首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Previously, we determined that a primary cause of proportional stunted growth in a line of Brahman cattle was related to an apparent refractoriness in metabolic response to GH in young animals. The objective of this study was to determine the effect of administration of GH, insulin (INS), and GH plus INS to mature miniature Brahman cows (n = 6; 9.7 ± 2.06 y; 391 ± 48.6 kg) and bulls (n = 8; 9.4 ± 2.00 y; 441 ± 54.0 kg) on circulating concentrations of metabolic hormones and metabolites, primarily IGF-I and IGF-I binding proteins. We hypothesized that IGF-I secretion could be enhanced by concomitant administration of exogenous GH and INS, and neither alone would be effective. Animals were allotted to a modified crossover design that included four treatments: control (CON), GH, INS, and GH + INS. At the start of the study, one-half of the cattle were administered GH (Posilac; 14-d slow release) and the other one-half served as CON for 7 d. Beginning on day 8, and for 7 d, INS (Novolin L) was administered (0.125 IU/kg BW) twice daily (7:00 AM and 7:00 PM) to all animals; hence, the INS and GH + INS treatments. Cattle were rested for 14 d and then were switched to the reciprocal crossover treatments. Blood samples were collected at 12-hour intervals during the study. Compared with CON, GH treatment increased (P < 0.01) mean plasma concentrations of GH (11.1 vs 15.7 ± 0.94 ng/mL), INS (0.48 vs 1.00 ± 0.081 ng/mL), IGF-I (191.3 vs 319.3 ± 29.59 ng/mL), and glucose (73.9 vs 83.4 ± 2.12 mg/dL) but decreased (P < 0.05) plasma urea nitrogen (14.2 vs 11.5 ± 0.75 mg/dL). Compared with INS, GH + INS treatment increased (P < 0.05) mean plasma concentration of INS (0.71 vs 0.96 ± 0.081 ng/mL), IGF-I (228.7 vs 392.3 ± 29.74 ng/mL), and glucose (48.1 vs 66.7 ± 2.12 mg/dL), decreased (P < 0.01) plasma urea nitrogen (13.6 vs 10.4 ± 0.76 mg/dL), and did not affect GH (13.5 vs 12.7 ± 0.95 ng/mL). In the miniature Brahman model, both the GH and GH + INS treatments dramatically increased circulating concentrations of IGF-I in mature cattle, suggesting that this line of Brahman cattle is capable of responding to bioactive GH.  相似文献   

2.
We have previously demonstrated that a constant intravenous infusion of kisspeptin (Kp) for 48 h in anestrous ewes induces a preovulatory luteinizing hormone (LH) surge followed by ovulation in approximately 75% of animals. The mechanisms underlying this effect are unknown. In this study, we investigated whether Kp-induced preovulatory LH surges in anestrous ewes were the result of the general activation of the whole gonadotropic axis or of the direct activation of central GnRH neurons required for the GnRH/LH surge. In the first experiment, a constant iv infusion of ovine kisspeptin 10 (Kp; 15.2 nmol/h) was given to 11 seasonally acyclic ewes over 43 h. Blood samples were taken every 10 min for 15 h, starting 5 h before the infusion, and then hourly until the end of the infusion. We found that the infusion of Kp induced a well-synchronized LH surge (around 22 h after the start of the Kp infusion) in 82% of the animals. In all ewes with an LH surge, there was an immediate but transient increase in the plasma concentrations of LH, follicle-stimulating hormone (FSH), and growth hormone (GH) at the start of the Kp infusion. Mean (± SEM) concentrations for the 5-h periods preceding and following the start of the Kp infusion were, respectively, 0.33 ± 0.09 vs 2.83 ± 0.49 ng/mL (P = 0.004) for LH, 0.43 ± 0.05 vs 0.55 ± 0.03 ng/mL (P = 0.015) for FSH, and 9.34 ± 1.01 vs 11.51 ± 0.92 ng/mL (P = 0.004) for GH. In the first experiment, surges of LH were observed only in ewes that also had a sustained rise in plasma concentrations of estradiol (E2) in response to Kp. Therefore, a second experiment was undertaken to determine the minimum duration of Kp infusion necessary to induce such a pronounced and prolonged increase in plasma E2 concentration. Kisspeptin (15.2 nmol/h) was infused for 6, 12, or 24 h in seasonally acyclic ewes (N = 8), and blood samples were collected hourly for 28 h (beginning 5 h before the start of infusion), then every 2 h for the following 22 h. Kisspeptin infused for 24 h induced LH surges in 75% of animals, and this percentage decreased with the duration of the infusion (12 h = 50%; 6 h = 12.5%). The plasma concentration of E2 was greater in ewes with an LH surge compared to those without LH surges; mean (± SEM) concentrations for the 5-h period following the Kp infusion were, respectively, 2.23 ± 0.16 vs 1.27 ± 0.13 pg/mL (P < 0.001). Collectively, our results strongly suggest that the systemic delivery of Kp induced LH surges by activating E2-positive feedback on gonadotropin secretion in acyclic ewes.  相似文献   

3.
This study examined the influence of sex steroid hormones on lipid metabolism in horses. The group of 34 clinically healthy Standardbred trotters aged 2 to 4 years was studied during an exercise test. The horses were divided into groups according to their sex. These groups were: 11 stallions, 16 mares, and seven geldings. Concentrations of testosterone, 17-β-estradiol, leptin, ghrelin, glycerol, free fatty acids (FFA), and triacylglycerols (TG) were measured in plasma obtained from blood samples taken at rest and after the end of the exercise. At rest, plasma ghrelin concentration was significantly higher in geldings than in stallions and mares (1,541 ± 206 vs 1,280 ± 288 and 1,310 ± 267 pg/mL, respectively; P = .012). Leptin was lower in geldings than in mares (2.65 ± 0.93 vs 4.70 ± 2.31 ng/mL; P = .036). The post-exercise rise in plasma ghrelin and TG concentrations was significantly higher in mares than in geldings (+220 ± 330 vs -25 ± 206 pg/mL; P = .049 and 0.31 ± 0.14 vs 0.13 ± 0.15 mmol/L; P = .016, respectively). The increase in plasma FFA level was higher in geldings than in stallions (535 ± 178 vs 334 ± 191 μmol/L, P = .046). In conclusion, lipolysis rate in geldings is higher than in noncastrated trotters.  相似文献   

4.
The effect of energy balance on the growth hormone (GH) secretory responsiveness to growth hormone-releasing hormone (GHRH) has not been determined in ruminant animals. Therefore, we examined the effects of intravenous injections of 0, 3.3, and 6.6 μg ghrelin/kg body weight (BW), with and without GHRH at 0.25 μg/kg BW, on GH secretory responsiveness in both the fed and fasted sheep. The injections were carried out at 48 h (Fasting state) and 3 h (Satiety state) after feeding. Blood samples were taken every 10 minutes, from 30 minutes before to 120 minutes after the injection. Low (3.3 μg/kg BW) and high (6.6 μg/kg BW) doses of ghrelin stimulated GH secretion significantly (P < .05) greater in the Satiety state than in the Fasting state. Growth hormone-releasing hormone plus both doses of ghrelin stimulated GH secretion significantly (P < .05) greater in the Satiety state than in the Fasting state. Ghrelin and GHRH exerted a synergistic effect in the Satiety state, but not in the Fasting state. Plasma ghrelin levels were maintained significantly (P < .05) greater in the Fasting state than in the Satiety state except the temporal increases after ghrelin administration. Plasma free fatty acid (FFA) concentrations were significantly (P < .01) greater in the Fasting state than in the Satiety state. In conclusion, the present study has demonstrated for the first time that ghrelin differentially modulates GH secretory response to GHRH according to feeding states in ruminant animals.  相似文献   

5.
The effect of appetite regulatory hormone cholecystokinin (CCK) on the secretions of oxyntomodulin (OXM) and ghrelin, and the effect of ghrelin on the secretions of CCK and OXM were studied in ruminants. Eight Holstein steers, 7 months old, 243 ± 7 kg body weight (BW), were arranged in an incomplete Latin square design (8 animals × 4 treatments × 4 days of sampling). Steers were intravenously injected with 10 µg of sulfated CCK‐8/kg BW, 20 µg of acyl ghrelin/kg BW, 100 µg of des‐acyl ghrelin/kg BW or vehicle. Blood samples were collected from ?60 min to 120 min relative to time of injection. Plasma concentrations of ghrelin, sulfated CCK and OXM were measured by double‐antibody radioimmunoassay. Plasma acyl ghrelin was increased to peak level (428.3 ± 6 pg/mL) at 60 min after injection of CCK compared with pre‐injected levels (203.3 ± 1 pg/mL). These results showed for the first time, that intravenous bolus injection of CCK increased ghrelin secretion in ruminants. In contrast, injection of ghrelin did not change CCK secretion. Administration of ghrelin or CCK has no effect on plasma OXM concentrations. In conclusion, our results show that administration of CCK increased ghrelin secretion but did not affect OXM release in ruminants. Ghrelin did not affect the secretions of CCK and OXM.  相似文献   

6.
Increased endothelin-1 (ET-1) plasma concentration in human infants is associated with persistent pulmonary hypertension of the newborn, a problem also identified in calves derived from somatic cell clone technology. Increased ET-1 also is present in the amnionic fluid and plasma of the infant and mother in preeclampsia, a condition associated with abnormal placentation. Abnormalities in placentation are identified in clone calves. We measured ET-1 in fetal fluid, calf plasma, and surrogate dam plasma in 40 clone calves at the time of term delivery. Calves were subsequently identified as being either oxygen treated (O2) or non-oxygen treated based on their postpartum clinical course. Fetal fluid ET-1 concentration greater than 1.4 ng/mL carried a 3-fold increase in odds of the calf being treated with oxygen. Maternal plasma ET-1 concentration was greater in the O2 group (13 pg/ mL: [8-23 pg/mL] versus 25 pg/mL [12-40 pg/mL]; median, 25-75 percentile). Plasma ET-1 concentration in calves was not significantly different between groups. Fetal fluid ET-1 may serve as a marker for neonatal disorders of oxygenation in clone calves and the source of ET-1 may be the placenta.  相似文献   

7.
The objective of these experiments was to establish the relationship of plasma ghrelin concentrations with feed intake and hormones indicative of nutritional state of cattle. In Exp.1, 4 steers (BW 450 +/- 14.3 kg) were used in a crossover design to compare plasma ghrelin concentrations of feed-deprived steers with those of steers allowed to consume feed and to establish the relationship of plasma ghrelin concentrations with those of GH, insulin (INS), glucose (GLU), and NEFA. After adaptation to a once-daily feed offering (0800), 2 steers continued the once-daily feeding schedule (FED), whereas feed was withheld from the other 2 steers (FAST). Serial blood samples were collected via indwelling jugular catheter from times equivalent to 22 h through 48 h of feed deprivation. Average plasma ghrelin concentrations were greater (P < 0.001) in FAST compared with FED (690 and 123 +/- 6.5 pg/mL) steers. Average plasma ghrelin concentrations for FED steers prefeeding were elevated (P < 0.001) when compared with those postfeeding (174 and 102 +/- 4.2 pg/mL, respectively). Average plasma GH concentration was elevated (P < 0.05) for FAST steers compared with FED steers. Plasma GLU concentrations were not different; however, for FAST steers, NEFA concentrations were elevated (P < 0.001) and INS concentrations were decreased (P < 0.001). In Exp. 2, 4 steers (BW 416 +/- 17.2 kg) were used in a crossover design to determine the effects of i.v. injection of bovine ghrelin (bGR) on plasma GH, INS, GLU, and NEFA concentrations; length of time spent eating; and DMI. Steers were offered feed once daily (0800). Serial blood samples were collected from steers via indwelling jugular catheter. Saline or bGR was injected via jugular catheter at 1200 and 1400. A dosage of 0.08 microg/kg of BW bGR was used to achieve a plasma ghrelin concentration similar to the physiological concentration measured in a FAST steer in Exp. 1 (1,000 pg/mL). Injection of bGR resulted in elevated (P < 0.005) plasma GH concentrations after the 1200 but not the 1400 injection. Plasma INS, GLU, and NEFA concentrations were not affected by bGR injection. For the combined 1-h periods postinjection, length of time spent eating was greater (P = 0.02) and DMI tended to be increased (P = 0.06) for bGR steers. These data are consistent with the hypothesis that ghrelin serves as a metabolic signal for feed intake or energy balance in ruminants.  相似文献   

8.
Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 ± 1 kg body weight [BW]; and ruminants: 85 ± 1 kg BW) were injected intravenously with 30 μg of OXM/kg BW, 50 μg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 ± 1 d old, 398 ± 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 μg/kg for the promotion of glucose secretion and 2 μg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.  相似文献   

9.
GH secretion is increased in scrapie-diseased sheep. Although the role of the somatotropic axis as a neurotrophic and neuroprotective factor is well documented, no studies have been carried out on the mechanisms and functional significance of somatotropic perturbation in the pathophysiology of prion-associated neurodegenerative disease. The goal of this study was to test the hypothesis that increased GH secretion observed in a natural animal prion disease, scrapie, might reflect a general lack of action of IGF-1 and, more particularly, a suppressed IGF-1 negative feedback. The effect of human recombinant IGF-1 (rhIGF-1) on spontaneous and GHRH-induced secretions was studied in so-called “scrapie-resistant” and “scrapie sensitive” rams in vivo and in vitro on pituitary dissociated cells from both groups. The effect of rhIGF-1 infusion on spontaneous and GHRH-induced GH secretions was evaluated during the preclinical and clinical stages of the disease in vivo. Our results indicated that rhIGF-1 suppressed spontaneous GH secretion but not GHRH-induced secretion in vivo. RhIGF-1 had no effect on spontaneous and GHRH-induced GH secretion from dissociated pituitary cells. Clinical scrapie was associated with a significantly greater rhIGF-1-induced inhibition of GH spontaneous secretion (mean ± S.E.M. inhibition of GH secretion: 31 ± 8% vs. 45 ± 4% in control and scrapie-affected rams, respectively). It can be concluded that the increase in GH secretion in scrapie-affected animals does not reflect a global lack of action of IGF-1. Further investigations are required to determine if other IGF-1 effects and more particularly neuroprotective mechanisms are altered in prion-associated neurodegenerative diseases.  相似文献   

10.
OBJECTIVE: To compare plasma and synovial fluid endothelin-1 (ET-1) and nitric oxide (NO) concentrations in clinically normal horses and horses with joint disease. ANIMALS: 36 horses with joint disease, and 15 horses without joint disease. PROCEDURE: Horses with joint disease were assigned to 1 of the 3 groups (ie, synovitis, degenerative joint disease [DJD], or joint sepsis groups) on the basis of findings on clinical and radiographic examination and synovial fluid analysis. Endothelin-1 and NO concentrations were measured in plasma from blood samples, collected from the jugular vein and ipsilateral cephalic or saphenous vein of the limb with an affected or unaffected joint, as well as in synovial fluid samples obtained via arthrocentesis from the involved joint. RESULTS: Plasma ET-1 concentrations between affected and unaffected groups were not significantly different. Median concentration and concentration range of ET-1 in synovial fluid obtained from the joint sepsis group (35.830 pg/mL, 7926 to 86.614 pg/mL; n = 7) were significantly greater than values from the synovitis (17.531 pg/mL, 0.01 to 46.908 pg/mL; 18), DJD (22.858 pg/mL, 0.01 to 49.990 pg/mL; 10), and unaffected (10.547 pg/mL, 0.01 to 35.927 pg/mL; 10) groups. Plasma and synovial fluid NO concentrations between affected and unaffected groups were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: Endothelin-1 is locally synthesized in the joints of horses with various types of joint disease. Synovial fluid concentrations of ET-1 varied among horses with joint disease, with concentrations significantly higher in the synovial fluid of horses with joint sepsis. These results indicate that ET-1 may play a role in the pathophysiologic mechanism of joint disease in horses.  相似文献   

11.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

12.
The pharmacokinetic disposition and bioavailability of florfenicol (FF) were determined after single intravenous (i.v.) and intramuscular (i.m.) administrations of 25 mg/kg b.w. to ten healthy New Zealand White rabbits. Plasma FF concentrations were determined by high-performance liquid chromatography (HPLC). The plasma pharmacokinetic values for FF were best described by a one-compartment open model. The elimination half-life (t1/2β) was different (p < 0.05) however, the area under curve (AUC) was similar (p > 0.05) after i.v. and i.m. administrations. FF was rapidly eliminated (t1/2β 1.49 ± 0.23 h), slowly absorbed and high (F, 88.75 ± 0.22%) after i.m. injection. In addition, FF was widely distributed to the body tissues (Vss 0.98 ± 0.05 L/kg) after i.v. injection. In this study the time that plasma concentration exceeded the concentration of 2 μg/mL was approximately 6 h. For bacteria with MIC of 2 μg/mL, frequent administration at this dose would be needed to maintain the concentration above the MIC. However, it is possible that rabbit pathogens may have MIC values less than 2 μg/mL which would allow for less frequent administration. Further studies are necessary to identify the range of MIC values for rabbit pathogens and to identify the most appropriate PK-PD parameter needed to predict an effective dose.  相似文献   

13.
The efficacy of eprinomectin in an extended-release injection (ERI) formulation was determined in cattle harboring naturally acquired infestations of first- or second- and third-stage larvae of Hypoderma spp. in three studies conducted according to the same protocol in the USA (two studies) and Germany (one study). Thirty cattle sourced from herds with a history of Hypoderma infestation were included in each study. Cattle were formed into replicates of three animals each on the basis of pre-treatment anti-Hypoderma antibody titers. Within replicates each animal was randomly allocated to one of the following treatments: ERI vehicle (control) at 1 mL/50 kg bodyweight, administered once on Day 0; Eprinomectin 5% ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg), administered once on Day 0 (when larvae were expected to be first instars); or Eprinomectin 5% ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg), administered once when larvae were second or third instars (study dependent, Day 73, 119, or 140). Treatments were administered by subcutaneous injection in front of the shoulder. In all studies, emerging and/or expressed Hypoderma larvae were recovered, speciated, and counted and viability was determined. Eprinomectin LAI treatment was 100% (p < 0.05) efficacious against first- and second- or third-stage larvae of Hypoderma bovis (two studies) and Hypoderma lineatum (one study). All animals accepted the treatment well. No adverse reaction to treatments was observed in any animal in any study.  相似文献   

14.
OBJECTIVE: To measure plasma endothelin-1 (ET-1) concentrations and digital blood flow in clinically endotoxemic horses. ANIMALS: 36 adult horses that underwent emergency celiotomy for primary gastrointestinal tract disease. PROCEDURE: On days 2 and 5 following surgery, Doppler ultrasonographic digital arterial blood flow measurements were obtained. Hematologic and biochemical analyses were performed, and plasma concentrations of ET-1 and endotoxin (lipopolysaccharide) were determined. A scoring system based on 9 clinical variables was used to assign horses to group B (quartile with greatest cumulative score) or group A (remaining 3 quartiles). Follow-up at 2.5 years was obtained by telephone questionnaire. RESULTS: For all horses on day 2, median (interquartile values) plasma ET-1 concentrations were 1.4 (0.8, 1.7) pg/mL, whereas on day 5, plasma ET-1 concentrations were 1.0 (0.5, 1.6) pg/mL. On day 2, digital blood flow was 0.057 (0.02, 0.07) mL/min in group A horses and 0.035 (0.02, 0.03) mL/min in group B horses. On day 5, plasma ET-1 concentration was significantly (73%) higher in group B horses, compared with group A horses. Thirty of 36 horses were alive at 2.5 years; group A horses were more likely to have survived (odds ratio, 25; 95% confidence interval, 2.4 to 262). Significant associations were found between an increase in digital pulses, hoof wall temperatures, or both and increased digital blood flow (0.14 vs 0.04 mL/min) on day 2 and increased digital arterial diameter (0.32 vs 0.23 cm) on day 5. CONCLUSIONS AND CLINICAL RELEVANCE: Horses with more severe endotoxemia had decreased digital blood flow, increased plasma ET-1 concentrations, and decreased long-term survival.  相似文献   

15.
The efficacy of eprinomectin in an extended-release injection (ERI) formulation was evaluated against infections with third-stage larvae or eggs of gastrointestinal and pulmonary nematodes in cattle under 120-day natural challenge conditions in a series of five studies conducted in the USA (three studies) and in Europe (two studies). For each study, 30 nematode-free (four studies) or 30 cattle harboring naturally acquired nematode infections (one study) were included. The cattle were of various breeds or crosses, weighed 107.5–273 kg prior to treatment and aged approximately 4–11 months. For each study, animals were blocked based on pre-treatment bodyweight and then randomly allocated to treatment: ERI vehicle (control) at 1 mL/50 kg bodyweight or Eprinomectin 5% (w/v) ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg) for a total of 15 and 15 animals in each group. Treatments were administered once on Day 0 by subcutaneous injection in front of the shoulder. In each study, all animals grazed one naturally contaminated pasture for 120 days. At regular intervals during the studies, fecal samples from all cattle were examined for nematode egg and larval counts. In four studies pairs of tracer cattle were used to monitor pasture infectivity at 28-day intervals before and/or during the grazing period. All calves were weighed before turnout onto pasture and at regular intervals until housing on Day 120. For parasite recovery, all study animals were humanely euthanized 27–30 days after removal from pasture.  相似文献   

16.
17.
Seventy-two crossbred pigs (7.58 +/- 0.30 kg BW) weaned at 28 +/- 3 d of age were used to investigate the effects of fish oil supplementation on pig performance and on immunological, adrenal, and somatotropic responses following an Escherichia coli lipopolysaccharide (LPS) challenge in a 2 x 2 factorial design. The main factors consisted of diet (7% corn oil [CO] or 7% fish oil [FO]) and immunological challenge (LPS or saline). On d 14 and 21, pigs were injected intraperitoneally with either 200 microg/kg BW of LPS or an equivalent amount of sterile saline. Blood samples were collected 3 h after injection for analysis of interleukin-1beta (IL-1beta), prostaglandin E2 (PGE2), cortisol, growth hormone (GH), and insulin-like growth factor (IGF)-I. On d 2 after LPS challenge, peripheral blood lymphocyte proliferation (PBLP) was determined. Lipopolysaccharide challenge decreased ADG (487 vs. 586 g; P < 0.05) and ADFI (as-fed, 776 vs. 920 g; P < 0.05) from d 14 to 21 and ADG (587 vs. 652 g; P < 0.10) from d 21 to 28. Fish oil improved ADG (554 vs. 520 g; P < 0.10) and ADFI (891 vs. 805 g; P < 0.10) from d 14 to 21. On d 14, LPS challenge x diet interactions were observed for IL-1beta (P < 0.10), PGE2 (P < 0.001), and cortisol (P < 0.05) such that these measurements responded to the LPS challenge to a lesser extent (IL-1beta: 93 vs. 114 pg/mL, P < 0.05; PGE2: 536 vs. 1,285 pg/mL, P < 0.001; cortisol: 143 vs. 206 ng/mL, P < 0.05) in pigs receiving the FO diet than in pigs fed the CO diet. In contrast, among LPS-treated pigs, pigs fed the FO diet had higher IGF-I (155 vs. 101 ng/mL; P < 0.10) than those fed the CO diet. On d 21 among LPS-treated pigs, pigs fed FO had lower IL-1beta (70 vs. 84 pg/mL; P < 0.10) and cortisol (153 vs. 205 ng/mL; P < 0.05) than those fed CO. Pigs fed FO had lower PGE2 (331 vs. 444 pg/mL; P < 0.05) and higher IGF-I (202 vs. 171 ng/mL; P < 0.10) compared with those fed CO. Lipopolysaccharide challenge decreased GH (0.27 vs. 0.33 ng/mL; P < 0.05) on d 14, whereas it had no effect on GH on d 21. During both LPS challenge periods, the challenge increased PBLP when these cells were incubated with 8 (1.46 vs. 1.32; P < 0.10) or 16 microg/mL (1.46 vs. 1.30; P < 0.05) of concanavalin A. Fish oil had no effect on PBLP. These results suggest that FO alters the release of proinflammatory cytokines, which might lead to improved pig performance during an immunological challenge.  相似文献   

18.
The aim of this study was to investigate the effects of methylprednisolone treatment on serum leptin and ghrelin levels in healthy dogs (n=40). After 14 h of fasting, the dogs were injected intramuscularly with saline (control group) or methylprednisolone (1, 5 or 10mg/kg). Blood samples were collected prior to (baseline) and 2, 3, 4, 8, 12 and 24h subsequent to the treatments. Serum leptin and ghrelin were measured by radioimmunoassay. The mean baseline serum leptin and ghrelin were 2.5+/-0.1 ng/mL (n=40) and 35.0+/-2.1 pg/mL (n=40), respectively. In the control dogs, serum leptin, but not ghrelin levels showed a significant fluctuation during the 24h observation period. Serum leptin increased significantly (p<0.05-0.01) between 2 and 12h after 1mg/kg of methylprednisolone. Serum leptin levels showed biphasic response to 5mg/kg of methylprednisolone: its level decreased to 1.9+/-0.1 ng/mL (p<0.01) at 2h and increased at 12h (2.6+/-0.1 ng/mL) (p<0.01). In response to 10mg/kg of methylprednisolone, serum leptin levels decreased significantly (p<0.01) for 24h. Serum ghrelin levels decreased to 19+/-5 pg/mL at 2-3h (p<0.01) or increased to 87+/-18 pg/mL at 3-8h (p<0.05-0.01) after 1mg/kg of methylprednisolone or 10mg/kg of methylprednisolone, respectively. Serum ghrelin levels did not change at any time point during 24h observation period after 5mg/kg of methylprednisolone. There was a significant (p<0.001) inverse correlation (r=-0.635) between serum leptin and ghrelin levels. In conclusion, we found that methylprednisolone increases or decreases serum leptin and ghrelin levels depending upon its dose and there is a negative correlation between serum leptin and ghrelin levels after methylprednisolone administration.  相似文献   

19.
In Arunachal Pradesh and other sub-Himalayan areas of India, accidental consumption of Senecio plants by yaks is often fatal as the plant contains toxic alkaloids like Seneciophylline. The present investigation was undertaken to demonstrate the pro-oxidant effects of an ethanolic extract of Seneciochrysanthemoides (S-EtOH). S-EtOH impaired viability in macrophages, the IC50 being 13.8 ± 1.11 μg/mL. The effect of S-EtOH (1 μg/mL) on generation of reactive oxygen species (ROS) in macrophages was measured by flow cytometry using 2′,7′-dichlorofluorescein diacetate (H2DCFDA) where it caused a significant increase in the mean fluorescence channel (MFC) from 8.55 ± 0.03 to 47.32 ± 2.25 (p < 0.001). S-EtOH also effected a 3.8-fold increase in extracellular nitric oxide (NO) generation from 4.90 ± 0.72 μM to 18.79 ± 0.32 μM (p < 0.001), a 2.2-fold increase in intracellular NO production, the MFC increasing from 14.95 ± 0.48 to 33.34 ± 1.66 (p < 0.001), and concomitantly depleted non protein thiols as analyzed by flow cytometry using mercury orange, with a reduction in MFC from 632.5 ± 49.44 to 407.4 ± 12.61 (p < 0.01). Additionally, S-EtOH (14 μg/mL, 24 h) caused apoptosis as evident by increased Annexin V binding and terminal deoxynucleotidyl transferase mediated dUTP DNA nick end labeling. Taken together, the cytotoxicity of S-EtOH can be partly attributed to its capacity to inflict oxidative damage via generation of both reactive oxygen and nitrogen species culminating in apoptosis.  相似文献   

20.
Plasma concentrations of endothelin-1 (ET-1), the most potent endogenous pressor substance discovered to date, are abnormally high in humans with congestive heart failure (CHF), and they correlate with the degree of functional impairment. We sought first to validate a human sandwich ELISA kit that targets that portion of the amino acid sequence that is identical in cats. The assay demonstrated linearity (R2 = .9968) and parallelism (P = .5339), recovery of spiked human ET-1 in cat plasma averaged 98.7%, and intraassay precision had a coefficient of variation <10%. We subsequently determined ET-1 immunoreactivity in healthy cats and in cats with myocardial disease with and without CHF, systemic thromboembolism (STE), or both. Plasma ET-1 immunoreactivity was measured in 12 healthy cats and in 28 cats with primary myocardial disease, including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive or unclassified cardiomyopathy (RCM and UCM), respectively. Plasma ET mean (95% CI) concentrations were 0.777 (0.6536-0.924) fmol/mL in the control cats, 1.427 (0.922-2.209) fmol/mL in 12 cats with cardiomyopathy (HCM = 11, RCM/UCM = 1) but without CHF or evidence of STE, and 2.360 (1.666-3.343) fmol/mL in 16 cats with cardiomyopathy (HCM = 8, RCM/UCM = 7, DCM = 1) and CHF (n = 15) or STE (n = 4). Plasma immunoreactivity of ET-1 was significantly higher in cats with myocardial disease without CHF/STE versus normal cats (P < .05) and in cats with myocardial disease with CHF/STE versus normal cats (P < .001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号