首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The objective of this study was to show plasma cortisol concentration after treatment with controlled internal drug release (CIDR) in non‐suckling beef cows. On day 9 after oestrus, two cows were inserted with CIDR into the vagina for 24 h and the other two cows were treated as a control group. Four days later, the two control cows were treated with CIDR and the other two CIDR‐treated cows were used as controls. Cortisol concentrations were determined by ELISA in plasma samples collected before, during and after insertion of CIDR. There was a significant increase in plasma cortisol concentrations (p < 0.01) after insertion of CIDR. Mean (±SEM) plasma cortisol concentrations increased from 1.3 ± 0.4 to a peak of 8.8 ± 1.1 ng/ml at 5 h and then decreased to basal concentrations at 7 h after insertion of the device. In conclusion, the insertion of intra‐vaginal device causes an increase in plasma cortisol concentrations in beef cows, although the pathophysiological significance of the elevation of cortisol is not known.  相似文献   

2.
Ovarian follicular dynamics and estrous synchronization after Gonadotropin-releasing hormone (GnRH) treatment at Controlled Internal Drug Releasing device (CIDR) insertion were investigated in Japanese Black cows. CIDR was inserted for eight cows at 7 days after estrus. Cows were allocated to either Group A: 8-day CIDR insertion with GnRH treatment on d 0 (n=4, d 0=CIDR insertion) or Group B: 8-day CIDR insertion (n=4). Both groups were injected with prostaglandin F2alpha (PGF2alpha) on d 7. Ultrasonography and blood sampling were performed twice daily. Intensive sampling was performed every 15 min for 8 hr to determine the pulsatile release of LH on d -1, d 5 and d 10. Three of four cows showed intermediate ovulation within 2 days after GnRH treatment during CIDR insertion in Group A, whereas no ovulation was found in Group B. Three of four cows in Group A and all four cows in Group B ovulated after CIDR removal. Plasma progesterone concentrations from d 3 to d 7 in three intermediate ovulatory cows in Group A (8.4 +/- 1.6 ng/ml) was significantly higher than those in Group B (4.1 +/- 1.2 ng/ml; 4 cows) during CIDR insertion (P<0.01). Interval to estrus and ovulation after CIDR removal was observed at 60.0 +/- 12.0 hr and 76.0 +/- 6.9 hr in three cows in Group A, and 75.0 +/- 15.1 hr and 93.0 +/- 20.5 hr in Group B, respectively. There was a significant increase in LH pulse frequency on d 10 compared on d -1 or d 5 in both groups (P<0.05), in addition those on d 10 in Group A tended to be higher than in Group B. As a result, GnRH treatment at CIDR insertion at 7 days after estrus induced intermediate ovulation with formation of corpus luteum (CL) and rather synchronized emergence of ovulatory follicle during CIDR insertion. These induced CL increased plasma progesterone concentrations and contributed to precise synchronization.  相似文献   

3.
The effects of plasma progesterone concentrations on LH release and ovulation in beef cattle given 100 microg of GnRH im were determined in three experiments. In Experiment 1, heifers were given GnRH 3, 6 or 9 days after ovulation; 8/9, 5/9 and 2/9 ovulated (P<0.02). Mean plasma concentrations of progesterone were lowest (P<0.01) and of LH were highest (P<0.03) in heifers treated 3 days after ovulation. In Experiment 2, heifers received no treatment (Control) or one or two previously used CIDR inserts (Low-P4 and High-P4 groups, respectively) on Day 4 (estrus=Day 0). On Day 5, the Low-P4 group received prostaglandin F(2alpha) (PGF) twice, 12 h apart and on Day 6, all heifers received GnRH. Compared to heifers in the Control and Low-P4 groups, heifers in the High-P4 group had higher (P<0.01) plasma progesterone concentrations on Day 6 (3.0+/-0.3, 3.0+/-0.3 and 5.7+/-0.4 ng/ml, respectively; mean+/-S.E.M.) and a lower (P<0.01) incidence of GnRH-induced ovulation (10/10, 9/10 and 3/10). In Experiment 3, 4-6 days after ovulation, 20 beef heifers and 20 suckled beef cows were given a once-used CIDR, the two largest follicles were ablated, and the cattle were allocated to receive either PGF (repeated 12h later) or no additional treatment (Low-P4 and High-P4, respectively). All cattle received GnRH 6-8 days after follicular ablation. There was no difference between heifers and cows for ovulatory response (77.7 and 78.9%, P<0.9) or the GnRH-induced LH surge (P<0.3). However, the Low-P4 group had a higher (P<0.01) ovulatory response (94.7% versus 61.1%) and a greater LH surge of longer duration (P<0.001). In conclusion, although high plasma progesterone concentrations reduced both GnRH-induced increases in plasma LH concentrations and ovulatory responses in beef cattle, the hypothesis that heifers were more sensitive than cows to the suppressive effects of progesterone was not supported.  相似文献   

4.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

5.
Ovsynch is a program developed to synchronize ovulation for timed breeding. In this paper, the authors investigate whether controlled internal drug release (CIDR)-based protocols prevent premature ovulation before timed-artificial insemination (AI) when Ovsynch is started a few days before luteolysis in cycling beef cows. Nine beef cows at 16 days after oestrus were treated with (1) Ovsynch, i.e. gonadotropin releasing hormone (GnRH) analogue on day 0, prostaglandin (PG) F(2alpha) analogue on day 7 and GnRH analogue on day 9 with timed-AI on day 10, (n=3); (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from day 0, n=3), or (3) oestradiol benzoate (OB)+CIDR+GnRH (OB on day 0 in lieu of the first GnRH treatment, followed by the Ovsynch+CIDR protocol, n=3). In the Ovsynch group (1) plasma progesterone concentrations fell below 0.5 ng/mL earlier (day 5) than in both CIDR-treated groups (2) and (3), where this occurred on day 8. Plasma oestradiol-17beta concentrations peaked on day 8 in the Ovsynch group and on day 9 in both CIDR-treated groups. The dominant follicle ovulated on day 10 in the Ovsynch group and on day 11 in both CIDR-treated groups. Thus, both CIDR-based protocols prevented premature ovulation before timed-AI in Ovsynch when the protocol was started a few days before luteolysis. This reflects the fact that progesterone levels remained high until the beef cattle were treated with PGF(2alpha).  相似文献   

6.
The effects of estradiol-17beta (E-17beta) or estradiol benzoate (EB) on gonadotrophin release, estrus and ovulation in beef cattle were evaluated in two experiments. In experiment 1, 16 ovariectomized cows received a previously used CIDR insert from days 0 to 7 and 1mg of EB on day 8; they also received 5mg of E-17beta on days 0 or 1, or 5mg of E-17beta+100mg of progesterone on day 0. There was only an effect of time (P<0.0001) on plasma concentrations of progesterone, estradiol, FSH, and LH. Following treatment with E-17beta, plasma FSH concentrations were suppressed for approximately 36 h, whereas plasma LH concentrations were reduced (P<0.05) for 6 h, but surged within 24 h. Injecting 1mg of EB 24 h after CIDR removal decreased (P<0.02) plasma LH concentrations for 6h, followed by an LH surge at 18 h. In experiment 2, ovary-intact heifers (n=40) received a used CIDR and 5mg of E-17beta+100mg of progesterone on day 0. On day 7, CIDR were removed, PGF given, and heifers received nothing (control) or 1mg of EB 12, 24, or 36 h later. In these groups, plasma LH peaked (mean+/-SEM) 78.0+/-23.0, 37.8+/-8.5, 44.4+/-10.3, and 51.0+/-5.1 h after CIDR removal (means, P<0.001; variances, P<0.001) and intervals from CIDR removal to ovulation were 102.0+/-6.7, 63.6+/-3.6, 81.6+/-3.5, and 78.0+/-4.1h (P<0.05). The interval from CIDR removal to ovulation was shorter and less variable in EB-treated groups; the interval from EB to ovulation was shortest (P<0.05) in the 12-h group. In summary, E-17beta or EB decreased both FSH and LH, but LH increased after 6h (despite elevated progesterone concentrations). Following CIDR removal, 1mg of EB effectively synchronized LH release, and ovulation (in intact cattle), but the interval from CIDR removal to EB treatment affected the time of ovulation.  相似文献   

7.
The study was aimed at induction/synchronization of estrus in postpartum anestrous Kankrej cows of zebu cattle maintained at an organized farm. The study included use of different hormone protocols, viz., Ovsynch, CIDR (controlled internal drug release), Ovsynch plus CIDR, and Heatsynch with estimation of plasma progesterone on days 0, 7, 9/11 (artificial insemination--AI) and on day 20 post-AI following fixed time insemination. Thirty selected anestrous animals were divided into five equal groups (four treatment and one control), and the findings were compared with the normal cyclic control group of six cows. All the protocols were initiated in cows with postpartum anestrous period of more than 4 months, considering the day of first GnRH injection or CIDR insertion as day 0. The animals were bred by fixed time artificial insemination. Pregnancy was confirmed per rectum on day 60 post-AI in non-return cases. The conception rates at induced/first heat in Ovsynch, CIDR, Ovsynch + CIDR, and Heatsynch protocols were 33.33, 66.66, 50.00 and 16.67%, respectively. The corresponding overall conception rates of three cycles post-treatment were 50.00% (3/6), 100.00% (6/6), 66.66% (4/6), and 50.00% (3/6). In normal cyclic and anestrous control groups, the pooled pregnancy rates were 83.33% (5/6) and 16.67% (1/6), respectively. The pooled mean plasma progesterone (nanograms per milliliter) concentrations were significantly (P < 0.05) higher on day 7 in Ovsynch (5.727 ± 1.26), CIDR (4.37 ± 0.66), Ovsynch plus CIDR (3.55 ± 0.34), and Heatsynch (5.92 ± 1.11) protocols as compared with their corresponding values obtained on days 0, 9/11 (AI), and on day 20 post-AI. In anestrous control group, the mean progesterone concentration at the beginning of experiment was 0.67 ± 0.33 ng/ml, which was at par with values of all other groups. The overall plasma progesterone levels on the day of initiating treatment were low in all groups, with smooth small inactive ovaries palpated per rectum twice at 10 days interval, suggesting that most of the animals used in the study were in anestrous phase. Mean (± SE) values of plasma progesterone (nanograms per milliliter) on day 20 post-AI were higher in conceived cows than the non-conceived cows of all the groups, but differed significantly (P < 0.05) only in normal cyclic group. These results suggest that use of different hormone protocols particularly Ovsynch, CIDR, and Ovsynch + CIDR may serve as an excellent tool for induction and synchronization of estrus and improvement of conception rate in postpartum anestrous Kankrej cows.  相似文献   

8.
We examined the relations between plasma insulin-like growth factor (IGF) -I concentrations during treatment with CIDR-based or Ovsynch protocol for timed AI and conception and plasma steroid concentrations in early postpartum Japanese Black beef cows. Cows in the control group (Ovsynch; n = 21) underwent Ovsynch protocol (GnRH analogue on Day 0, PGF(2alpha) analogue on Day 7, and GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n = 22) received Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the further treatment group (EB+CIDR+GnRH; n = 22) received 2 mg of estradiol benzoate (EB) on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. Plasma IGF-I concentrations were determined on Days -7, 0, 7, 9 and 17. Conception rates were improved in the CIDR-combined groups (both CIDR-treated groups were combined) relative to Ovsynch group (P < 0.05) for cows with low IGF-I concentrations (<1,000 ng/ml) on Days -7, 0, and 7, but improved conception rate produced by the CIDR-based protocols did not occur in cows with a high IGF-I concentration (> or =1,000 ng/ml). Plasma estradiol-17beta concentrations increased from Day 0 to 7 (P < 0.05) and were unchanged from Day 7 to 9 in the Ovsynch group with low IGF-I concentrations on Day 0, while they were unchanged from Day 0 to 7 and increased from Day 7 to 9 (P < 0.05) in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group. Plasma progesterone concentrations in the Ovsynch group with low IGF-I concentrations on Day 0 were higher on Day 14 than in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group (P < 0.05). In conclusion, CIDR-based protocols may improve conception relative to Ovsynch in early postpartum beef cows with lower plasma IGF-I concentrations at the start of the protocols. This improvement is probably due to prevention of premature increases of estradiol-17beta and progesterone concentrations, which occurred in cows with low IGF-I concentrations treated with Ovsynch, by the CIDR treatment.  相似文献   

9.
Two experiments were conducted to determine if administration of progesterone within a low, subluteal range (0.1-1.0 ng/mL) blocks the luteinizing hormone (LH) surge (experiments 1 and 2) and ovulation (experiment 2) in lactating dairy cows. In experiment 1, progesterone was administered to cycling, lactating dairy cows during the luteal phase of the estrous cycle using a controlled internal drug release (CIDR) device. CIDRs were pre-incubated in other cows for either 0 (CIDR-0), 14 (CIDR-14) or 28 days (CIDR-28). One group of cows received no CIDRs and served as controls. One day after CIDR insertion, luteolysis was induced by two injections of prostaglandin (PG) F(2alpha) (25 mg) at 12 h intervals. Two days after the first injection, estradiol cypionate (ECP; 3 mg) was injected to induce a LH surge. Concentrations of progesterone after luteolysis were 0.11, 0.45, 0.78 and 1.20 ng/mL for cows treated with no CIDR, CIDR-28, CIDR-14, and CIDR-0, respectively. LH surges were detected in 4/4 controls, 4/5 CIDR-28, 2/5 CIDR-14 and 0/5 CIDR-0 cows following ECP. In experiment 2, progesterone was administered to cycling, lactating, Holstein cows during the luteal phase of the estrous cycle as in experiment 1. Luteolysis was induced as in experiment 1. The occurrence of an endogenous LH surge and ovulation were monitored for 7 days. Concentrations of progesterone after luteolysis were 0.13, 0.30, 0.70 and 1.20 ng/mL for cows treated with no CIDR, CIDR-28, CIDR-14 and CIDR-0, respectively. LH surges and ovulation were detected in 5/5 controls, 3/7 CIDR-28, 0/5 CIDR-14 and 0/5 CIDR-0 cows. It was concluded that low concentrations of progesterone can reduce the ability of either endogenous or exogenous estradiol to induce a preovulatory surge of LH and ovulation.  相似文献   

10.
Progesterone plays an important role in maintenance of pregnancy. It is hypothesized that insufficient progesterone early in pregnancy may result in embryonic loss, and that supplemental progesterone would decrease pregnancy loss in dairy cows. In Experiment 1, 84 cows and 16 heifers from a single dairy operation were selected randomly. Within each age category, controlled internal drug release (CIDR) devices were inserted into the vagina of every other female on Day 4 post-insemination and removed on Day 18 post-insemination. Transrectal ultrasonography was performed to determine pregnancy at 4 time periods [days 30 to 37 (week 5), days 44 to 51 (week 7), days 58 to 65 (week 9), and days 86 to 93 (week 13)]. Progesterone supplementation had no effect on pregnancy rate. In Experiment 2, there were no differences in progesterone concentrations between cows that did and did not receive a CIDR. Further, cows receiving CIDR devices did not have an increase in circulating progesterone concentrations 30 min or 1 h after CIDR insertion. It appears that progesterone supplementation does not increase circulating levels of progesterone in the early pregnant lactating dairy cow. Alterative methods to influence progesterone concentrations and/or early embryonic loss need to be investigated.  相似文献   

11.
The objective of this study was to investigate cystic ovarian disease (COD) in commercial Japanese Black cows and to evaluate the efficacy of 7-day insertion of an intravaginal progesterone insert (CIDR) combined with prostaglandin F(2alpha) (PGF(2alpha)) at CIDR removal. Experiment 1 was conducted to group cysts into 4 patterns based on alteration of plasma progesterone (P(4)) concentrations on d -7 and d 0 (=CIDR insertion) with 1.0 ng/ml as the cut-off level by ultrasonographic examination of 28 cows with COD that were >or=40 days postpartum and anoestrous after calving. In Experiment 2, a total of 55 cows under the same conditions as in Experiment 1 were utilized, and the same regimen as in Experiment 1 was performed without 7 days of pre-observation before treatment. As a result, 92.9% of CLs on d 21 were highly formed in Experiment 1 and 83.6% were highly formed in Experiment 2. The conception rates within 60 days after CIDR removal were also satisfactory high and were 71.4% and 54.5%, respectively. There were no differences in any overall reproductive parameters between Experiments 1 and 2 (P>0.05). The average days between CIDR removal and conception were 24.4 +/- 5.3 and 24.0 +/- 6.5 days, respectively (P>0.05); therefore, the conception dates of the cows in Experiment 2 were at least 7 days earlier compared with Experiment 1. In conclusion, treatment with a CIDR and PGF(2alpha) against COD could minimize the risk of incorrect treatment and provide sufficient reproductive performance in Japanese Black cows.  相似文献   

12.
Three different treatments were compared to improve pregnancy per artificial insemination (P/AI) in repeat-breeder (RB) dairy cows. All cows (n = 103) were assigned to one of four groups: (1) gonadotropin-releasing hormone (GnRH); (2) human chorionic gonadotropin (hCG); (3) once-used controlled internal drug release (CIDR) device; and (4) control. All treatments performed 5-6 days after artificial insemination (AI) and milk samples were collected just before treatment for progesterone assays. There were no significant differences in milk fat progesterone concentration among trial groups. Cows were observed for estrus signs thrice daily. Pregnancy per AI on day 45 in hCG and CIDR groups were significantly higher than GnRH and control groups (60.0% and 56.0% vs. 26.9% and 29.6%, respectively), but there were no differences in P/AI between GnRH and control groups. There were also no significant differences between hCG and CIDR groups. Milk fat progesterone concentrations were compared between pregnant and non-pregnant cows in each group and only in the hCG group it was significantly lower in pregnant cows. In conclusion, treating repeat-breeder cows with hCG or once-used CIDR 5-6 days after AI improved P/AI.  相似文献   

13.
The objectives of this study were 1) to determine the effects of adding a CIDR to the Ovsynch protocol on plasma concentrations of estradiol-17β and progesterone and conception in dairy cows with cystic ovarian diseases and 2) to examine associations among the estradiol-17β and progesterone concentrations and conception. Cows were diagnosed as having cystic ovarian diseases if they were found to have a cystic follicle (diameter ≥25 mm) without a corpus luteum by two palpations per rectum with an interval for 7 to 14 days. They were treated with either the Ovsynch (GnRH on Day 0, PGF(2α) on Day 7 and GnRH on Day 9, with AI on Day 10; n=15) or Ovsynch+CIDR protocol (Ovsynch protocol plus a CIDR from Day 0 to Day 7; n=23). Plasma estradiol-17β concentrations were determined on Days 0, 7 and 9, and plasma progesterone concentrations were determined on Days 0, 7, 9 and 17. The plasma estradiol-17β and progesterone concentrations at all of the days examined and conception rates did not differ significantly between the two timed AI protocols. The progesterone concentrations on Day 17 and conception rates were lower (P<0.05) for cows with low concentrations of estradiol-17β (<2 pg/ml) on Day 9 than for cows with high concentrations of estradiol-17β (≥2 pg/ml). The present study suggests that, in dairy cows with cystic ovarian diseases, addition of a CIDR to the Ovsynch protocol had no remarkable effects on plasma estradiol-17β and progesterone concentrations during and after the treatments or on conception after timed AI. This study indicates that the low plasma estradiol-17β concentration at the second administration of GnRH in the protocols can be a predictor for impaired luteal formation and lower likelihood of pregnancy in dairy cows with cystic ovarian diseases.  相似文献   

14.
A group of 97 spring-calving beef cows were initially oestrus synchronised with controlled internal drug release (CIDR) intravaginal progesterone implants inserted for nine days and a prostaglandin injection on day 7. Approximately half the cows were given 10 microg buserelin when the implants were inserted, and they all received a single fixed-time artificial insemination (AI) 56 hours after the withdrawal of the implants. The overall pregnancy rate to the first synchronised AI was 55 per cent, the buserelin-treated cows having a pregnancy rate of 63 per cent compared with 47 per cent in the untreated cows (P>0.05). Sixteen days after the first synchronised AI all the cows were re-implanted with used CIDR implants which were removed five days later, and the cows received a second synchronised AI on days 23 to 24. Cows which received the second AI were implanted with new CIDR devices 16 days later and these were removed after five days and the non-pregnant cows received a third synchronised AI. The pregnancy rates to the second and third synchronised services were 74 per cent and 75 per cent, respectively.  相似文献   

15.
Pregnancy-associated glycoprotein (PAG) concentrations were measured in buffalo cows starting from day 28 after breeding. Oestrus was synchronized in 10 buffaloes using two injections of 25 mg prostraglandin (PG)F2 α (Lutalyse®) at a 11-day interval. Blood sampling was conducted nearly twice weekly. Results indicated that plasma PAG concentrations in non-pregnant buffaloes were low (<0.20 ng/ml) during the whole experimental period (day 28 to 103), while in pregnant animals plasma PAG levels increased from day 28 (4.48 ± 0.92 ng/ml) until day 41 (27.27 ± 6.74 ng/ml), remaining high (20.71 ± 9.20 ng/ml) until day 103. Progesterone levels were significantly (p < 0.0001) higher in pregnant (3.51–4.80 ng/ml) than in non-pregnant buffaloes (0.28–1.52 ng/ml). A significant difference (p < 0.0001) in plasma PAG concentrations between pregnant and non-pregnant animals starting at day 28 after breeding suggests that PAG-radioimmunoassay could be suitable for pregnancy diagnosis in buffaloes during this period. In conclusion, PAG test offers the advantages that it requires a single plasma sample for early pregnancy diagnosis as well as the accuracy of the test for the detection of pregnancy as early as day 28.  相似文献   

16.
We determined the effects of hCG on ovarian response, concentration of progesterone, and fertility in a fixed-time AI (TAI) protocol. Four hundred forty-four crossbred beef heifers were synchronized with the CO-Synch + CIDR (controlled internal drug-releasing insert) protocol. In addition, heifers were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments with main factors being 1) pretreatment, no treatment (control), or treatment with 1,000 IU of hCG 14 d before the initiation of the CO-Synch + CIDR protocol and 2) treatment, administration of 1,000 IU of hCG or 100 μg of GnRH at CIDR insertion of the CO-Synch + CIDR protocol. Blood samples were collected from all heifers on d -21, -14, -7, 0, and 2 relative to PGF(2α) injection. Transrectal ultrasonography was used to examine ovaries in a subset of heifers (n = 362) on d -7 and 0 relative to PGF(2α), and to determine pregnancy status of all heifers on d 33 and 82 relative to AI. Pregnancy rates were similar for heifers pretreated with control (33.0%) or hCG (36.4%), whereas pregnancy rates were greater (P < 0.01) for heifers treated with GnRH (40.1%) compared with hCG (29.0%) at CIDR insertion. Heifers pretreated with hCG had more (P < 0.01) corpora lutea present on the day of CIDR insertion and the day of CIDR removal compared with untreated heifers. A greater proportion (P < 0.01) of heifers ovulated as a result of administration of hCG at the time of CIDR insertion (59.0%) compared with GnRH (38.7%). Heifers treated with hCG at CIDR insertion had greater (P < 0.01) concentrations of progesterone compared with those receiving GnRH at the time of CIDR removal (2.42 ± 0.13 vs. 1.74 ± 0.13 ng/mL; P < 0.01) and at fixed-time AI (0.52 ± 0.03 vs. 0.39 ± 0.03 ng/mL; P < 0.01). Therefore, hCG was more effective than GnRH in its ability to ovulate follicles and to increase concentrations of progesterone in beef heifers. Presynchronization with hCG 14 d before CIDR insertion did not alter pregnancy rates, whereas replacing GnRH with hCG at CIDR insertion decreased pregnancy rates.  相似文献   

17.
The objective of this study was to describe the responses of the plasma progesterone and cortisol concentrations in ovariectomized lactating cows to low doses of adrenocorticotropic hormone (ACTH). The estrous cycles in 3 lactating cows were synchronized, and the cows were ovariectomized in the luteal phase. ACTH challenge tests were conducted at doses of 3, 6, 12 and 25 IU. Blood samples were collected at 30 min intervals, and the plasma progesterone and cortisol concentrations were analyzed by EIA. A concomitant rise in plasma progesterone and plasma cortisol was observed in cows treated with 12 IU or higher doses of ACTH. Significant increments in the plasma cortisol concentrations were observed at all doses of ACTH. The means (+/- SE) of the peak plasma progesterone concentrations after the 3, 6, 12 and 25 IU ACTH challenge tests were 0.6 +/- 0.1, 1.3 +/- 0.4, 1.5 +/- 0.3 and 2.4 +/- 0.3 ng/ml, respectively. The means of the peak plasma cortisol concentrations in the 3 cows after the ACTH challenge were 14.0 +/- 1.5, 17.0 +/- 2.5, 23.3 +/- 3.0, and 33.3 +/- 7.0 ng/ml, respectively. The effects of the doses, time after treatment, and their interaction on the plasma progesterone concentrations after the ACTH challenge were significant (P<0.01). Likewise, the effects of the doses, time after treatment, and their interaction on the plasma cortisol concentrations after the ACTH challenge were significant (P<0.01). The mean AUC values for the plasma progesterone and cortisol concentrations after the ACTH treatments were also significantly affected by the dose of ACTH (P<0.01 and P<0.05, respectively). A significantly positive correlation was obtained between the peak plasma progesterone and cortisol concentrations after different doses of ACTH (r=0.7, P<0.05). The results suggest that lactating dairy cows are capable of secreting a significant amount of adrenal progesterone, reaching up to the minimal concentration necessary to cause suppression of estrus in response to 12 IU ACTH (P<0.01). The concomitant plasma cortisol concentration was 23.3 ng/ml.  相似文献   

18.
We determined whether an ovulatory estrus could be resynchronized in previously synchronized, AI nonpregnant cows without compromising pregnancy from the previous synchronized ovulation or to those inseminated at the resynchronized estrus. Ovulation was synchronized in 937 suckled beef cows at 6 locations using a CO-Synch + progesterone insert (controlled internal drug release; CIDR) protocol [a 100-microg injection of GnRH at the time of progesterone insert, followed in 7 d by a 25-mg injection of PGF(2alpha) at insert removal; at 60 h after PGF(2alpha), cows received a fixed-time AI (TAI) plus a second injection of GnRH]. After initial TAI, the cows were assigned randomly to 1 of 4 treatments: 1) untreated (control; n = 237); 2) progesterone insert at 5 d after TAI and removed 14 d after TAI (CIDR5-14; n = 234); 3) progesterone insert placed at 14 d after TAI and removed 21 d after TAI (CIDR14-21; n = 232); or 4) progesterone insert at 5 d after TAI and removed 14 d after TAI and then a new CIDR inserted at 14 d and removed 21 d after TAI (CIDR5-21; n = 234). After TAI, cows were observed twice daily until 25 d after TAI for estrus and inseminated according to the AM-PM rule. Pregnancy was determined at 30 and 60 d after TAI to determine conception to the first and second AI. Pregnancy rates to TAI were similar for control (55%), CIDR5-14 (53%), CIDR14-21 (48%), and CIDR5-21 (53%). A greater (P < 0.05) proportion of nonpregnant cows was detected in estrus in the CIDR5-21 (76/110, 69%) and CIDR14-21 (77/120, 64%) treatments than in controls (44/106, 42%) and CIDR5-14 (39/109, 36%) cows. Although overall pregnancy rates after second AI service were similar, combined conception rates of treatments without a CIDR from d 14 to 21 [68.7% (57/83); control and CIDR5-14 treatments] were greater (P = 0.03) than those with a CIDR during that same interval [53.5% (82/153); CIDR5-21 and CIDR14-21 treatments]. We conclude that placement of a progesterone insert 5 d after a TAI did not compromise or enhance pregnancy rates to TAI; however, conception rates of nonpregnant cows inseminated after a detected estrus were compromised when resynchronized with a CIDR from d 5 or 14 until 21 d after TAI.  相似文献   

19.
The study was conducted to compare estrous rate, ovulatory response, plasma progesterone concentrations, and conception rate following cervical artificial insemination in goats given a new or once-used controlled internal drug release (CIDR) device with human chorionic gonadotropin (hCG). Fifty-six Thai-native goats with the average age and body weight of 11 months and 17.3 kg received a 14-day treatment with a new CIDR device (Eazi-BreedTMCIDR®, Pfizer, NY, USA) or a once-used CIDR device. All goats received a 300-IU injection of hCG (Chorulon®, Intervet International B.V., New Zealand) at the day of CIDR removal to induce ovulation. All goats displaying signs of Estrous behavior were artificially inseminated at 12 h after the onset of estrus with frozen semen. No differences in percentage of estrus and ovulation rates were observed; however, goats that received once-used CIDR devices exhibited shorter (P?P?>?0.05) between treatments during CIDR device insertion and at the time of CIDR removal except on day 4. No significant differences were found in overall conception rates between the treatments. This study indicates that the once-used CIDR device with hCG could be applied to synchronize the estrus and ovulation in small-size Thai-native goats without negative effects on Estrous behavior, ovulatory response, and plasma P4 concentration.  相似文献   

20.
We investigated whether CIDR-based ovulation-synchronization protocols inhibit secretion of prostaglandin (PG) F2alpha from the uterus in the following luteal phase in non-cycling beef cows. Ten early (a month) postpartum non-cycling Japanese Black beef cows were treated with (1) Ovsynch (GnRH analogue on Day 0, PGF2alpha analogue on Day 7, and GnRH analogue on Day 9; n=3), (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from Day 0; n=4), or (3) estradiol benzoate (EB) Ovsynch+CIDR (EB on Day 0 in lieu of the first GnRH treatment followed by the Ovsynch+CIDR protocol; n=3). An oxytocin challenge was administered on Day 24 to examine uterine PGF2alpha secretion. Plasma concentrations of 13,14-dihydro-15-keto- PGF2alpha were lower at 30-120 min after oxytocin administration in the Ovsynch+CIDR group and 75 min after administration in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). Plasma progesterone concentrations were higher from Days 1 to 7 in the Ovsynch+CIDR group and from Days 1 to 5 in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). The progesterone concentrations were higher on Days 27 and 29 in both CIDR-treated groups than in the Ovsynch group (P<0.05). In conclusion, in non-cycling beef cows, CIDR-based ovulation-synchronization protocols inhibit uterine PGF2alpha secretion in the following luteal phase and prevent premature luteolysis as is seen with the Ovsynch protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号