首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) release in goats. The PRL‐releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L‐dopa in male goats under 8‐h (8 h light, 16 h dark) or 16‐h (16 h light, 8 h dark) photoperiod conditions. The carbi and L‐dopa treatments reduced basal PRL concentrations in the 16‐h photoperiod group (P < 0.05), while a reduction was not observed in the 8‐h photoperiod group. The mean basal plasma PRL concentration in the control group for the 8‐h photoperiod was lower than that for the 16‐h photoperiod (P < 0.05). SAL significantly stimulated the release of PRL promptly after the injection in both the 8‐ and 16‐h photoperiod groups (P < 0.05). PRL‐releasing responses for the 16‐h photoperiod were greater than those for the 8‐h photoperiod (P < 0.05). The carbi and L‐dopa treatments blunted SAL‐induced PRL release in both the 8‐ and 16‐h photoperiods (P < 0.05). These results indicate that hypothalamic DA blunts the SAL‐induced release of PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.  相似文献   

2.
The aim of the present study was to clarify the effect of photoperiod on nighttime secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8 h or 16 h dark photoperiod, and secretory patterns of GH for 8 h in the dark period were examined with the profile of prolactin (PRL) secretion. GH was secreted in a pulsatile manner in the dark period. There were no significant differences in pulse frequency between the 8‐ and 16‐h dark photoperiods; however, pulse amplitude tended to be greater in the group with the 16‐h dark photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the same photoperiod (P < 0.05). PRL secretion increased quickly after lights off under both photoperiods. The PRL‐releasing responses were weaker in the 8‐h than 16‐h dark photoperiod. The secretory response to photoperiod was more obvious for PRL than GH. The present results show that a long dark photoperiod enhances the nighttime secretion of GH in female goats, although the response is not as obvious as that for PRL.  相似文献   

3.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

4.
The aim of the present study was to clarify the effect of photoperiod on the secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8‐h or 16‐h photoperiod, and secretory patterns of GH for 4 h (12.00 to 16.00 hours) were compared. In addition, the goats were kept under a 16‐h photoperiod and orally administered saline (controls) or melatonin, and the effects of melatonin on the secretion of GH were examined. GH was secreted in a pulsatile manner. There were no significant differences in pulse frequency between the 8‐ and 16‐h photoperiods; however, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH‐releasing hormone (GHRH) was also significantly greater for the 16‐h photoperiod (P < 0.05). There were no significant differences in GH pulse frequency between the saline‐ and melatonin‐treated groups. However, GH pulse amplitude and mean GH concentrations were significantly greater in the saline‐treated group (P < 0.05). The present results show that a long photoperiod enhances the secretion of GH, and melatonin modifies GH secretion in female goats.  相似文献   

5.
The aim of the present study was to clarify the relation between salsolinol (SAL)‐induced prolactin (PRL) release and photoperiod in goats. A single intravenous (i.v.) injection of SAL was given to adult female goats under short (8 h light, 16 h dark) or long (16 h light, 8 h dark) photoperiod conditions at two different ambient temperatures (20°C or 5°C), and the PRL‐releasing response to SAL was compared to that of thyrotropin‐releasing hormone (TRH) or a dopamine (DA) receptor antagonist, sulpiride. SAL, as well as TRH or sulpiride, stimulated the release of PRL promptly after each injection in both 8‐ and 16‐h daily photoperiods at 20°C (P < 0.05). The area under the response curve (AUC) of PRL for the 60‐min period after injections of saline (controls), SAL, TRH and sulpiride in the 16‐h daily photoperiod group was greater than each corresponding value in the 8‐h daily photoperiod group (P < 0.05). There were no significant differences in the AUC of PRL among the values produced after the injection of SAL, TRH and sulpiride in 16‐h daily photoperiod group; however, the values produced after the injection of TRH were smallest among the three in the 8‐h daily photoperiod group (P < 0.05). The PRL‐releasing responses to SAL, TRH and sulpiride under a short and long photoperiod condition at 5°C resembled those at 20°C. These results show that a long photoperiod highly enhances the PRL‐releasing response to SAL as well as TRH or sulpiride in either medium or low ambient temperature in goats.  相似文献   

6.
This study was designed to examine the effects of the proportion of concentrate in the diet on the secretion of growth hormone (GH), insulin and insulin‐like growth factor‐I (IGF‐I) secretion and the GH‐releasing hormone (GHRH)‐induced GH response in adult sheep fed once daily. Dietary treatments were roughage and concentrate at ratios of 100:0 (0% concentrate diet), 60:40 (40% concentrate diet), and 20:80 (80% concentrate diet) on a dry matter basis. Mean plasma concentrations of GH before daily feeding (10.00–14.00 hours) were 11.4 ± 0.4, 10.1 ± 0.5 and 7.5 ± 0.3 ng/mL on the 0, 40 and 80% concentrate diet treatments, respectively. A significant decrease in plasma GH concentration was observed after daily feeding of any of the dietary treatments and these decreased levels were maintained for 8 h (0%), 12 h (40%) and 12 h (80%), respectively (P < 0.05). Plasma IGF‐I concentrations were significantly decreased 8–12 h and 4–16 h after the end of feeding compared with the prefeeding level in the 40 and 80% concentrate diet treatments, respectively (P < 0.05). GHRH injection brought an abrupt increase in the plasma GH concentrations, reaching a peak 10 min after each injection, but, after the meal, the peak plasma GH values for animals fed 40% (P < 0.05) and 80% (P < 0.01) concentrate diet were lower than that for roughage fed animals. The concentrate content of a diet affects the anterior pituitary function of sheep resulting in reduced baseline concentrations of GH and prolonged GH reduction after feeding once daily.  相似文献   

7.
The aim of the present study was to clarify the effect of melatonin (MEL) on the salsolinol (SAL)‐induced release of prolactin (PRL) in goats. Female goats were kept at 20°C with 16 h of light, 8 h of darkness, and orally administered saline or MEL for 5 weeks. A single intravenous (i.v.) injection of saline (controls), SAL, thyrotropin‐releasing hormone (TRH) or a dopamine receptor antagonist, sulpiride, was given to the goats 3 weeks after the first oral administrations of saline or MEL, and the responses were compared. The mean basal plasma PRL concentrations in the control group were higher for the saline treatments than MEL treatments (P < 0.05). SAL as well as TRH and sulpiride stimulated the release of PRL promptly after each injection in both the saline‐ and MEL‐treated groups (P < 0.05). The area under the response curve of PRL for the 60‐min period after the i.v. injection of SAL, TRH and sulpiride in the saline‐treated group was greater than each corresponding value in the MEL‐treated group (P < 0.05). These results show that daily exposure to MEL under a long day length reduces the PRL‐releasing response to SAL as well as TRH and sulpiride in goats.  相似文献   

8.
The secretion of prolactin (PRL) is under the dominant and tonic inhibitory control of dopamine (DA); however, we have recently found that salsolinol (SAL), an endogenous DA‐derived compound, strongly stimulated the release of PRL in ruminants. The aim of the present study was to clarify the inhibitory effect of DA on the SAL‐induced release of PRL in ruminants. The experiments were performed from late June to early July. Male goats were given a single intravenous (i.v.) injection of SAL (5 mg/kg body weight (BW)), a DA receptor antagonist (sulpiride, 0.1 mg/kg BW), or thyrotropin‐releasing hormone (TRH, 1 µg/kg BW) before and after treatment with a DA receptor agonist (bromocriptine), and the effect of DA on SAL‐induced PRL release was compared to that on sulpiride‐ or TRH‐induced release. Bromocriptine completely inhibited the SAL‐induced release of PRL (P < 0.05), and the area under the response curve (AUC) for a 120‐min period after the treatment with bromocriptine was 1/28 of that for before the treatment (P < 0.05). Bromocriptine also completely inhibited the sulpiride‐induced release (P < 0.05). The AUC post‐treatment was 1/17 that of pre‐treatment with bromocriptine (P < 0.05). Bromocriptine also inhibited the TRH‐induced release (P < 0.05), though not completely. The AUC post‐treatment was 1/3.8 that of pre‐treatment (P < 0.05). These results indicate that DA inhibits the SAL‐induced release of PRL in male goats, and suggest that SAL and DA are involved in regulating the secretion of PRL. They also suggest that in terms of the regulatory process for the secretion of PRL, SAL resembles sulpiride but differs from TRH.  相似文献   

9.
This study was designed to determine whether any relationship exists between exposure to artificial long days, milk yield, maternal plasma insulin‐like growth factor 1 (IGF‐1) levels, and kid growth rate in goats. One group of lactating goats was maintained under naturally decreasing day length (control group; n = 19), while in another one, they were kept under artificial long days (LD group; n = 19). Milk yield was higher in goats from the LD group than that in the control group (P < 0.05). Maternal IGF‐1 levels at day 57 of lactation were higher (P < 0.05) in goats from the LD group than the levels in the control group and were positively correlated with the total milk yields per goat at days 43 and 57 of lactation (r = 0.77 and r = 0.84, respectively; P < 0.01). Daily weight gain at week 4 was higher (P < 0.01) in kids from the LD group than that in kids from the control group and was correlated with total and average IGF‐1 maternal levels (r = 0.60 and r = 0.60, P < 0.05). It was concluded that submitting lactating goats to artificial long days increases milk yield, plasma IGF‐1 maternal levels and the growth rate of the kids.  相似文献   

10.
Insulin‐like growth factor‐1 (IGF‐1) is one of the important factors for growth, milk production and reproductive functions and mainly released from the liver in response to growth hormone (GH) via GH receptor (GHR) in cattle. Recently, some single nucleotide polymorphisms (SNPs) were identified in the bovine GHR gene. Some GHR‐SNPs were shown to be related to plasma IGF‐1 concentration in cattle. Hence, the capacity to IGF‐1 production in the liver might be affected by GHR‐SNP and associated with performance in the future. This study examined whether GHR‐SNP is associated with IGF‐1 production in the liver of pre‐pubertal heifers. In 71 Holstein calves, blood samples for genomic DNA extraction were obtained immediately after birth. To genotype the GHR‐SNPs in the promoter region, polymerase chain reaction (PCR) products were digested with restriction enzyme NsiI (cutting sites: AA, AG and GG). All heifers at 4 months of age were intramuscularly injected with 0.4 mg oestradiol benzoate. Blood samples were obtained from the jugular vein just before (0 h) and 24 h after injection. The number of AA, AG and GG at the NsiI site was 0, 17 and 54 respectively. In AG and GG, plasma GH concentrations were higher pre‐injection than 24 h post‐injection (p < 0.01). Moreover, plasma GH concentrations in AG post‐injection were higher than in GG (p < 0.05). In contrast, the GG genotype exhibited higher plasma IGF‐1 concentrations in pre‐injection than post‐injection (p < 0.01), although oestradiol did not change IGF‐1 concentration in the AG genotype. We conclude that the GG polymorphism in the promoter region of GHR is associated with a higher potential capacity of IGF‐1 production in the liver of cattle.  相似文献   

11.
Four yearling goats (31.2 ± 2.5 kg), surgically fitted with common bile duct reentrant and duodenal catheter, were used in two 4 × 4 Latin square design experiments to investigate the effects of duodenal infusion of phenylalanine for different times on pancreatic exocrine secretion (PES). In experiment 1 (the long‐term experiment), goats were duodenally infused with 0, 2, 4 or 8 g/day phenylalanine for 14 day. Pancreatic juice and jugular blood samples were collected over 1‐h intervals for 6 h daily from day 11 to day 14 to encompass a 24‐h day. In experiment 2 (the short‐term experiment), goats were infused with phenylalanine for 10 h continuously at the same infusion rate as experiment 1 after feed deprivation for 24 h repeated every 10 day. Pancreatic juice and blood samples were collected at 0, 1, 2, 4, 6, 8 and 10 h of infusion. The volume and pH of pancreatic juice were measured, and a 5% subsample was composited and frozen until analysis of enzyme activities. Plasma was frozen until analysis of insulin and cholecystokinin (CCK). In experiment 1, pancreatic juice, α‐amylase secretion and plasma CCK concentration responded quadratically (p < 0.05), with the top value observed at the 2 g/day phenylalanine. Trypsin secretion had a quadratic response (p < 0.05), with secretion increasing up to 4 g/day phenylalanine and decreasing thereafter. Phenylalanine linearly decreased pancreatic protein and lipase secretion (p < 0.05). The results of correlation analysis showed significant correlations (p < 0.05) between plasma CCK concentration and secretion of α‐amylase and trypsin. However, the short‐term phenylalanine infusion did not influence (p > 0.05) pancreatic juice, protein, α‐amylase, lipase, trypsin secretion and plasma CCK concentration. These results indicate PES of ruminants is stimulated by phenylalanine and is potentially mediated by CCK in the long‐term duodenal infusion treatment, but is not influenced by phenylalanine in the short‐term duodenal infusion treatment.  相似文献   

12.
To investigate the effects of amino acids on ghrelin‐induced growth hormone (GH), insulin and glucagon secretion in lactating dairy cattle, six Holstein cows were randomly assigned to two infusion treatments in a cross‐over design. Mixture solution of amino acids (AMI) or saline (CON) was continuously infused into the left side jugular vein via catheter for 4 h. At 2 h after the start of infusion, synthetic bovine ghrelin was single injected into the right side jugular vein through the catheter. Ghrelin injection immediately increased plasma GH, glucose and non‐esterified fatty acids (P < 0.05) with no difference between both treatments. Additionally, plasma insulin and glucagon concentrations were increased by ghrelin injection in both treatments. The peak value of plasma insulin concentration was greater in AMI compared with CON (P < 0.05). Plasma glucagon concentration showed no difference in the peak value reached at 5 min between both treatments, and then the plasma levels in AMI compared with CON showed sustained higher values (P < 0.05). After plasma glucose concentration reached the peak, the decline was greater in AMI compared with CON (P < 0.05). These results showed that the increased plasma amino acids may enhance ghrelin action which in turn enhances insulin and glucagon secretions in lactating cows.  相似文献   

13.
The effects of growth hormone (GH) and insulin‐like growth factor‐I (IGF‐I) on protein synthesis and gene expression of κ‐casein in bovine mammary epithelial cell in vitro were studied. The treatments were designed as follows: the growth medium without serum was set as the control group, while the treatments were medium supplemented with GH (100 ng/ml), IGF‐I (100 ng/ml), and GH (100 ng/ml) + IGF‐I (100 ng/ml). The quantity of κ‐casein protein was measured by ELISA, and the κ‐casein gene (CSN3) expression was examined by real‐time quantitative PCR (RT‐qPCR). Compared with the control group, all the experimental groups had greater (p < 0.05) expression of CSN3. The concentration of κ‐casein followed a similar response as CSN3, but the difference between the treatments and the control was not statistically significant (p > 0.05). Furthermore, no synergistic effect of GH and IGF‐I was observed for both the κ‐casein concentration and CSN3 expression. It is therefore concluded that GH or IGF‐I can independently promote the expression of CSN3 in bovine mammary epithelial cells in vitro.  相似文献   

14.
The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1‐year‐old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42°C day time temperature) and non‐transported. Animals were blood‐sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor‐adrenaline and dopamine concentrations (P < 0.05) than non‐transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically‐stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non‐stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non‐transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.  相似文献   

15.
1. The role of both insulin‐like growth factors (IGF)‐I and ‐II in regulation of growth hormone (GH) secretion in chickens was examined. Seven‐week‐old male broiler chickens were injected intravenously (iv) with recombinant human IGF‐I or IGF‐II or specific anti‐IGF‐I or IGF‐II immunoglobulins. Blood samples were taken before treatment and at 15 min intervals afterwards for 1 h. Controls received saline iv.

2. Both IGF‐I and IGF‐II administration resulted in a rapid, significant decrease in plasma GH concentrations, but the concentrations of both triiodothyronine and thyroxine remained unchanged.

3. Immunisation against both IGF‐I and IGF‐II produced a significant elevation in plasma GH.

4. These data show that both IGFs can regulate GH concentrations in birds. Furthermore, the immunoneu‐tralisation data suggest that these hormones have a physiological role in the regulation of GH secretion.  相似文献   


16.
A study was conducted to assess comparatively the growth performance of three different indigenous goat breeds during exposure to summer heat stress. The primary objective of the study was to observe the heat stress impact on the growth performance based on the body weight changes, allometric measurements, growth hormone (GH) concentration and peripheral blood mononuclear cell (PBMC) Insulin‐like growth factor‐1 (IGF‐1) mRNA expression pattern during the summer season in comparison with the local breed (Osmanabadi). Thirty‐six ten‐month‐ to one‐year‐old female goats of Osmanabadi, Malabari and Salem Black breeds were randomly divided into six groups, OC (n = 6; Osmanabadi control), OHS (n = 6; Osmanabadi heat stress), MC (n = 6; Malabari control), MHS (n = 6; Malabari heat stress), SBC (n = 6; Salem Black control) and SBHS (n = 6; Salem Black heat stress). Body weight was recorded at weekly intervals, whereas other growth and allometric measurements and blood collection were carried out at fortnightly intervals. Breed factor significantly (p < .05) influenced only few growth variables such as body weight, body mass index (BMI) and body condition score (BCS). However, heat stress treatment significantly (p < .05) reduced all growth parameters expect BMI. Further, the heat stress significantly (p < .01) increased plasma GH concentration in goats with significantly higher (p < .05) concentration recorded in OHS. Among the stress groups, the lower (p < .05) PBMC IGF‐1 mRNA expression was recorded in OHS, while the higher (p < .05) expression was observed in SBHS indicating the extreme adaptive capability of Salem Black breed. Thus, the results indicated that the Salem Black breed performed much better compared to both Osmanabadi and Malabari breeds indicating the superior ability of this breed to adapt to heat stress challenges. The results also indicated that plasma GH and IGF‐1 gene may act as ideal biomarkers for assessing the heat stress impact on growth performance in indigenous goats.  相似文献   

17.
The objective of the study was to determine the effect of supplementing Moringa oleifera leaves (MOL) on growth performance, carcass and non-carcass characteristics of crossbred Xhosa lop-eared goats. A total of 24 castrated goats aged 8 months, with a mean initial weight of 15.1 ± 2.3 kg, were randomly divided into three diet groups with eight goats in each. The duration of the trial was 60 days. All goats received a basal diet of grass hay (GH) ad libitum and wheat bran (200 g/day each). The MOL and sunflower cake (SC) groups were fed additional 200 g of dried M. oleifera leaves and 170 g of SC, respectively. The third group (GH) did not receive any additional ration. The crude protein of MOL (23.75%) and SC (23.27%) were higher (P < 0.05) than that of the GH diet (14.08%). The attained average daily weight gain for goats fed MOL, SC and GH were 103.3, 101.3 and 43.3 g, respectively (P < 0.05). Higher (P < 0.05) feed intakes observed were in SC (491.5 g) and MOL (490.75 g) compared with GH (404.5 g). The hot carcass weight was higher (P < 0.05) for SC (10.48 kg) and MOL (10.34 kg) than for the GH group (8.59 kg). The dressing percentage in SC (55.8%) and MOL (55.1%) were higher (P < 0.05) than that of the GH (52.9%). The growth performance and carcass characteristics of SC and MOL goats were not different. Feeding MOL or SC improved the growth performance and carcass characteristics of goats in an almost similar way, which indicates that M. oleifera could be used as an alternative protein supplement in goats.  相似文献   

18.
Both the mean concentration and the pulse pattern of growth hormone (GH) in the blood are important for the metabolism and body growth of calves. Transportation is reported to decrease blood GH concentrations in prepubertal male calves. However, the effect of transportation on GH pulsatility remains unknown. Because transportation is important in moving these calves from calf‐production farms to markets or fattening farms, we tested whether transportation decreases their GH pulse frequency. Five calves were subjected to transportation by trucking (transport group), while five were left in their shed (non‐transport group). Both groups were subsequently subjected to frequent blood sampling at 15‐min intervals for 5 h. In the transport group, the cortisol concentrations increased in the first hour (P < 0.05) but significantly decreased thereafter (P < 0.05) to lower than those of the non‐transport group. During the 5‐hour study period, the transport group displayed a similar mean GH concentration relative to the non‐transport group, but displayed a delayed first GH pulse, and a lower number of GH pulses than the non‐transport group (P < 0.05). Hence, transportation is suggested to decrease GH pulse frequency under abnormal cortisol states, presumably suppressing metabolism and body growth in prepubertal male calves.  相似文献   

19.
The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin‐releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL‐releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL‐releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL‐releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL‐releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH‐induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL‐induced PRL secretion in goats.  相似文献   

20.
The study examined the effects of blend of 80% canola oil and 20% palm oil (BCPO) on nutrient intake and digestibility, growth performance, rumen fermentation and fatty acids (FA) in goats. Twenty‐four Boer bucks were randomly assigned to diets containing 0, 4 and 8% BCPO on a dry matter basis, fed for 100 days and slaughtered. Diet did not affect feed efficiency, growth performance, intake and digestibility of all nutrients except ether extract. Intakes and digestibilities of ether extract, unsaturated fatty acids (FA) and total FA were higher (P < 0.05) while digestibility of C18:0 was lower (P < 0.05) in oil‐fed goats than the control goats. Total volatile FA, acetate, butyrate, acetate/propionate ratio and methane decreased (P < 0.05) with increasing BCPO but propionate, NH3‐N and rumen pH did not differ between diets. Ruminal concentration of C18:0, n‐3 FA and total FA increased (P < 0.05) while C12:0, C14:0, C15:0 and n‐6 FA decreased with increasing BCPO. Analysis of the FA composition of Triceps brachii muscle showed that concentrations of C16:0, C14:0 and C18:2n‐6 were lower (P < 0.05) while C18:1n‐9, C18:3n‐3 and C20:5n‐3 were higher in oil‐fed goats compared with control goats. Dietary BCPO altered muscle lipids without having detrimental effects on nutrient intake and digestibility and growth performance in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号