脑、第三脑室、第四脑室高度及下垂体的长度、宽度和高度。得到了一套完整的湖羊颅脑磁共振影像解剖图谱及正常湖羊脑解剖结构测量数据。本研究结果可为湖羊及其他绵羊颅脑疾病的影像学诊断提供依据,同时也为医学实验动物模型的研究提供了有价值的参考。  相似文献   

10.
Diseases of paranasal sinuses and nasal passages in horses can be a diagnostic challenge because of the complex anatomy of the head and limitations of many diagnostic modalities. Our hypothesis was that magnetic resonance (MR) imaging would provide excellent anatomical detail and soft tissue resolution, and would be accurate in the diagnosis of diseases of the paranasal sinuses and nasal passages in horses. Fourteen horses were imaged. Inclusion criteria were lesions located to the sinuses or nasal passages that underwent MR imaging and subsequent surgical intervention and/or histopathologic examination. A low field, 0.3 tesla open magnet was used. Sequences in the standard protocol were fast spin echo T2 sagittal and transverse, spin echo T1 transverse, short‐tau inversion recovery (STIR) dorsal, gradient echo 3D T1 MPR dorsal (plain and contrast enhanced), spin echo T1 fatsat (contrast enhanced). Mean scan time to complete the examination was 53 min (range 39–99 min). Lesions identified were primary or secondary sinusitis (six horses), paranasal sinus cyst (four horses), progressive ethmoid hematoma (two horses), and neoplasia (two horses). The most useful sequences were fast spin echo T2 transverse and sagittal, STIR dorsal and FE3D MPR (survey and contrast enhanced). Fluid accumulation, mucosal thickening, presence of encapsulated contents, bone deformation, and thickening were common findings observed in MR imaging. In selected horses, magnetic resonance imaging is a useful tool in diagnosing lesions of the paranasal sinuses and nasal passages.  相似文献   

11.
The elbow     
Computed tomography (CT) and magnetic resonance imaging (MRI) are noninvasive methods of imaging the canine cubital joint. CT images are typically acquired using contiguous 1-mm slices, a bone reconstruction algorithm, and a field of view large enough to scan both elbows simultaneously. CT provides a detailed assessment of the medial coronoid process (MCP), radial incisure, anconeal process, and trochlear notch of the ulna; the humeral condyle; joint congruity; and osteoarthrosis. With MRI, use of a surface coil and 3D Fourier transformation gradient echo fast imaging sequences allow contiguous thin slices to be obtained. Both imaging techniques appear to be highly effective in the evaluation of elbow dysplasia, particularly for the detection of MCP fragmentation, although MRI is superior to CT for identifying nonmineralized cartilaginous fragments.  相似文献   

12.
Ten normal equine isolated limbs were imaged using a knee coil in a 1.5 Tesla magnetic field, with short echo time sequences (TE < 15 ms). Magnetic resonance imaging was performed on each isolated limb in different positions, with and without extension of the metacarpophalangeal joint. Deep digital flexor tendon orientation ranged from 20 to 60 degrees in relation to the static magnetic field. Increased intratendinous signal intensity was observed when the angle between the deep digital flexor tendon and the constant magnetic field approached 55 degrees ("magic angle"). The increased signal intensity was independent from extension of the metacarpophalangeal joint. Recognition of the magic angle phenomenon is essential for proper evaluation of magnetic resonance imaging studies of the equine foot.  相似文献   

13.
Increased signal intensity in one of the collateral ligaments of the distal interphalangeal (DIP) joint of sound horses in images acquired using a low-field magnet with vertical orientation of the magnetic field was investigated as a possible manifestation of the magic angle effect. Three isolated equine digits were imaged using the following pulse sequences: (1) spin echo T1, (2) turbo spin echo proton density and T2, and (3) 3D gradient echo T1, in different positions by mildly changing the orientation of the long axis of the digit, in the dorsal plane, relative to the magnetic field. The signal intensity in a ligament was significantly increased when the ligament orientation relative to the magnetic field was 55±10°. The signal intensity was markedly increased in pulse sequences with short echo time (TE) 5.0, 4.9, and 3.9 times increased, respectively, for 3D gradient echo T1, spin echo T1, and turbo spin echo proton density) and to a lesser extent with pulse sequences with a longer TE (1.8 times increased for turbo spin echo T2). These changes are characteristic of the magic angle effect. Because of the anatomic orientation of the collateral ligaments of the DIP joint, a slight deviation of the long axis of the digit in the dorsal plane, from the ideal horizontal position, will induce an increased signal intensity that can be confused with desmitis. Careful positioning of the foot in magnetic resonance imaging systems where B 0 is perpendicular to the long axis of the digit is critical to prevent the occurrence of the magic angle effect.  相似文献   

14.
Gadolinium-enhanced three-dimensional magnetic resonance angiography is a relatively new technique in the veterinary field. A mature dog with suspected patent ductus arteriosus underwent contrast-enhanced magnetic resonance angiography at 1·0 T with a three-dimensional fast low-angle shot (FLASH) gradient-echo technique. Qualitatively, three-dimensional images of the ductus were particularly clear with surface reconstructions, and ductus diameters were easy to assess in native images. Contrast-enhanced magnetic resonance angiography is a fast, relatively non-invasive procedure that could be particularly useful when non-surgical interventional procedures are anticipated for ductus occlusion.  相似文献   

15.
Susceptibility artifacts caused by ferromagnetic implants compromise magnetic resonance imaging (MRI) of the canine stifle after tibial plateau leveling osteotomy (TPLO) procedures. The WARP‐turbo spin echo sequence is being developed to mitigate artifacts and utilizes slice encoding for metal artifact reduction. The aim of the current study was to evaluate the WARP‐turbo spin echo sequence for imaging post TPLO canine stifle joints. Proton density weighted images of 19 canine cadaver limbs were made post TPLO using a 3 Tesla MRI scanner. Susceptibility artifact sizes were recorded and compared for WARP vs. conventional turbo spin echo sequences. Three evaluators graded depiction quality for the tibial tuberosity, medial and lateral menisci, tibial osteotomy, and caudal cruciate ligament as sufficient or insufficient to make a diagnosis. Artifacts were subjectively smaller and local structures were better depicted in WARP‐turbo spin echo images. Signal void area was also reduced by 75% (sagittal) and 49% (dorsal) in WARP vs. conventional turbo spin echo images. Evaluators were significantly more likely to grade local anatomy depiction as adequate for making a diagnosis in WARP‐turbo spin echo images in the sagittal but not dorsal plane. The proportion of image sets with anatomic structure depiction graded adequate to make a diagnosis ranged from 28 to 68% in sagittal WARP‐turbo spin echo images compared to 0–19% in turbo spin echo images. Findings indicated that the WARP‐turbo spin echo sequence reduces the severity of susceptibility artifacts in canine stifle joints post TPLO. However, variable depiction of local anatomy warrants further refinement of the technique.  相似文献   

16.
The magnetic resonance (MR) imaging features of the normal canine thyroid gland were retrospectively compiled from images acquired in 44 dogs presented for a variety of diseases unrelated to the thyroid gland. The appearance of the thyroid gland on different sequences, including pre- and postcontrast T1-weighted, T2-weighted, two-dimensional gradient echo, three-dimensional T2*-weighted gradient echo and proton density weighted images, were described in different image planes. The characteristic shape, location, and intensity of thyroid lobes compared with surrounding structures made them easily detectable in all dogs. The most common location of the thyroid lobes was dorsolateral to the trachea with the maximal cross-sectional area of the lobes located ventral to C2/3 or C3 in more than 85% of the dogs. The majority of the lobes were ovoid on transverse images. An isthmus was seen in one large dog and parathyroid glands could not be seen. The mean maximal thyroid lobe diameter on transverse images was 8.1 mm, being twice the mean diameter of the common carotid artery. Considering the excellent conspicuity and characteristic appearance of the canine thyroid gland, MR imaging can be beneficial in the diagnosis of diffuse thyroid diseases, in differentiating thyroid vs. nonthyroid neck masses and in staging and treatment planning of thyroid tumors in this species.  相似文献   

17.
The purpose of this study was to investigate magnetic resonance imaging of the normal canine and feline eye, orbit and optic nerves using proton density-weighted, T1-weighted and T2-weighted images. The clinical application of magnetic resonance imaging in veterinary ophthalmology was also investigated using three clinical cases: a feline orbital melanoma, a feline optic nerve meningioma, and a canine orbital fibrosarcoma. Gadolinium diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging was completed on the case of feline optic nerve meningioma. Magnetic resonance imaging provides excellent anatomical detail of the canine and feline eye, orbit, and optic nerves due to its superior soft tissue contrast, and its multiplanar and multislice imaging capability. Therefore it is of value for diagnostic imaging of some ophthalmic and neuro-ophthalmic conditions in the dog and cat.  相似文献   

18.
O bjectives : Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging.
M ethods : Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia.
R esults : Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities.
C linical S ignificance : We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.  相似文献   

19.
A specially designed radio frequency receiver coil was used in a low-field-strength (0.1 T) magnetic resonance imager to improve the image quality of the Beagle brain. The aim was to obtain better distinction of anatomic details with a better signal-to-noise ratio in shorter imaging time. The spin-echo (TR/TE = 1200/100; TR is the repetition time and TE is the echo time in ms) brain images of three Beagles indicate that the new receiver coil can fulfill these goals.  相似文献   

20.
Meningiomas are common intracranial masses in the dog, and surgical or radiation treatment of meningiomas depends on accurate identification and location. In this review of 13 patients with confirmed meningioma, low field magnetic resonance imaging characteristics of cranial vault meningiomas included increased signal intensity on T2-weighted images, decreased signal intensity on T1-weighted images, and marked contrast enhancement that was usually nonhomogeneous and well-defined. Mass effect and edema were usually present. Cyst formation and meningeal enhancement were also found in some patients. Low field magnetic resonance imaging characteristics of the meningiomas in these patients were similar to those magnetic resonance imaging findings reported in humans and the few reports pertaining to animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号