首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
ObjectiveTo evaluate the anesthetic and cardiopulmonary effects of xylazine–alfaxalone anesthesia in donkey foals undergoing field castration.Study designProspective clinical study.AnimalsA group of seven standard donkeys aged [median (range)] 12 (10–26) weeks, weighing 47.3 (37.3–68.2) kg.MethodsDonkeys were anesthetized with xylazine (1 mg kg−1) intravenously (IV) followed 3 minutes later by alfaxalone (1 mg kg−1) IV. Additional doses of xylazine (0.5 mg kg−1) and alfaxalone (0.5 mg kg−1) IV were administered as needed to maintain surgical anesthesia. Intranasal oxygen was supplemented at 3 L minute−1. Heart rate (HR), respiratory rate (fR) and mean arterial pressure (MAP) by oscillometry were recorded before drug administration and every 5 minutes after induction of anesthesia. Peripheral oxygen saturation (SpO2) was recorded every 5 minutes after induction. Time to recumbency after alfaxalone administration, time to anesthetic re-dose, time to first movement, sternal and standing after last anesthetic dose and surgery time were recorded. Induction and recovery quality were scored (1, very poor; 5, excellent).ResultsMedian (range) induction score was 5 (1–5), and recovery score 4 (1–5). Overall, two donkeys were assigned a score of 1 (excitement) during induction or recovery. HR and MAP during the procedure did not differ from baseline. fR was decreased at 5 and 10 minutes but was not considered clinically significant. SpO2 was <90% at one time point in two animals.Conclusions and clinical relevanceXylazine–alfaxalone anesthesia resulted in adequate conditions for castration in 12 week old donkeys. While the majority of inductions and recoveries were good to excellent, significant excitement occurred in two animals and may limit the utility of this protocol for larger donkeys. Hypoxemia occurred despite intranasal oxygen supplementation.  相似文献   

2.
3.
ObjectiveTo investigate the relationship between oxygen administration and ventilation in rabbits administered intramuscular alfaxalone–dexmedetomidine–midazolam.Study designProspective, randomized, blinded study.AnimalsA total of 25 New Zealand White rabbits, weighing 3.1–5.9 kg and aged 1 year.MethodsRabbits were anesthetized with intramuscular alfaxalone (4 mg kg–1), dexmedetomidine (0.1 mg kg–1) and midazolam (0.2 mg kg–1) and randomized to wait 5 (n = 8) or 10 (n = 8) minutes between drug injection and oxygen (100%) administration (facemask, 1 L minute–1). A control group (n = 9) was administered medical air 10 minutes after drug injection. Immediately before (PREoxy/air5/10) and 2 minutes after oxygen or medical air (POSToxy/air5/10), respiratory rate (fR), pH, PaCO2, PaO2, bicarbonate and base excess were recorded by an investigator blinded to treatment allocation. Data [median (range)] were analyzed with Wilcoxon, Mann–Whitney U and Kruskal–Wallis tests and p < 0.05 considered significant.ResultsHypoxemia (PaO2 < 88 mmHg, 11.7 kPa) was observed at all PRE times: PREoxy5 [71 (61–81) mmHg, 9.5 (8.1–10.8) kPa], PREoxy10 [58 (36–80) mmHg, 7.7 (4.8–10.7) kPa] and PREair10 [48 (32–64) mmHg, 6.4 (4.3–8.5) kPa]. Hypoxemia persisted when breathing air: POSTair10 [49 (33–66) mmHg, 6.5 (4.4–8.8) kPa]. Oxygen administration corrected hypoxemia but was associated with decreased fR (>70%; p = 0.016, both groups) and hypercapnia (p = 0.016, both groups). Two rabbits (one per oxygen treatment group) were apneic (no thoracic movements for 2.0–2.5 minutes) following oxygen administration. fR was unchanged when breathing air (p = 0.5). PaCO2 was higher when breathing oxygen than air (p < 0.001).Conclusions and clinical relevanceEarly oxygen administration resolved anesthesia-induced hypoxemia; however, fR decreased and PaCO2 increased indicating that hypoxemic respiratory drive is an important contributor to ventilation using the studied drug combination.  相似文献   

4.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   

5.
ObjectiveTo evaluate the effect of dexmedetomidine on alfaxalone immobilization in snakes.Study designNonblinded, crossover study.AnimalsA total of eight mature common garter snakes (Thamnophis sirtalis).MethodsSnakes were administered each of three treatments intracoelomically: alfaxalone (30 mg kg–1; treatment A), alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.05 mg kg–1; treatment AD0.05); and alfaxalone (30 mg kg–1) combined with dexmedetomidine (0.10 mg kg–1; treatment AD0.10). A minimum of 10 days elapsed between experimental trials. Times to loss of righting reflex (LRR) and return of righting reflex (RRR) were recorded. Heart rate (HR) was recorded every 5 minutes throughout the period of LRR and averaged for each snake. Times to LRR and RRR, and mean HR in snakes that achieved LRR were reported.ResultsLRR occurred in eight (100%), five (63%) and three (38%) snakes in treatments A, AD0.05 and AD0.10, respectively. For all treatments, time to LRR ranged 3–20 minutes. Median (range) times to RRR were 39 (30–46), 89 (62–128) and 77 (30–185) minutes for treatments A, AD0.05 and AD0.10, respectively. In animals where righting reflex was lost, mean HR was lower in all dexmedetomidine treatments compared with treatment A.Conclusions and clinical relevanceIn this pilot study, alfaxalone resulted in reliable immobilization, whereas dexmedetomidine and alfaxalone combinations resulted in highly variable durations of immobilization with low HR in immobilized animals. For snakes that achieved LRR, the addition of dexmedetomidine (0.05 mg kg–1) to alfaxalone appeared to extend the period of immobilization compared with alfaxalone alone.  相似文献   

6.

Objective

To compare the induction and recovery characteristics and selected cardiopulmonary variables of midazolam–alfaxalone or midazolam–ketamine in donkeys sedated with xylazine.

Study design

Randomized, blinded, crossover experimental trial.

Animals

A group of seven adult male castrated donkeys weighing 164 ± 14 kg.

Methods

Donkeys were randomly administered midazolam (0.05 mg kg?1) and alfaxalone (1 mg kg?1) or midazolam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) intravenously following sedation with xylazine, with ≥ 7 days between treatments. Donkeys were not endotracheally intubated and breathed room air. Time to lateral recumbency, first movement, sternal recumbency and standing were recorded. Induction and recovery were assigned scores between 1 (very poor) and 5 (excellent). Heart rate (HR), respiratory rate (fR), invasive arterial blood pressures and arterial blood gases were measured before induction and every 5 minutes following induction until first movement.

Results

Time to lateral recumbency (mean ± standard deviation) was shorter after alfaxalone (29 ± 10 seconds) compared with ketamine (51 ± 9 seconds; p = 0.01). Time to first movement was the same between treatments (27 versus 23 minutes). Time to standing was longer with alfaxalone (58 ± 15 minutes) compared with ketamine (33 ± 8 minutes; p = 0.01). Recovery score [median (range)] was of lower quality with alfaxalone [3 (2–5)] compared with ketamine [5 (3–5); p = 0.03]. There were no differences in HR, fR or arterial pressures between treatments. No clinically important differences in blood gases were identified between treatments. Five of seven donkeys administered alfaxalone became hypoxemic (PaO2 <60 mmHg; 8.0 kPa) and all donkeys administered ketamine became hypoxemic (p = 0.13).

Conclusions and clinical relevance

Both midazolam–alfaxalone and midazolam–ketamine produced acceptable anesthetic induction and recovery in donkeys after xylazine sedation. Hypoxemia occurred with both treatments.  相似文献   

7.
The objective of this study was to determine the pharmacodynamic effects in sheep of the anaesthetic alfaxalone in a 2-hydroxypropyl-β-cyclodextrin formulation. Seven Ripollesa sheep, weighing 43.0±6.6 kg, were used in the study. Twenty-four hours after instrumentation, the sheep were anesthetised with alfaxalone (2 mg/kg bodyweight IV) in cyclodextrin. Heart rate, arterial blood pressure, respiratory rate and arterial blood gases were recorded. Alfaxalone administration resulted in minimal cardio-respiratory depression. Time to standing from anaesthesia was 22.0±10.6 min. Apnoea was not observed in any of the sheep. Significant differences from baseline were not observed in respiratory rate or arterial blood pressure. Heart rate increased significantly (P<0.05) immediately after administration, returning to control values at 20 min. The calculated haemoglobin saturation (SO2) decreased significantly during the first 15 min after alfaxalone administration. The arterial pH decreased significantly during the first 30 min of the study, although no significant differences from basal values were observed in the arterial partial pressure of carbon dioxide (PaCO2). The results showed that alfaxalone in 2-hydroxypropyl-β-cyclodextrin administered as an IV bolus at 2 mg/kg produced minimal adverse effects and an uneventful recovery from anaesthesia in sheep.  相似文献   

8.
ObjectivesTo characterize the cardiopulmonary and anesthetic effects of alfaxalone at three dose rates in comparison with a ketamine–dexmedetomidine–midazolam–tramadol combination (KDMT) for immobilization of golden-headed lion tamarins (GHLTs) (Leontopithecus chrysomelas) undergoing vasectomy.Study designProspective clinical trial.AnimalsA total of 19 healthy, male, wild-caught GHLTs.MethodsTamarins were administered alfaxalone intramuscularly (IM) at 6, 12 or 15 mg kg–1, or KDMT, ketamine (15 mg kg–1), dexmedetomidine (0.015 mg kg–1), midazolam (0.5 mg kg–1) and tramadol (4 mg kg–1) IM. Immediately after immobilization, lidocaine (8 mg kg–1) was infiltrated subcutaneously (SC) at the incision site in all animals. Physiologic variables, anesthetic depth and quality of immobilization were assessed. At the end of the procedure, atipamezole (0.15 mg kg–1) was administered IM to group KDMT and tramadol (4 mg kg–1) SC to the other groups; all animals were injected with ketoprofen (2 mg kg–1) SC.ResultsA dose-dependent increase in sedation, muscle relaxation and immobilization time was noted in the alfaxalone groups. Despite the administration of atipamezole, the recovery time was longer for KDMT than all other groups. Muscle tremors were noted in some animals during induction and recovery with alfaxalone. No significant differences were observed for cardiovascular variables among the alfaxalone groups, whereas an initial decrease in heart rate and systolic arterial blood pressure was recorded in KDMT, which increased after atipamezole administration.Conclusions and clinical relevanceAlfaxalone dose rates of 12 or 15 mg kg–1 IM with local anesthesia provided good sedation and subjectively adequate pain control for vasectomies in GHLTs. KDMT induced a deeper plane of anesthesia and should be considered for more invasive or painful procedures. All study groups experienced mild to moderate hypothermia and hypoxemia; therefore, the use of more efficient heating devices and oxygen supplementation is strongly recommended when using these protocols.  相似文献   

9.
ObjectiveTo compare effects of intravenous (IV) alfaxalone with ketamine–xylazine combination on anaesthetic induction, recovery and cardiopulmonary variables in mute swans.Study designRandomized, controlled, clinical study.AnimalsA group of 58 mute swans.MethodsSwans were given either alfaxalone (10 mg kg–1; group A) or a combination of ketamine (12.5 mg kg–1) and xylazine (0.28 mg kg–1) (group KX) IV. Heart and respiratory rates, end-tidal carbon dioxide and peripheral haemoglobin oxygen saturation were recorded at 5 minute intervals during anaesthesia. Time from anaesthetic induction to intubation, from cessation of isoflurane to extubation, to lifting head, sternal recumbency and absence of head/neck ataxia were recorded. Anaesthetic and recovery quality were scored (1 = very poor; 5 = excellent). Data are presented as median (interquartile range). Significance was set at p < 0.05.ResultsIn group A, 44% (12/27) of swans required mechanical ventilation for 2–14 minutes versus 3.2% (1/31) of swans in group KX (p = 0.0002). Heart rate was higher in group A than in group KX [146 (127–168) versus 65.5 (56–78) beats minute–1, respectively; p < 0.0001]. The isoflurane concentration required to maintain anaesthesia was higher in group A than in group KX [2.5% (2.0–3.0%) versus 1.5% (1.0–2.0%), respectively; p = 0.0001]. Time from cessation of isoflurane administration to lifting head was significantly longer in group A than in group KX [12 (9–17) versus 6 (4–7.75) minutes, respectively; p < 0.0001]. Anaesthesia quality scores were significantly better in group KX than in group A [4 (4–5) versus 4 (3–4), respectively; p = 0.0011], as were recovery scores [4 (3–5) versus 2 (2–3), respectively; p = 0.0005].Conclusions and clinical relevanceAlfaxalone is a suitable anaesthetic induction agent for use in mute swans. There is a greater incidence of postinduction apnoea and a higher incidence of agitation on recovery with alfaxalone than with ketamine–xylazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号