首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pharmacokinetics of valacyclovir in the adult horse   总被引:1,自引:0,他引:1  
Recent outbreaks of equine herpes virus type-1 infections have stimulated renewed interest in the use of effective antiherpetic drugs in horses. The purpose of this study was to investigate the pharmacokinetics of valacyclovir (VCV), the prodrug of acyclovir (ACV), in horses. Six adult horses were used in a randomized cross-over design. Treatments consisted of 10 mg/kg ACV infused intravenously, 5 g (7.7–11.7 mg/kg) VCV delivered intragastrically (IG) and 15 g (22.7–34.1 mg/kg) VCV administered IG. Serum samples were obtained at predetermined times for acyclovir assay using high-performance liquid chromatography. Following the administration of 5 g VCV, the mean observed maximum serum ACV concentration ( C max) was 1.45 ± 0.38 (SD) μg/mL, at 0.74 ± 0.43 h. At a dose of 15 g VCV, the mean C max was 5.26 ± 2.82 μg/mL, at 1 ± 0.27 h. The mean bioavailability of ACV from oral VCV was 60 ± 12% after 5 g of VCV and 48 ± 12% after 15 g VCV, and did not differ significantly between dose rates ( P  > 0.05). Superposition suggested that a loading dose of 27 mg/kg VCV every 8 h for 2 days, followed by a maintenance dose of 18 mg/kg every 12 h, will maintain effective serum ACV concentrations.  相似文献   

2.
Salivary output in sheep is large enough to be considered a physiologic body fluid compartment. The hypothesis for this work was that pharmacokinetics of sulfamethazine in saliva was similar to that in plasma. A reliable technique was developed to measure parotid salivary output. Mean output of saliva was 3.18 ± 1.04 L from a single parotid gland per day with a mean flow of 2.21 ± 0.43 mL/min. Using concentrations of sulfamethazine in parotid saliva made it possible to calculate the total passage of sulfamethazine to parotid saliva, which was calculated to be 3.5% of the total dose. Pharmacokinetic variables obtained for sulfamethazine in plasma and in saliva were closely related ( AUC 1408 μg.h/mL and AUC 1484 μg.h/mL; V darea 0.434 L/kg and V d area 0.374 L/kg; t ½β 4.30 h and 3.46 h, respectively) and no substantial differences were observed. The convenience of using salivary concentrations of sulfamethazine for drug monitoring is discussed.  相似文献   

3.
The pharmacokinetics and pharmacodynamics of orbifloxacin were studied in six clinically healthy Hanwoo cows after intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 3 mg/kg. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution and clearance of orbifloxacin after i.v. administration were 0.92 L/kg and 0.24 L/h·kg, respectively. Following i.m. administration, a slow and complete absorption with absolute bioavailability of 101.4%, and a maximum concentration ( C max) of 1.17 μg/mL at 1.04 h were observed. The in vitro serum protein binding was 14.76%. The in vitro antibacterial activity of orbifloxacin against a pathogenic strain of Mannheimia haemolytica ( M. haemolytica ), Escherichia coli ( E. coli ) and Staphylococcus aureus ( S. aureus ) was determined . The ex vivo activity of orbifloxacin against M. haemolytica strain was also determined , and these data were integrated with the ex vivo bacterial counts to establish AUC 24h/ MIC values producing bacteriostatic action, bactericidal action and elimination of bacteria. Mean values were 32.7, 51.6 and 102.6 h, respectively. From these data, we predict that orbifloxacin, when administered i.m. at a dosage of 2.5–5 mg/kg once a day, would be effective against bovine pathogens, such as M. haemolytica. Additional studies may be needed to confirm its efficacy in a clinical setting, and to evaluate the penetration of the drug in diseased tissues.  相似文献   

4.
Pharmacokinetic parameters of fosfomycin were determined in horses after the administration of disodium fosfomycin at 10 mg/kg and 20 mg/kg intravenously (IV), intramuscularly (IM) and subcutaneously (SC) each. Serum concentration at time zero (CS0) was 112.21 ± 1.27 μg/mL and 201.43 ± 1.56 μg/mL for each dose level. Bioavailability after the SC administration was 84 and 86% for the 10 mg/kg and the 20 mg/kg dose respectively. Considering the documented minimum inhibitory concentration (MIC90) range of sensitive bacteria to fosfomycin, the maximum serum concentration (Cmax) obtained (56.14 ± 2.26 μg/mL with 10 mg/kg SC and 72.14 ± 3.04 μg/mL with 20 mg/kg SC) and that fosfomycin is considered a time-dependant antimicrobial, it can be concluded that clinically effective plasma concentrations might be obtained for up to 10 h administering 20 mg/kg SC. An additional predictor of efficacy for this latter dose and route, and considering a 12 h dosing interval, could be area under the curve AUC0-12/MIC90 ratio which in this case was calculated as 996 for the 10 mg/kg dose and 1260 for the 20 mg/kg dose if dealing with sensitive bacteria. If a more resistant strain is considered, the AUC0-12/MIC90 ratio was calculated as 15 for the 10 mg/kg dose and 19 for the 20 mg/kg dose.  相似文献   

5.
Intravenous (IV) levetiracetam (LEV) is available for humans for bridge therapy when the oral route is unavailable. We investigated the safety and pharmacokinetics of LEV administered intramuscularly (IM), IV, and orally to dogs.
Six Hound dogs received 19.5–22.6 mg/kg of LEV IM, IV and orally with a wash-out period in between. All dogs received 500 mg LEV orally and 5 mL of 100 mg/mL LEV IM. Three dogs received 500 mg of LEV IV and three dogs received 250 mg LEV IV with 250 mg given perivascularly to approximate extravasation. Safety was assessed using a pain scale at time of IM administration and histopathological examination 24 h to 5 days after injection.
Intravenous LEV half-life was 180 ± 18 min. Bioavailability of IM LEV was 100%. Mean time to Tmax after IM was 40 ± 16 min. The mean Cmax IM was 30.3 ± 3 μg/mL compared to the C0 of 37 ± 5 μg/mL for IV. Mean inflammation score (0–4 scale) for IM LEV was 0.28 and for saline 0.62. Extravasation did not cause tissue damage.
Parenteral LEV is well tolerated and appears safe following IM and IV injections in dogs. Parenteral LEV should be evaluated for use in dogs with epilepsy.  相似文献   

6.
Water medication of a swine herd with amoxycillin   总被引:1,自引:0,他引:1  
A swine herd, consisting of 201 swine, was treated with amoxycillin. Amoxycillin was administered in the water system for 5 days, at a mean dose of 23 mg/kg body weight per day. Twice a day the water consumption was monitored, and blood samples collected from 10 randomly selected pigs. The plasma concentration of amoxycillin was measured by use of high performance liquid chromatography (HPLC). Three days after initiating amoxycillin treatment, the plasma concentration reached a constant level, at which it varied between a maximum of 1.3 μg/mL and a minimum of 0.5 μg/mL. The plasma concentration was compared with a predicted curve based on pharmacokinetic variables obtained previously. The plasma concentrations were at the same level as the simulated ones. The minimum inhibitory concentration (MIC) values of the common respiratory pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida are about 0.1 μg/mL. In pigs the distribution between bronchial mucosa and plasma ( AUC mucosa/ AUC plasma) is 0.3, which indicates a therapeutic plasma concentration of 0.3 μg/mL. Data from the present study indicates that water medication with amoxycillin is effective as follow-up treatment.  相似文献   

7.
The purpose of the study was to compare the disposition of pharmacologic markers for cytochrome P-450 (CYP) metabolism, glomerular filtration rate (GFR), and extracellular (ECFV) and total body fluid volumes (TBFV) of Greyhounds and Beagles. Six healthy Greyhound and six healthy Beagle dogs were studied. Antipyrine, a marker for CYP metabolism and TBFV, and inulin, a marker for the GFR and ECFV, were administered i.v. Samples were collected at predetermined times and plasma was analyzed by validated high-pressure liquid chromatography (HPLC) methods. There were no differences in the disposition or pharmacokinetic parameters for inulin between the dog breeds. However, the clearance of antipyrine (mean = 8.33 mL/min/kg) in Greyhounds was significantly slower than Beagles (13.42 mL/min/kg, P = 0.004). The volume of distribution of antipyrine was significantly larger in Greyhounds (0.789 L/kg) than in Beagles (0.644 L/kg, P = 0.01). The half-life of antipyrine was significantly longer in Greyhounds (1.09 h) compared with Beagles (0.55 h, P = 0.002). The in vitro plasma protein binding of antipyrine was significantly less in Greyhounds (28%) compared with Beagles (40.3%, P = 0.008). Greyhounds exhibited significantly slower CYP metabolism, higher TBFV, and lower in vitro protein binding of antipyrine compared with Beagles. No differences in GFR or ECFV were found.  相似文献   

8.
An overview of the pharmacokinetics of dirlotapide in beagle dogs is presented. The following mean parameters were observed after a 0.3-mg/kg i.v. dose of dirlotapide: plasma clearance of 7.8 mL/min/kg and volume of distribution of 1.3 L/kg. Following single oral doses of 0.05, 0.3, and 1.0 mg/kg to fed dogs and 0.3 mg/kg to fasted dogs using the commercial formulation, mean C max of 7.5, 46, 97, and 31 ng/mL, respectively, were observed at mean t max of 0.8–2.0 h. AUC and C max increased with increasing dose, but not proportionally. Oral bioavailability was 22–41%. Exposure, as reflected by AUC , was 54% higher in the fed than fasted state. In a 14-day repeated-dose study (0.3 mg/kg dose), the mean accumulation ratio was 3.7. In a 3-month study at doses of 0.4–2.5 mg/kg, accumulation ratios ranged from 2.0 to 6.7 at day 29 and from 1.3 to 4.1 at day 87. In summary, dirlotapide exhibited low clearance, low first-pass metabolism, moderate volume of distribution, low-to-moderate oral bioavailability, a modest food effect, and variable accumulation. Large interanimal variability in systemic exposure was noted for all routes and doses, but there were no consistent sex differences.  相似文献   

9.
The pharmacokinetics of oxolinic acid was studied in sea-bass ( Dicentrarchus labrax ). The fish were kept in seawater at 15.2°C with a 12 h/12 h photoperiod. Oxolinic acid was injected in the caudal vein of anaesthetized sea-bass in a single rapid intravascular administration at a dose of 10 mg/kg of body weight. Plasma concentrations of oxolinic acid were determined using two analytical methods, a classic plate diffusion bioassay using Escherichia coli and a high performance liquid chromatography (HPLC) using solid phase extraction with an internal standard and a U.V. detection. The mean recoveries were 99.6% and 110.8% and determination limits were 0.04 μg/mL and 0.02 μg/mL, for the bioassay and the HPLC respectively. Compared to other fish species, the oxolinic acid was rapidly (absorption half life, ta1/2= 0.69 h) distributed to body tissues outside the blood volume (volume of central compartment, Vc= 0.4 L/kg) and presented a large volume of distribution (Vdss= 2.55 L/kg). Considering its disappearance from the central compartment (rate constant: central-eliminated, k 10= 0.16 h–1) and its total body clearance ( Cl t= 0.066 L/kg.h), the elimination phase of the oxolinic acid in sea-bass was shorter than in trout kept in freshwater, and longer than in salmon in seawater. Consequently, the area under the concentration–time curve ( AUC = 157 μg.h/mL) and the mean residence time ( MRT = 42 h) were relatively low and short, respectively.  相似文献   

10.
In this investigation the pharmacokinetics of three commonly used antibiotics, ampicillin trihydrate (10 mg/kg), gentamicin sulphate (3 mg/kg) and oxytetracycline hydrochloride (5 mg/kg), given intravenously, were each studied in five Nubian goats and five desert sheep. The pharmacokinetic parameters were described by a two-compartment open model. The results indicated that there were significant differences between the two species in some kinetic parameters of ampicillin and oxytetracycline but not gentamicin. Ampicillin elimination half life ( t 1/2β) in goats (1.20 h) was shorter than that in sheep (2.48 h), and its clearance ( Cl ) significantly higher in goats (2921mL/h·kg) compared to sheep (262 mL/h·kg) ( P < 0.01). Ampicillin volume of distribution ( V darea) was found to be significantly larger in goats (5673 mL/kg) than in sheep (992 mL/kg) ( P < 0.01). For oxytetracycline, the t 1/2β in goats (3.89 h) was significantly shorter than that in sheep (6.30 h) and the Cl value in goats (437 mL/h·kg) was significantly higher than in sheep (281 mL/h·kg). The results suggest that when treating sheep and goats, the pharmacokinetic differences between the two species must be considered in order to optimize the therapeutic doses of ampicillin and oxytetracycline.  相似文献   

11.
Nine male dogs (10.3–13.5 kg body weight) were randomly assigned to three groups of three dogs each and administered ceftiofur sodium subcutaneously as a single dose of 0.22, 2.2, or 4.4 mg ceftiofur free acid equivalents/kg body weight. Plasma and urine samples were collected serially for 72 h and assayed for ceftiofur and metabolites (derivatized to desfuroylceftiofur acetamide) using high-performance liquid chromatography. Urine concentrations remained above the MIC 90 for Escherichia coll (4.0 μg/mL) and Proteus mirabilis (1.0 μg/mL) for over 24 h after doses of 2.2 mg/kg (8.1 μg/mL) and 4.4 mg/kg (29.6 μg/mL), the interval between treatments for ceftiofur sodium in dogs, whereas urine concentrations 24 h after dosing at 0.22 mg/kg (0.1 mg/Ib) were below the MIC 90 for E.coli and P. mirabills (0.6 μg/mL). Plasma concentrations were dose-proportional, with peak concentrations of 1.66 ± 0.0990 μg/mL, 8.91 ± 6.42 μg/mL, and 26.7 ± 1.07 μg/mL after doses of 0.22, 2.2, and 4.4 mg/kg, respectively. The area under the plasma concentration versus time curve, when normalized to dose, was similar across all dosage groups.  相似文献   

12.
The purpose of this study was to determine the pharmacokinetics and physicochemical characteristics of orbifloxacin in the horse. Six healthy adult horses were administered oral and intravenous orbifloxacin at a dose of 2.5 mg/kg. Plasma samples were collected and analyzed by high-pressure liquid chromatography with ultraviolet detection. Plasma protein binding and lipophilicity were determined in vitro . Following i.v. administration, orbifloxacin had a terminal half-life ( t 1/2) of 5.08 h and a volume of distribution (Vd(ss)) of 1.58 L/kg. Following oral administration, the average maximum plasma concentration ( C max) was 1.25  μ g/mL with a t 1/2 of 3.42 h. Systemic bioavailability was 68.35%. Plasma protein binding was 20.64%. The octanol:water partition coefficient (pH 7.4) was 0.2 ± 0.11. No adverse reactions were noted during this study. Dosage regimens were determined from the pharmacokinetic–pharmacodynamic parameters established for fluoroquinolone antibiotics. For susceptible bacteria, an oral dose of approximately 5 mg/kg once daily will produce plasma concentrations within the suggested range. This dose is suggested for further studies on the clinical efficacy of orbifloxacin for treatment of susceptible bacterial infections in the horse.  相似文献   

13.
The pharmacokinetics of flunixin meglumine in the sheep   总被引:4,自引:0,他引:4  
Flunixin meglumine was administered intravenously and intramuscularly in sheep and the pharmacokinetics of the drug studied. Plasma concentrations of flunixin were measured by high performance liquid chromatography. The decline in plasma- flunixin concentration with time was best fitted by a triexponential equation. The pharmacokinetics following intravenous administration of 1.0 mg/kg indicate that flunixin has a rapid distribution half-life (t½π= 2.3 min), a slow body clearance rate (Clb= 0.6 ml/kg/min) and an elimination half-life of 229 min. Similarly, at 2.0 mg/kg, flunixin is rapidly distributed from the plasma, t½π= 2.7 min, has a slow body clearance rate (C/b = 0.7 mk/lg/min) and an elimination half-life of 205 min.
Following intramuscular injection flunixin is rapidly and well absorbed from the injection site. It had a mean maximum concentration ( C max) of ≫5.9 μg/ml when administered at a dose rate of 1.1 mg/kg, and a relative bioavailability of 70%. Plasma concentrations increase proportionally to dose over the range 1.1 mg/kg-2.2 mg/kg when administered by the intramuscular route.  相似文献   

14.
Plasma pharmacokinetics and urine concentrations of meropenem in ewes   总被引:1,自引:0,他引:1  
The pharmacokinetics of meropenem was studied in five ewes after single i.v. and i.m. dose of 20 mg/kg bw. Meropenem concentrations in plasma and urine were determined using microbiological assay method. A two-compartment open model was best described the decrease of meropenem concentration in plasma after an i.v. injection. The drug was rapidly eliminated with a half-life of elimination ( t 1/2 β ) of 0.39 ± 0.30 h. Meropenem showed a small steady-state volume of distribution [ V d(ss)] 0.055 ± 0.09 L/kg. Following i.m. injection, meropenem was rapidly absorbed with a t 1/2ab of 0.25 ± 0.04 h. The peak plasma concentration ( C max) was 48.79 ± 8.83  μ g/mL was attained after 0.57 ± 0.13 h ( t max). The elimination half-life ( t 1/2el) of meropenem was 0.71 ± 0.12 h and the mean residence time ( MRT ) was 1.38 ± 0.26 h. The systemic bioavailability (F) after i.m. injection was 112.67 ± 10.13%. In vitro protein-binding percentage of meropenem in ewe's plasma was 42.80%. The mean urinary recoveries of meropenem over 24 h were 83% and 91% of the administered dose after i.v. and i.m. injections respectively. Thus, meropenem is likely to be efficacious in the eradication of many urinary tract pathogens in sheep.  相似文献   

15.
The plasma pharmacokinetics, lung tissue to plasma concentration ratios, and depletion profiles in edible tissue (liver, muscle, kidney, fat and injection site) for a single subcutaneous dose of a novel macrolide antibiotic, CP-163505 (20-[3-dimethylaminopropyl(L-alanyl)amino]-20-deoxo-repromicin), were investigated in crossbred beef cattle. Mean peak plasma concentration of 2.5 ± 0.4 μg/mL, occurring at 0.5 h, was found for CP-163505 following a 5 mg/kg dose ( n  = 5). The pharmacokinetic profile consisted of a distribution phase, followed by an extended terminal elimination phase (t1/2 of 19 h). The disposition of CP-163505 was characterized by distribution from the plasma into the tissue resulting in lung to plasma ratios of 103 and 87 at 72 h following a single 5 or 10 mg/kg dose, respectively. The depletion of CP-163505 from edible tissues was determined following administration of tritiated CP-163505 at a dose of 10 mg/kg. On day 42, the liver contained the highest mean concentration of total tritium residues, 5.9 ± 3.4 μg/g. CP-163505 was determined to be a significant component of the total residues in liver with 72% on day 3 and 50% on day 42. Three metabolites of CP-163505 were identified by liquid chromatography with mass spectrometry (LC/MS/MS) in liver samples: loss of alanine, formation of an hydroxyl derivative, and sulfate addition to the lactone ring.  相似文献   

16.
The pharmacokinetic properties of pradofloxacin and doxycycline were investigated in serum, saliva, and tear fluid of cats. In a crossover study design, six cats were treated orally with a single dose of pradofloxacin (Veraflox® Oral Suspension 2.5%) and doxycycline (Ronaxan® 100 mg) at 5 mg/kg body weight. Following administration, samples of serum, saliva, and tear fluid were taken in regular intervals over a period of 24 h and analysed by turbulent flow chromatography/tandem mass spectrometry. All values are given as mean ± SD. Pradofloxacin reached a mean maximum serum concentration ( C max) of 1.1 ± 0.5 μg/mL after 1.8 ± 1.3 h ( t max). In saliva and tear fluid, mean C max was 6.3 ± 7.0 and 13.4 ± 20.9 μg/mL, respectively, and mean t max was 0.5 ± 0 and 0.8 ± 0.3 h, respectively. Doxycycline reached a mean C max in serum of 4.0 ± 0.8 μg/mL after 4.3 ± 3.2 h. Whilst only at two time-points doxycycline concentrations close to the limit of quantification were determined in tear fluid, no detectable levels were found in saliva. The high concentrations of pradofloxacin in saliva and tear fluid are promising to apply pradofloxacin for the treatment of conjunctivitis and upper respiratory tract infections in cats. As doxycycline is barely secreted into these fluids after oral application the mechanisms of its clinical efficacy remain unclear.  相似文献   

17.
The pharmacokinetics of sulphadiazine (SDZ) (100 mg/kg, body weight) were investigated in six camels ( Camelus dromedarius ) after intravenous (i.v.) and oral (p.o.) administration. Following i.v. administration, the overall elimination rate constant (β) was 0.029±0.001/h and the half-life ( t ½β) was 23.14±1.06 h. The apparent volume of distribution ( V d(area)) was 0.790±0.075 L/kg and the total body clearance ( Cl B) was 23.29±2.50 mL/h/kg. After p.o. administration, SDZ reached a peak plasma concentration ( C max(cal.)) of 62.93±2.79 μg/mL at a post injection time of ( T max(cal.)) 22.98±0.83 h. The elimination half-life was 19.79±1.22 h, not significantly different from that obtained by the i.v. route. The mean absorption rate constant (Ka) was 0.056±0.002 h−1 and the mean absorption half-life ( t ½Ka) was 12.33±0.37 h. The mean availability ( F ) of sulphadiazine was 88.2±6.2%.
  To achieve and maintain therapeutically satisfactory plasma SDZ levels of 50 μg/mL, the priming and maintenance doses would be 80 mg/kg and 40 mg/kg intravenously and 90 mg/kg and 45 mg/kg orally, respectively, to be repeated at 24 h intervals.  相似文献   

18.
Oxytetracycline (OTC) pharmacokinetics were studied in the red pacu ( Colossoma brachypomum ) following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 5 mg/kg body weight. OTC plasma concentrations were determined by high-performance-liquid-chromatography (HPLC). A non-compartmental model was used to describe plasma drug disposition after OTC administration. Following i.m. administration, the elimination half-life ( t ½) was 62.65 ± 1.25 h and the bioavailability was 49.80 ± 0.01%. After i.v. administration the t ½ was 50.97 ± 2.99 h, the V d was 534.11 ± 38.58 mL/kg, and CI b was 0.121 ± 0.003 mL/min.kg. The 5 mg/kg i.v. dose used in this experiment resulted in up to 48 h plasma concentrations of OTC above the reported MIC values for some strains of fish pathogens such as Aeromonas hydrophila , A. liquefaciens , A. salmonicida , Cytophaga columnaris , Edwardsiella ictaluri , Vibrio anguillarium , V. ordalii , V. salmonicida and Yeersinia ruckeri . These MIC values are below the susceptible range (4 μg/mL) listed by the National Committee for Clinical Laboratory Standards (NCCLS) as determined by the NCCLS susceptibility interpretive criteria.  相似文献   

19.
OBJECTIVE: To determine the plasma pharmacokinetics and synovial fluid concentrations after oral administration of single and multiple doses of celecoxib in Greyhounds. ANIMALS: 7 adult Greyhounds. PROCEDURES: Dogs received celecoxib (median dose, 11.8 mg/kg [range, 11.5 to 13.6 mg/kg], PO, q 24 h) for 10 days. Blood samples were collected prior to administration of celecoxib and serially for 24 hours after the 1st and 10th doses were administered. A synovial joint catheter was placed into a stifle joint in each dog for collection of synovial fluid samples. Concentrations of celecoxib in plasma and synovial fluid were quantified by use of a validated liquid chromatography/mass spectrometry method. Identification of hydroxy- and carboxyl-celecoxib in plasma and synovial fluid was also performed. Pharmacokinetic parameters were determined by use of noncompartmental analysis. RESULTS: Administration of multiple doses of celecoxib resulted in a significant decrease (40%) in median area under the curve (AUC) values and a corresponding decrease in median maximum concentrations (Cmax; 2,620 to 2,032 ng/mL) between the 1st and 10th doses. Synovial fluid concentrations were less than the corresponding plasma concentrations at all times except 24 hours after administration of the 10th dose of celecoxib. CONCLUSIONS AND CLINICAL RELEVANCE: Celecoxib distributes into the synovial fluid of Greyhounds. Although the exact mechanism for the decreases in AUC and Cmax is not known, results suggested that the plasma pharmacokinetics of celecoxib are different after administration of multiple doses in Greyhounds. These findings warrant further investigation on the absorption, distribution, metabolism, and elimination of celecoxib in Greyhounds and other breeds of dogs.  相似文献   

20.
The pharmacokinetics of indomethacin (1mg/kg) was determined in six adult sheep after intravenous (i.v.) and intramuscular (i.m.) injection. Plasma concentrations were maintained within the therapeutic range (0.3–3.0 μg/mL) from 5 to 50 min after i.v. and from 5 to 60–90 min after i.m. administration. After two trials, indomethacin best fitted an open two-compartment model. The mean (±SD) volumes of distribution at steady state ( V dss) were 4.10 ± 1.40 and 4.21 ± 1.93 L/kg and the mean clearance values ( C lB) were 0.17 ± 0.06 and 0.22 ± 0.12 L/h.kg for i.v. and i.m. routes, respectively. The elimination phase half-lives did not show any significant difference between routes of injection ( t ½β = 17.4 ± 4.6 and 21.25 ± 4.44 h, i.v. and i.m. respectively). After i.m. administration, plasma maximum concentration ( C max =  1.10 ± 0.68 μg/mL) was reached 10 min after dosing; the absorption phase was fast ( K ab = 26 ± 18 h-1) and short ( t ½ab = 2.33 ± 1.51 min) and the mean bioavailability was 91.0 ± 32.8%, although there was considerable interanimal variation. In some individuals, bioavailability was higher than 100%. This fact combined with the slower elimination phase after i.m. than after i.v. administration, could be related with enterohepatic recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号