首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Two experiments were conducted to evaluate combinations of wet corn gluten feed (WCGF) and barley, as well as the particle size of dry-rolled barley and corn, in finishing steer diets containing WCGF. In Exp. 1, 144 crossbred steers (initial BW = 298.9 +/- 1.4 kg) were used to evaluate barley (0.566 kg/L and 23.5% NDF for whole barley) and WCGF combinations in finishing diets containing 0, 17, 35, 52, or 69% WCGF (DM basis), replacing barley and concentrated separator byproduct. A sixth treatment consisted of corn (0.726 kg/L and 11.1% NDF for whole corn), replacing barley in the 35% WCGF treatment. In Exp. 2, 144 crossbred steers (initial BW = 315.0 +/- 1.5 kg) were used to evaluate coarse or fine, dry-rolled barley or corn (0.632 and 0.699 kg/L; 26.6 and 15.9% NDF for whole barley and corn, respectively) in finishing diets containing WCGF. A factorial treatment design was used; the factors were grain source (corn or barley) and degree of processing (coarse or fine). The diets contained 50% WCGF, 42% grain (corn or barley), 5% alfalfa hay, and 3% supplement (DM basis). In Exp. 1, DMI and ADG responded quadratically (P < or = 0.03), peaking at 35 and 52% WCGF, respectively. The efficiency of gain was not affected (P > or = 0.42) by dietary treatment. Steers fed dry-rolled corn and 35% WCGF had heavier HCW, lower DMI, greater ADG, increased G:F, increased s.c. fat thickness at the 12th rib, and greater yield grades compared with steers fed dry-rolled barley and 35% WCGF (P < or = 0.04). The apparent dietary NEg was similar among the barley and WCGF combinations (P > or = 0.51); however, the corn and 35% WCGF diet was 25% more energy dense (P < 0.001) than was the barley and 35% WCGF diet. In Exp. 2, no grain x processing interactions (P > or = 0.39) were observed. Particle size was 2.15 and 2.59 mm for fine- and coarse-rolled barley and was 1.90 and 3.23 mm for fine- and coarse-rolled corn. Steers fed a combination of corn and WCGF had increased ADG, greater G:F, heavier HCW, larger LM area, more s.c. fat thickness at the 12th rib, greater yield grades, increased marbling, and more KPH compared with steers fed a combination of barley and WCGF (P < or = 0.03). Fine-rolling of the grain increased fat thickness (P = 0.04). The addition of WCGF to the barley-based diets increased DMI and gain. Decreasing grain particle size did not greatly affect performance of the steers fed the 50% WCGF diets; however, carcasses from the steers fed the fine-rolled grain contained more fat.  相似文献   

2.
Four trials were conducted to determine the effects of adding various levels and types of fat to dry-rolled corn (DRC) finishing diets containing 0 or 7.5% forage. In Trial 1, 88 yearling steers (mean BW = 352 +/- 38 kg) and 176 heifers (mean BW 316 +/- 15 kg) were blocked by sex and weight into four replications. Treatments were 0, 2, 4, or 6% (DM basis) bleachable fancy tallow (BT) fed with 0 or 7.5% (DM basis) forage. Addition of BT to the 7.5% forage diet had no effect on ADG or gain/feed (G/F). However, adding BT to the all-concentrate diet decreased ADG (linear, P < .01) and G/F (linear, P = .08). In Trial 2, 184 yearling steers (mean BW = 347 +/- 21 kg) and 144 heifers (mean BW 322 +/- 8 kg) were blocked by sex and weight into six replications. Fat treatments were 0% fat, 4% BT, or 4% animal-vegetable oil blend (A-V); each fat treatment was fed with 0 or 7.5% forage. Across forage levels, the addition of fat increased (P < .01) ADG and G/F for cattle fed DRC. In Trial 3, 18 crossbred wether lambs (mean BW = 44.4 +/- 2.5 kg) were fed DRC and 7.5% forage and allotted randomly to the same fat treatments fed in Trial 2. Apparent total tract fat digestibility increased (P < .01) with the addition of BT or A-V. In Trial 4, 40 crossbred wethers (mean BW = 25 +/- 4.1 kg) and 16 ewes (mean BW = 23 +/- 2.7 kg) were individually fed 7.5% forage diets containing 0, 1, 2, or 4% BT. Addition of BT increased (linear, P = .10) G/F. In summary, fat addition to DRC finishing diets fed to yearling cattle did not consistently affect gain/feed, feed intake, and ADG.  相似文献   

3.
Three digestion experiments and one growth experiment were conducted to determine site, extent and ruminal rate of forage digestion and rate and efficiency of gain by cattle offered alfalfa haylage supplemented with corn or dry corn gluten feed (CGF). In Exp. 1, eight steers were fed alfalfa haylage-based diets with substitution of corn for 0, 20, 40 or 60% of haylage in a 4 X 4 latin square. Increasing dietary corn substitution increased (P less than .05) OM, NDF and ADF digestion by steers but decreased (P less than .05) rate of in situ alfalfa DM digestion. In Exp. 2, five heifers were fed alfalfa haylage-based diets with increasing dietary levels of CGF in a 5 X 5 latin square. Increasing dietary CGF increased (P less than .05) OM, NDF and ADF digestion by heifers. In Exp. 3 and 4, cattle were fed alfalfa haylage-based diets containing either 20 or 60% corn or CGF. In Exp. 3, supplementation increased (P less than .05) OM and NDF digestion but level X supplement source interaction (P less than .05) occurred, with added CGF increasing OM and NDF digestion more than added corn. In Exp. 4, supplementation improved (P less than .05) DM intake, daily gain and feed efficiency. Dry matter intake and daily gain were greater (P less than .05) for 60% supplementation than for 20% supplementation. Overall, whereas increasing the level of dietary supplement increased (P less than .05) OM, NDF and ADF digestion, only corn addition decreased (P less than .05) rate of in situ alfalfa DM digestion. Daily gains and feed efficiencies were similar in cattle fed either corn or CGF with alfalfa haylage.  相似文献   

4.
Two lamb digestion and three steer growth experiments were conducted to study the feeding value of alfalfa harvested as direct-cut silage (DCS) with grain added prior to ensiling or as low-moisture silage (LMS) or hay with grain added at feeding. In all experiments, alfalfa-grain mixtures contained approximately 50% alfalfa and 50% concentrate (dry matter [DM] basis). In Exp. 1, lambs fed DCS alone consumed less DM than lambs fed LMS or hay alone or any of the alfalfa-grain mixtures. Apparent digestibilities of DM and fiber components were higher (P less than .05) for DCS than for LMS or hay. Lambs that were fed LMS digested more (P less than .05) DM and fiber components than lambs fed hay. Addition of grain resulted in increased (P less than .05) DM digestibility and decreased (P less than .05) digestibilities of neutral detergent fiber and acid detergent fiber. In Exp. 2, growing steers (271 kg) fed DCS-grain had increased (P less than .05) weight gains compared with steers fed hay-grain. Steers fed any of the alfalfa-grain mixtures gained weight more rapidly (P less than .05) than steers fed corn silage (CS)-based diets. In a third experiment, finishing steers (283 kg) fed DCS-grain, LMS-grain, hay-grain or CS-based diets performed similarly (P greater than .05), although steers fed DCS-grain had higher (P less than .05) dressing percentages and yield grades than steers that were fed the other three diets and were fatter (P less than .05) than those fed LMS-grain or CS. In Exp. 4, lambs fed DCS-grain or LMS-grain had higher (P less than .05) apparent DM and organic matter digestibilities than lambs fed CS-based diets with similar forage:grain proportions. In Exp. 5, finishing steers (326 kg) fed DCS-grain gained similarly (P greater than .05) to steers fed LMS-grain or an 85% concentrate diet based on high-moisture corn. Steers fed CS diets had lower (P less than .05) gains and increased (P less than .05) feed per gain compared with steers fed DCS-grain, LMS-grain or high-moisture corn.  相似文献   

5.
Beef finishing and dairy lactation experiments were conducted to evaluate the nutritional value of distillers grains (DG) from sorghum or corn fermentation, in both wet (35.4% DM) and dry (92.2% DM) form (dairy trial only). In the finishing experiment, 60 yearling steers were used in a completely randomized design with three diets that were fed for 127 d: 1) control diet with 86% (DM basis) dry-rolled corn and no DG; 2) 30% of ration DM as wet corn DG in place of dry-rolled corn; and 3) 30% of ration DM as wet sorghum DG in place of dry-rolled corn. All diets contained a minimum of 6.8% degradable intake protein and 13.0% CP. Steers fed DG had 10% greater ADG (< 0.01) and 8% greater efficiency of gain (P < 0.01) than steers fed the control diet. Wet corn and sorghum DG resulted in similar ADG and efficiency of gain. Hot carcass weights, fat thickness, and yield grades were greater for steers fed DG than for controls (P < 0.07). Improvements in ADG and feed efficiency observed when DG replaced dry-rolled corn indicated that the NEg content of wet DG is approximately 29% greater than that of dry-rolled corn. In the dairy lactation experiment, 16 lactating Holstein cows (eight multiparous, including four fistulated) were used in a replicated 4 x 4 Latin square design with 4-wk periods. Corn and sorghum DG were fed at 15% of the ration DM in either wet or dry form. Diets were fed as total mixed rations that contained 50% of a 1:1 mixture of alfalfa and corn silages, 24.3% ground corn, and 9.1% soybean meal (DM basis). There was no effect of source or form of DG on DMI, ruminal pH and VFA, or in situ digestion kinetics of NDF from DG. Efficiency of milk production was unaffected by diet. Corn and sorghum DG resulted in relatively similar performance when fed to beef or dairy cattle in this study.  相似文献   

6.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

7.
In four feeding trials with beef steers, corn silage (CS), alfalfa hay (AH), and alfalfa silage (AS) were compared as roughage sources in dry-rolled (DRC); dry whole (DWC); ground, high-moisture (GHMC); and whole, high-moisture corn (WHMC) fattening diets. In processed corn diets (DRC and GHMC), steers fed CS had lower DMI (P less than .05) and feed:gain ratios (P less than .10) than steers fed AS as the roughage source. In a separate trial, greater gains (P less than .10) and lower feed:gain ratios (P less than .05) were found during the initial feeding period, which included the adaptation phase, for steers fed CS vs steers fed AH as the roughage source. Over the entire feeding period, lower (corn type x roughage source interaction, P less than .05) feed:gain ratios were found in GHMC diets when CS was fed as the roughage source; feed:gain ratios were similar in steers fed DRC diets containing either CS or AH. Over the entire feeding period, similar performance was found among steers fed the various roughage sources in DWC diets; however, with WHMC diets, steers fed AS as the roughage source had lower feed:gain ratios than did steers fed AH (P less than .05) or CS (P greater than .10). In the processed corn diets, high correlations were found between diet NDF digestibility and gain (r = .80), intake (r = .68), and feed:gain ratios (r = -.66); similar trends were found in WHMC diets but not in DWC diets. These results suggest that the ideal roughage source to complement finishing diets may depend on corn processing method and feeding period (adaptation vs finishing).  相似文献   

8.
Three experiments were conducted to determine the effects of cattle age and dietary forage level on the utilization of corn fed whole or ground to feedlot cattle. In Exp. 1, 16 steers were used to investigate the effects of cattle age and corn processing on diet digestibility. Two cattle age categories were evaluated (weanling [254 +/- 20 kg BW] and yearling [477 +/- 29 kg BW]; eight steers per group), and corn was fed either ground or whole to each cattle age category. Cattle age and corn processing did not affect (P > 0.10) diet digestibility of DM, OM, starch, CP, NDF or ADF, and no interactions (P > 0.10) between these two factors were detected. In Exp. 2, the effects of forage level and corn processing on feedlot performance and carcass characteristics were evaluated. One hundred eighty steers (310 +/- 40 kg BW) were allotted to 24 pens, and were fed one of the following diets: high-forage (18.2% corn silage) cracked corn (HFCC); high-forage shifting corn (whole corn for the first half of the trial, then cracked corn until harvest; HFSC); high-forage whole corn (HFWC); low-forage (5.2% corn silage) cracked corn (LFCC); low-forage shifting corn (LFSC); and low-forage whole corn (LFWC). For the high-forage diets, steers fed cracked corn had 7% greater DMI than those fed whole corn, whereas for the low-forage diets, grain processing did not affect DMI (interaction; P = 0.02). No interactions (P > 0.10) between forage level and corn processing were found for ADG and G:F. Total trial ADG and G:F, and percentage of carcasses grading USDA Choice, and carcass yield grade were not affected (P > 0.10) by corn processing. Cattle with fewer days on feed grew faster and more efficiently when cracked corn was fed, whereas cattle with longer days on feed had greater ADG and G:F when corn was fed whole (interaction; P < 0.10). In Exp. 3, the effects of forage level and corn processing on diet digestibility were evaluated. The high-forage cracked corn, high-forage whole corn, low-forage cracked corn, and low-forage whole corn diets used in Exp. 2 were fed to 16 steers (350 +/- 27 kg BW) in a digestion trial. No interactions (P > 0.10) between forage level and corn processing were detected for starch digestibility. Forage level and corn processing (grinding) did not affect (P > 0.10) diet DM, OM, starch, CP, and NDF digestibility. Processing corn did not provide additional benefits to feedlot cattle performance under these experimental conditions.  相似文献   

9.
Three experiments evaluated the lipids in distillers grains plus solubles compared with corn or other sources of lipid in finishing diets. Experiment 1 utilized 60 individually fed yearling heifers (349 +/- 34 kg of BW) fed treatments consisting of 0, 20, or 40% (DM basis) wet distillers grains plus solubles (WDGS), or 0, 2.5, or 5.0% (DM basis) corn oil in a finishing diet based on high-moisture corn (HMC) and dry-rolled corn. Cattle fed 20 and 40% WDGS had greater (P < 0.10) G:F than cattle fed 0% WDGS. Cattle fed the 5.0% corn oil had less overall performance than cattle fed the other diets. Results from Exp. 1 indicated that adding fat from WDGS improves performance, whereas supplementing 5.0% corn oil depressed G:F, suggesting that the fat within WDGS is different than corn oil. Experiment 2 used 234 yearling steers (352 +/- 16 kg of BW) fed 1 of 5 treatments consisting of 20 or 40% (DM basis) dry distillers grains plus solubles, 1.3 or 2.6% (DM basis) tallow, or HMC. All diets contained 20% (DM basis) wet corn gluten feed as a method of controlling acidosis. No differences between treatments for any performance variables were observed in Exp. 2. The dry distillers grains plus solubles may be similar to tallow and HMC in finishing diets containing 20% wet corn gluten feed. Experiment 3 used 5 Holstein steers equipped with ruminal and duodenal cannulas in a 5 x 5 Latin square design. Treatments were a 40% WDGS diet, 2 composites, one consisting of corn bran and corn gluten meal; and one consisting of corn bran, corn gluten meal, and corn oil; and 2 dry-rolled corn-based diets supplemented with corn oil or not. Cattle fed the WDGS diet had numerically less rumen pH compared with cattle fed other treatments. Cattle fed WDGS had greater (P < 0.10) molar proportions of propionate, decreased (P < 0.10) acetate:propionate ratios, greater (P < 0.10) total tract fat digestion, and a greater (P < 0.10) proportion of unsaturated fatty acids reaching the duodenum than cattle fed other treatments. Therefore, the greater energy value of WDGS compared with corn may be due to more propionate production, greater fat digestibility, and more unsaturated fatty acids reaching the duodenum.  相似文献   

10.
In Exp. 1, 4 ruminally and duodenally cannulated beef steers (444.0 +/- 9.8 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial treatment arrangement to evaluate the effects of forage type (alfalfa or corn stover) and concentrated separator byproduct (CSB) supplementation (0 or 10% of dietary DM) on intake, site of digestion, and microbial efficiency. In Exp. 2, 5 wethers (44 +/- 1.5 kg) were used in a 5 x 5 Latin square to evaluate the effects of CSB on intake, digestion, and N balance. Treatments were 0, 10, and 20% CSB (DM basis) mixed with forage; 10% CSB offered separately from the forage; and a urea control, in which urea was added to the forage at equal N compared with the 10% CSB treatment. In Exp. 1, intakes of OM and N (g/kg of BW) were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had greater (P < 0.08) OM and N intakes (g/kg of BW) compared with 0% CSB-fed steers. Total duodenal, microbial, and nonmicrobial flows of OM and N were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had increased (P = 0.02) duodenal microbial flow (N and OM) compared with 0% CSB-fed steers. Forage x CSB interactions (P < 0.01) existed for total tract N digestibility; alfalfa with or without CSB was similar (67.4 vs. 69.5), whereas corn stover with CSB was greater than corn stover without CSB (31.9 vs. -23.9%). True ruminal OM digestion was greater (P < 0.09) in steers fed alfalfa vs. corn stover (73.0 vs. 63.1%) and in steers fed 10 vs. 0% CSB (70.3 vs. 65.8%). Microbial efficiency was unaffected (P > 0.25) by forage type or CSB supplementation. In Exp. 2, forage and total intake increased (linear; P < 0.01) as CSB increased and were greater (P < 0.04) in 10% CSB mixed with forage compared with 10% CSB fed separately. Feeding 10% CSB separately resulted in similar DM and OM apparent total tract digestibility compared with 10% CSB fed mixed. Increasing CSB led to an increase (linear; P < 0.02) in DM, OM, apparent N digestion, and water intake. Nitrogen balance (g and percentage of N intake) increased (linear; P < 0.08) with CSB addition. Feeding 10% CSB separately resulted in greater (P < 0.01) N balance compared with 10% CSB fed mixed. Using urea resulted in similar (P = 0.30) N balance compared with 10% CSB fed mixed. Inclusion of CSB improves intake, digestion, and increases microbial N production in ruminants fed forage-based diets.  相似文献   

11.
Two trials were conducted to determine the effect of corn processing method on performance and carcass traits in steers fed finishing diets containing wet corn gluten feed (WCGF). In Trial 1, 480 steer calves (303 kg initial BW) were fed eight finishing diets: 1) dry-rolled corn (DRC) without; and 2) with 32% (DM basis) WCGF; 3) steam-flaked corn (SFC) without; and 4) with WCGF; 5) a combination of DRC and SFC without WCGF; 6) finely-ground corn (FGC) with WCGF; 7) high-moisture corn (HMC) with WCGF; and 8) whole corn (WC) with WCGF. Feeding WC + WCGF increased (P < 0.10) DMI and decreased gain:feed compared with all other treatments. Feeding DRC + WCGF increased (P < 0.10) DMI and decreased (P < 0.10) gain:feed compared with treatments other than WC + WCGF. Steers on treatments that included WCGF gained similarly, regardless of corn processing method, and at a rate 6% faster (P < 0.10) than steers fed diets that did not include WCGF. Gain:feed did not differ among steers fed SFC, SFC + WCGF, SFC + DRC, and HMC + WCGF. Steers fed SFC or SFC + WCGF were more efficient (P < 0.10) than steers fed DRC or FGC + WCGF. In Trial 2, 288 steer calves (382 kg initial BW) were fed six finishing diets: 1) DRC without; and 2) with 22% (DM basis) WCGF; 3) SFC without; and 4) with WCGF; 5) finely rolled corn (FRC) with WCGF; and 6) HMC corn with WCGF. Steers fed DRC + WCGF or FRC + WCGF consumed more DM (P < 0.10) than steers fed DRC, SFC, or SFC + WCGF. Feed intake did not differ between steers fed SFC + WCGF and HMC + WCGF. All treatment groups receiving WCGF consumed more DM (P < 0.10) feed than steers fed DRC or SFC without WCGF. Steers fed SFC + WCGF gained 8% faster (P < 0.10), and steers fed DRC 9.5% slower (P < 0.10) than steers receiving all other treatments. Daily gains did not differ among other treatment groups. Steers fed SFC or SFC + WCGF gained 10% more (P < 0.10) efficiently than all other treatment groups. Feed efficiency did not differ among steers fed DRC, DRC + WCGF, FRC + WCGF, and HMC + WCGF. Estimates for the NEg of WCGF calculated from animal performance indicated that WCGF contained approximately 25.3% more energy when fed with SFC than when fed with DRC. In general, more intensively processing corn improved gain:feed in finishing diets containing WCGF.  相似文献   

12.
Ten 394-kg, ruminally fistulated Hereford steers were used in a replicated 5 x 5 Latin square design to evaluate the effects of source and level of dietary NDF on chewing activities during eating and rumination. Diets contained 62 to 64% TDN and included 1) 80% pelleted concentrate (control; contained ground grains, fibrous byproducts, molasses, and protein, vitamin, and mineral supplements; 36% NDF, 16% CP) and 20% long timothy hay (67% NDF, 8% CP), 2) 80% control concentrate and 20% alfalfa cubes (56% NDF, 15% CP), 3) 90% control concentrate and 10% alfalfa cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source (40% NDF, 17% CP), and 5) 80% textured (coarse instead of ground grains; 42% NDF, 15% CP) concentrate and 20% hay. Diets were formulated to be similar in NDF content, and dietary protein satisfied NRC recommendations. Chewing during eating did not differ (P greater than .10) between diets containing supplemental roughage but decreased (P less than .001) with the corn cob diet. Rumination chewing decreased (P less than .001) with the corn cob and cube diets. The number of chews per day during eating corrected for NDF intake/BW.75 decreased (P less than .05) in the corn cob diet. Rumination periods and duration increased and latency before rumination decreased in hay diets. Steers fed the corn cob diet tended to be more (P less than .10) consistent in time spent eating across 4-h intervals than steers fed the traditional diet. Replacement of long hay with the completely pelleted corn cob diet decreased rumination activity.  相似文献   

13.
Fifty-eight Holstein and 58 crossbred beef steers were individually fed one of four isonitrogenous diets to evaluate the effects of forage source (corn silage and alfalfa haylage) and protein source (soybean meal and fish meal) on feedlot performance. Phase 1 diets (up to 354 kg of BW) were 40% forage and 60% concentrates and were fed for 70 to 136 d (depending on diet and breed group). Phase 2 diets (354 kg of BW until slaughter) were 20% forage and 80% concentrates and were fed for 127 to 150 d (depending on diet and breed group). Slaughter end points were .6 cm of 12th rib fat for Holsteins and 1.0 cm of rib fat for crossbreds using real-time ultrasonic estimates. The steers were fed for a maximum of 330 d each year. Forage source was a significant component of variation for most growth, efficiency, and carcass traits. Holstein and crossbred steers fed alfalfa haylage had significantly lower average daily gain, feed efficiency, dressing percentage, and empty body fat and required more days on feed to reach slaughter end points, but had higher total feed energy intake available for production. Steers fed corn silage diets had significantly greater energetic efficiency (P less than .05) than those fed alfalfa haylage, due to increased use of ME to produce fat in the carcass. Protein type did not influence gain, feed or energetic efficiency, energy intake, or most carcass traits. A significant protein system x forage source interaction among the four diets was detected for crossbred steers fed corn silage and fish meal, for which there was significantly greater feed conversion with lower energy intake above maintenance, possibly due to better fiber digestion and(or) amino acid flow to the lower tract. Alfalfa haylage plus soybean meal diets decreased (P less than .05) the percentage of Holsteins grading USDA Choice or higher. These results indicate that corn silage, because of greater energy concentration, was a more desirable forage in feedlot diets composed of less than or equal to 40% forage and that protein type (soybean meal and fish meal) in growing diets is not an important factor in feedlot performance or carcass traits of Holstein or crossbred steers that are fed these diets.  相似文献   

14.
Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater (P < 0.01) by steers fed SFC without bran than by steers fed DRC without bran. Gain efficiency was 16.9% greater (P < 0.01) for steers fed SFC without bran compared with steers fed DRC without bran. In DRC and SFC diets, feeding bran decreased (P < 0.01) G:F by 5.2 and 13.8%, respectively. The moisture content of corn bran had no effect on finishing steer performance, and drying corn bran did not affect its energy value in finishing cattle diets.  相似文献   

15.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

16.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

17.
Feed intake, digestion and digesta characteristics of cattle fed bermudagrass (BG) or orchardgrass (OG) alone or with supplemental ground corn or barley were determined in two 6 x 6 latin squares with 2 x 3 factorial treatment arrangements. In Exp. 1, beef cows (Hereford, Angus and Hereford-Angus; 452 kg) cannulated in the rumen and duodenum were fed BG (7.9% CP, 79% NDF and 8.7% ADL) or OG (9.8% CP, 79% NDF and 7.2% ADL) hays at 1.2% of BW per day either alone or with added ground barley (.64% BW) or ground corn (.60% BW daily). The increase in microbial OM flow with corn was greater for OG than for BG; corn elevated microbial OM flow more than did barley with OG but less than with BG (forage type x grain source interaction; P less than .10). The increase in total tract OM digestion with grain was greater for BG than for OG (supplementation effect and forage type x supplementation interaction; P less than 05). In Exp. 2, Holstein steers (228 kg) were fed BG and OG hays ad libitum either alone or with addition of either 1.07% of BW per day of barley or 1.00% BW of corn. Total DM intake was 2.19, 3.03 and 2.82% BW for BG and 2.14, 2.80 and 2.52% BW for OG alone or with barley or corn supplements, respectively, being affected by forage type, grain supplementation, grain type and a forage type x grain supplementation interaction (P less than .05). Organic matter digested daily (g/d) was higher for OG than for BG, higher with than without grain and higher for barley than for corn (P less than .05).  相似文献   

18.
Three experiments were conducted to evaluate the effects of roughage source and concentration on intake and performance by finishing heifers. In Exp. 1, 12 medium-framed beef heifers (average BW = 389 kg) were used in three simultaneous 4 x 4 Latin square intake trials to evaluate the effects of dietary NDF supply from alfalfa hay, sudan hay, wheat straw, or cottonseed hulls fed in each Latin square at 5, 10, or 15% of dietary DM. Within each roughage concentration, roughage NDF accounted for the majority of variation in NEg intake/kg of BW0.75 among the roughage sources. Averaged across roughage concentrations, NEg intake/kg of BW0.75 tended to be greater (P < 0.10) when heifers were fed cottonseed hulls, sudan hay, or wheat straw than when they were fed alfalfa. In Exp. 2, six medium-framed beef heifers (average BW = 273 kg) were used in a 3 x 3 Latin square design to determine whether diets containing 10% (DM basis) alfalfa, cottonseed hulls, or sudan silage differed in eating rate. Average DM eating rates did not differ (P > 0.10) among roughage sources, which we interpreted to suggest that 90% concentrate diets containing alfalfa, cottonseed hulls, and sudan silage do not differ in the amount of chewing required during eating. In Exp. 3, 105 medium-framed beef heifers (average BW = 275 kg) were used in a 140-d finishing trial to evaluate three methods of dietary roughage exchange. Alfalfa at 12.5% of the dietary DM (ALF12.5) was used as a standard, and cottonseed hulls and sudan silage were each fed at three different levels: exchanged with ALF12.5 on an equal percentage DM basis, an equal NDF basis, or an equal NDF basis, where only NDF from particles larger than 2.36 mm (retained NDF) were considered to contribute to the NDF. No differences (P > 0.10) in ADG, DMI, gain:feed ratio, or NEg intake/kg of BW0.75 were detected between alfalfa and cottonseed hulls exchanged on an equal NDF basis. For sudan silage, exchanging with ALF12.5 on an equal retained NDF basis resulted in no differences (P > 0.10) in ADG, DMI, or NEg intake/kg of BW0.75. These data provide a preliminary indication that depending on the roughage sources evaluated, roughage NDF content and(or) roughage NDF from particles larger than 2.36 mm might provide a useful index of roughage value in high-concentrate finishing diets.  相似文献   

19.
Two experiments were conducted to evaluate digestion kinetics of alfalfa (Medicago sativa L.) substitution for grass hay in beef cattle. In Exp. 1, forage combinations evaluated in situ consisted of 0% alfalfa-100% big bluestem (Andropogon gerardi Vitman), 25% alfalfa-75% big bluestem, 50% alfalfa-50% big bluestem, and 100% alfalfa-0% big bluestem. Nonlinear regression was used to determine the immediately soluble fraction A, the potentially degradable fraction B, the undegraded fraction C, and the disappearance rate of DM and NDF. Dry matter fraction A increased linearly (P = 0.03), and DM and NDF fraction B decreased linearly (P = 0.01) with increasing alfalfa substitution. Rate of DM and NDF disappearance increased linearly (P /= 0.23) on total tract apparent digestibility of all nutrients except CP. Steers fed orchardgrass plus alfalfa had 33% greater (P = 0.01) total tract apparent digestibility for CP than those fed orchardgrass alone. Lag time of DM and NDF disappearance was not affected (P >/= 0.20) by alfalfa supplementation or intake level. Rate of DM and NDF disappearance of orchardgrass was faster (P 相似文献   

20.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号