首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
ObjectiveThe objectives of this study were to determine the effects of fentanyl on the end-tidal concentration of sevoflurane needed to prevent motor movement (MACNM) in response to noxious stimulation, and to evaluate if acute tolerance develops.Study designRandomized cross-over experimental study.AnimalsSix healthy, adult (2–3 years old), intact male, mixed-breed dogs weighing 16.2 ± 1.1 kg.MethodsSix dogs were randomly assigned to receive one of three separate treatments over a 3 week period. After baseline sevoflurane MACNM (MACNM-B) determination, fentanyl treatments (T) were administered as a loading dose (Ld) and constant rate infusion (CRI) as follows: T1-Ld of 7.5 μg kg?1 and CRI at 3 μg kg?1 hour?1; T2-Ld of 15 μg kg?1 and CRI at 6.0 μg kg ?1 hour?1; T3-Ld of 30 μg kg?1 and CRI at 12 μg kg?1 hour?1. The MACNM was defined as the minimum end-tidal sevoflurane concentration preventing motor movement. The first post-treatment MACNM (MACNM-I) determination was initiated 90 minutes after the start of the CRI, and a second MACNM (MACNM-II) determination was initiated 3 hours after MACNM-I was established.ResultsThe overall least square mean MACNM-B for all groups was 2.66%. All treatments decreased (p < 0.05) MACNM, and the decrease from baseline was 22%, 35% and 41% for T1, T2 and T3, respectively. Percentage change in T1 differed (p < 0.05) from T2 and T3; however, T2 did not differ from T3. MACNM-I was not significantly different from MACNM-II within treatments.Conclusions and clinical relevanceFentanyl doses in the range of 3–12 μg kg?1 hour?1 significantly decreased the sevoflurane MACNM. Clinically significant tolerance to fentanyl did not occur under the study conditions.  相似文献   

2.
ObjectiveTo compare the effects of continuous rate infusions (CRIs) of intravenous (IV) morphine and morphine-tramadol on the minimum alveolar concentration (MAC) of sevoflurane, and on electroencephalographic entropy indices in dogs.DesignProspective study.AnimalsEight young, healthy German shepherds, weighing 26.3 ± 3.1 kg (mean ± SD).MethodsAnaesthesia was induced and maintained with sevoflurane. A standard tail-clamp technique was used for MAC determination. Within one anaesthetic period, MAC was first determined during sevoflurane anaesthesia alone (MACB); then during morphine infusion (MACM), (loading dose 0.5 mg kg−1IM; CRI, 0.2 mg kg−1hour−1) then finally during morphine-tramadol infusion (tramadol loading dose 1.5 mg kg−1IV; CRI, 2.6 mg kg−1 hour−1) (MACMT). At each change, periods of 45 minutes were allowed for equilibration. Stated entropy (SE), response entropy (RE), and RE-SE differences were measured five minutes prior to and during tail clamping.ResultsThe MACB was 2.1 ± 0.3vol%. The morphine and morphine-tramadol infusions reduced MAC to 1.6 ± 0.3vol% and 1.3 ± 0.3vol%, respectively. MAC was decreased below baseline more during morphine-tramadol than during morphine alone (39 ± 9% versus 25 ± 6%, respectively; p = 0.003). All SE and RE and most RE-SE differences were increased significantly (p < 0.05) over pre-stimulation in all groups when the dogs responded purposefully to noxious stimulation. When no response to noxious stimulation occurred, the entropy indices did not change.Conclusion and clinical relevanceIn dogs, combined morphine-tramadol CRI decreased sevoflurane MAC more than morphine CRI alone. Entropy indices changed during nociceptive responses in anaesthetized animals, suggesting that entropy measurements may be useful in determining anaesthetic depth in dogs.  相似文献   

3.
ObjectiveTo evaluate the effect of tramadol on sevoflurane minimum alveolar concentration (MACSEVO) in dogs. It was hypothesized that tramadol would dose-dependently decrease MACSEVO.Study designRandomized crossover experimental study.AnimalsSix healthy, adult female mixed-breed dogs (24.2 ± 2.6 kg).MethodsEach dog was studied on two occasions with a 7-day washout period. Anesthesia was induced using sevoflurane delivered via a mask. Baseline MAC (MACB) was determined starting 45 minutes after tracheal intubation. A noxious stimulus (50 V, 50 Hz, 10 ms) was applied subcutaneously over the mid-humeral area. If purposeful movement occurred, the end-tidal sevoflurane was increased by 0.1%; otherwise, it was decreased by 0.1%, and the stimulus was re-applied after a 20-minute equilibration. After MACB determination, dogs randomly received a tramadol loading dose of either 1.5 mg kg?1 followed by a continuous rate infusion (CRI) of 1.3 mg kg?1 hour?1 (T1) or 3 mg kg?1 followed by a 2.6 mg kg?1 hour?1 CRI (T2). Post-treatment MAC determination (MACT) began 45 minutes after starting the CRI. Data were analyzed using a mixed model anova to determine the effect of treatment on percentage change in baseline MACSEVO (p < 0.05).ResultsThe MACB values were 1.80 ± 0.3 and 1.75 ± 0.2 for T1 and T2, respectively, and did not differ significantly. MACT decreased by 26 ± 8% for T1 and 36 ± 12% for T2. However, there was no statistically significant difference in the decrease between the two treatments.Conclusion and clinical relevanceTramadol significantly reduced MACSEVO but this was not dose dependent at the doses studied.  相似文献   

4.
ObjectiveTo determine the possible additive effect of midazolam, a GABAA agonist, on the end-tidal concentration of isoflurane that prevents movement (MACNM) in response to noxious stimulation.Study designRandomized cross-over experimental study.AnimalsSix healthy, adult intact male, mixed-breed dogs.MethodsAfter baseline isoflurane MACNM (MACNM-B) determination, midazolam was administered as a low (LDS), medium (MDS) or high (HDS) dose series of midazolam. Each series consisted of two dose levels, low and high. The LDS was a loading dose (Ld) of 0.2 mg kg?1 and constant rate infusion (CRI) (2.5 μg kg?1 minute?1) (LDL), followed by an Ld (0.4 mg kg?1) and CRI (5 μg kg?1 minute?1) (LDH). The MDS was an Ld (0.8 mg kg?1) and CRI (10 μg kg?1 minute?1) (MDL) followed by an Ld (1.6 mg kg?1) and CRI (20 μg kg?1 minute?1) (MDH). The HDS was an Ld (3.2 mg kg?1) and CRI (40 μg kg?1 minute?1) (HDL) followed by an Ld (6.4 mg kg?1) and CRI (80 μg kg?1 minute?1) (HDH). MACNM was re-determined after each dose in each series (MACNM-T).ResultsThe median MACNM-B was 1.42. MACNM-B did not differ among groups (p >0.05). Percentage reduction in MACNM was significantly less in the LDS (11 ± 5%) compared with MDS (30 ± 5%) and HDS (32 ± 5%). There was a weak correlation between the plasma midazolam concentration and percentage MACNM reduction (r = 0.36).Conclusion and clinical relevanceMidazolam doses in the range of 10–80 μg kg?1 minute?1 significantly reduced the isoflurane MACNM. However, doses greater than 10 μg kg?1 minute?1 did not further decrease MACNM indicating a ceiling effect.  相似文献   

5.
ObjectiveTo determine the effect of intravenous ketamine on the minimum alveolar concentration of sevoflurane needed to block autonomic response (MACBAR) to a noxious stimulus in dogs.Study designRandomized, crossover, prospective design.AnimalsEight, healthy, adult male, mixed-breed dogs, weighing 11.2–16.1 kg.MethodsDogs were anesthetized with sevoflurane on two occasions, 1 week apart, and baseline MACBAR (B-MACBAR) was determined on each occasion. MACBAR was defined as the mean of the end-tidal sevoflurane concentrations that prevented and allowed an increase (≥15%) in heart rate or invasive mean arterial pressure in response to a noxious electrical stimulus (50 V, 50 Hz, 10 ms). Dogs then randomly received either a low-dose (LDS) or high-dose series (HDS) of ketamine, and treatment MACBAR (T-MACBAR) was determined. The LDS had an initial loading dose (LD) of 0.5 mg kg?1 and constant rate infusion (CRI) at 6.25 μg kg?1 minute?1, followed, after T-MACBAR determination, by a second LD (1 mg kg?1) and CRI (12.5 μg kg?1 minute?1). The HDS had an initial LD (2 mg kg?1) and CRI (25 μg kg?1 minute?1) followed by a second LD (3 mg kg?1) and CRI (50 μg kg?1 minute?1). Data were analyzed with a mixed-model anova and are presented as LSM ± SEM.ResultsThe B-MACBAR was not significantly different between treatments. Ketamine at 12.5, 25, and 50 μg kg?1 minute?1 decreased sevoflurane MACBAR, and the maximal decrease (22%) occurred at 12.5 μg kg?1 minute?1. The percentage change in MACBAR was not correlated with either the log plasma ketamine or norketamine concentration.Conclusions and clinical relevanceKetamine at clinically relevant doses of 12.5, 25, and 50 μg kg?1 minute?1 decreased sevoflurane MACBAR, although the reduction was neither dose-dependent nor linear.  相似文献   

6.
ObjectiveTo evaluate the effects of constant rate infusions (CRIs) of dexmedetomidine and remifentanil alone and their combination on minimum alveolar concentration (MAC) of sevoflurane in dogs.Study designRandomized crossover experimental study.AnimalsA total of six (three males, three females) healthy, adult neutered Beagle dogs weighing 12.6 ± 1.4 kg.MethodsAnesthesia was induced with sevoflurane in oxygen until endotracheal intubation was possible and anesthesia maintained with sevoflurane using positive-pressure ventilation. Each dog was anesthetized five times and was administered each of the following treatments: saline (1 mL kg–1 hour–1) or dexmedetomidine at 0.1, 0.5, 1.0 or 5.0 μg kg–1 loading dose intravenously over 10 minutes followed by CRI at 0.1, 0.5, 1.0 or 5.0 μg kg–1 hour–1, respectively. Following 60 minutes of CRI, sevoflurane MAC was determined in duplicate using an electrical stimulus (50 V, 50 Hz, 10 ms). Then, CRI of successively increasing doses of remifentanil (0.15, 0.60 and 2.40 μg kg–1 minute–1) was added to each treatment. MAC was also determined after 30 minutes equilibration at each remifentanil dose. Isobolographic analysis determined interaction from the predicted doses required for a 50% MAC reduction (ED50) with remifentanil, dexmedetomidine and remifentanil combined with dexmedetomidine, with the exception of dexmedetomidine 5.0 μg kg–1 hour–1, obtained using log-linear regression analysis.ResultsThe sevoflurane MAC decreased dose-dependently with increasing infusion rates of dexmedetomidine and remifentanil. Remifentanil ED50 values were lower when combined with dexmedetomidine than those obtained during saline–remifentanil. Synergistic interactions between dexmedetomidine and remifentanil for MAC reduction occurred with dexmedetomidine at 0.5 and 1.0 μg kg–1 hour–1.Conclusions and clinical relevanceCombined CRIs of dexmedetomidine and remifentanil synergistically resulted in sevoflurane MAC reduction. The combination of dexmedetomidine and remifentanil effectively reduced the requirement of sevoflurane during anesthesia in dogs.  相似文献   

7.
8.
ObjectiveTo evaluate the cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs.Study designExperimental, blinded, randomized, crossover study.AnimalsSix mixed breed dogs (two males and four females) weighing 10 ± 4 kg.MethodsThe animals were randomly divided into four treatments: D (10 μg kg?1 of dexmedetomidine), DM (dexmedetomidine 10 μg kg?1 and methadone 0.5 mg kg?1); DMO (dexmedetomidine 10 μg kg?1 and morphine 0.5 mg kg?1), and DT (dexmedetomidine 10 μg kg?1 and tramadol 2 mg kg?1). The combinations were administered intramuscularly in all treatments. The variables evaluated were heart rate (HR), respiratory rate (fR), rectal temperature (RT), systolic arterial pressure (SAP), sedation scale and pedal withdrawal reflex. These variables were measured at T0 (immediately before the administration of the protocol) and every 15 minutes thereafter until T105.ResultsA decrease in HR and fR occurred in all the treatments compared with T0, but no significant difference was observed between the treatments. The RT decreased from T45 onward in all the treatments. The SAP did not show a difference between the treatments, but in the DT treatment, the SAP was lower at T30 and T45 compared with T0. The D treatment had lower scores of sedation at T15 to T75 compared with the other treatments, and the DMO and DM treatments showed higher scores at T60 and T75 compared with DT.Conclusions and clinical relevanceThe treatments with morphine and methadone added to the dexmedetomidine showed higher sedation scores than the control treatment and the treatment with tramadol added to the dexmedetomidine showed no relevant differences in any of the variables evaluated in the study.  相似文献   

9.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

10.
The objective of this study was to determine the effects of propofol on the minimum alveolar concentration of sevoflurane needed to prevent motor movement (MACNM) in dogs subjected to a noxious stimulus using randomized crossover design. Six, healthy, adult beagles (9.2 ± 1.3 kg) were used. Dogs were anesthetized with sevoflurane on 3 occasions, at weekly intervals, and baseline MACNM (MACNM-B) was determined on each occasion. Propofol treatments were administered as loading dose (LD) and constant rate infusion (CRI) as follows: Treatment 1 (T1) was 2 mg/kg body weight (BW) and 4.5 mg/kg BW per hour; T2 was 4 mg/kg BW and 9 mg/kg BW per hour; T3 was 8 mg/kg BW and 18 mg/kg BW per hour, respectively. Treatment MACNM (MACNM-T) determination was initiated 60 min after the start of the CRI. Two venous blood samples were collected and combined at each MACNM-T determination for measurement of blood propofol concentration using high-performance liquid chromatography method (HPLC). Data were analyzed using a mixed-model ANOVA and are presented as least square means (LSM) ± standard error of means (SEM).Propofol infusions in the range of 4.5 to 18 mg/kg BW per hour resulted in mean blood concentrations between 1.3 and 4.4 μg/mL, and decreased (P < 0.05) sevoflurane MACNM in a concentration-dependent manner. The percentage decrease in MACNM was 20.5%, 43.0%, and 68.3%, with corresponding blood propofol concentrations of 1.3 ± 0.3 μg/mL, 2.5 ± 0.3 μg/mL, and 4.4 ± 0.3 μg/mL, for T1, T2, and T3, respectively. Venous blood propofol concentrations were strongly correlated (r = 0.855, P < 0.0001) with the decrease in MACNM. In dogs, propofol decreased the sevoflurane MACNM in a concentration-dependent manner.  相似文献   

11.
ObjectiveTo examine the cardiopulmonary effects of infusions of remifentanil or morphine, and their influence on recovery of horses anesthetized with isoflurane and dexmedetomidine.Study designRandomized crossover study with 7-day rest periods.AnimalsSix adult horses (507 ± 61 kg).MethodsAfter the horses were sedated with xylazine, anaesthesia was induced with ketamine and diazepam, and maintained with isoflurane. After approximately 60 minutes, a dexmedetomidine infusion was started (0.25 μg kg?1 then 1.0 μg?1 kg?1 hour?1) in combination with either saline (group S), morphine (0.15 mg kg?1 then 0.1 mg kg?1 hour?1; group M), or remifentanil (6.0 μg kg?1 hour?1; group R) for 60 minutes. Mean arterial pressure, heart rate, end-tidal carbon dioxide tension, and end-tidal isoflurane concentration were recorded every 5 minutes. Core body temperature, cardiac output, right ventricular and arterial blood-gas values were measured every 15 minutes. Cardiac index, systemic vascular resistance (SVR), intrapulmonary shunt fraction, alveolar dead space, oxygen delivery and extraction ratio were calculated. Recoveries were videotaped and scored by two observers blinded to the treatment. Data were analyzed using repeated measures anova followed by Dunnett’s or Bonferroni’s significant difference test. Recovery scores were analyzed using a Kruskal–Wallis test.ResultsNo significant differences were found among groups. Compared to baseline, heart rate decreased and SVR increased significantly in all groups, and cardiac index significantly decreased in groups S and M. Hemoglobin concentration, oxygen content and oxygen delivery significantly decreased in all groups. The oxygen extraction ratio significantly increased in groups M and R. Lactate concentration significantly increased in group S. Recovery scores were similar among groups.Conclusions and clinical relevanceDexmedetomidine alone or in combination with remifentanil or morphine infusions was infused for 60 minutes without adverse effects in the 6 healthy isoflurane-anesthetized horses in this study.  相似文献   

12.
ObjectiveTo investigate the effect of cannabidiol (CBD) on sevoflurane minimum alveolar concentration (MACSEV) reduction produced by morphine in rats.Study designRandomized, blinded trial.AnimalsA total of 75 male Wistar Han rats weighing 276 ± 23 g (mean and standard deviation), aged 3 months.MethodsCannabidiol (CBD) was prepared in an ethanol-solutol-saline vehicle. Animals were randomly divided into 15 groups and given an intraperitoneal bolus of 1, 3, 5, 6.5, 7.5 or 10 mg kg?1 of CBD alone (CBD1, CBD3, CBD5, CBD6.5, CBD7.5 and CBD10 respectively) or combined with 5 mg kg?1 of morphine (MOR+CBD1, MOR+CBD3, MOR+CBD5, MOR+CBD6.5, MOR+CBD7.5 and MOR+CBD10). While three controls groups: MOR+saline, MOR+vehicle and vehicle were given an intraperitoneal bolus of morphine with saline, morphine with vehicle or vehicle alone respectively. The MACSEV was determined from alveolar gas samples at the time of tail clamp application. The MACSEV reduction was analyzed using a one-way ANOVA followed by Tukey’s test. Additionally, Kruskal-Wallis test for non-normally-distributed data was performed. Data are presented as mean ± standard deviation. P < 0.05ResultsThe mean MACSEV was not reduced by the action of CBD administered alone, but the addition of morphine to the different doses of CBD significantly reduced the MACSEV. That reduction was greatest in the MOR+CBD1, MOR+CBD7.5 and MOR+CBD10 groups (29 ± 5%, 32 ± 5% and 30 ± 6% respectively), less in MOR+CBD3 and MOR+CBD6.5 groups (24 ± 3% and 26 ± 4% respectively) and least in MOR+CBD5 group (17 ± 2%). However, only the MOR+CBD5 group was statistically significantly different from MOR+CBD1, MOR+CBD7.5 and MOR+CBD10 groups.Conclusions and clinical relevanceMACSEV in rat was unaltered by the action of CBD alone, the reduction in MACSEV produced by morphine was not enhanced by the addition of CBD at the doses studied.  相似文献   

13.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

14.
ObjectiveTo evaluate the effects of combined infusions of vatinoxan and dexmedetomidine on inhalant anesthetic requirement and cardiopulmonary function in dogs.Study designProspective experimental study.MethodsA total of six Beagle dogs were anesthetized to determine sevoflurane minimum alveolar concentration (MAC) prior to and after an intravenous (IV) dose (loading, then continuous infusion) of dexmedetomidine (4.5 μg kg–1 hour–1) and after two IV doses of vatinoxan in sequence (90 and 180 μg kg–1 hour–1). Blood was collected for plasma dexmedetomidine and vatinoxan concentrations. During a separate anesthesia, cardiac output (CO) was measured under equivalent MAC conditions of sevoflurane and dexmedetomidine, and then with each added dose of vatinoxan. For each treatment, cardiovascular variables were measured with spontaneous and controlled ventilation. Repeated measures analyses were performed for each response variable; for all analyses, p < 0.05 was considered significant.ResultsDexmedetomidine reduced sevoflurane MAC by 67% (0.64 ± 0.1%), mean ± standard deviation in dogs. The addition of vatinoxan attenuated this to 57% (0.81 ± 0.1%) and 43% (1.1 ± 0.1%) with low and high doses, respectively, and caused a reduction in plasma dexmedetomidine concentrations. Heart rate and CO decreased while systemic vascular resistance increased with dexmedetomidine regardless of ventilation mode. The co-administration of vatinoxan dose-dependently modified these effects such that cardiovascular variables approached baseline.Conclusions and clinical relevanceIV infusions of 90 and 180 μg kg–1 hour–1 of vatinoxan combined with 4.5 μg kg–1 hour–1 dexmedetomidine provide a meaningful reduction in sevoflurane requirement in dogs. Although sevoflurane MAC-sparing properties of dexmedetomidine in dogs are attenuated by vatinoxan, the cardiovascular function is improved. Doses of vatinoxan >180 μg kg–1 hour–1 might improve cardiovascular function further in combination with this dose of dexmedetomidine, but beneficial effects on anesthesia plane and recovery quality may be lost.  相似文献   

15.
ObjectiveTo compare pulmonary function and gas exchange in ponies during maintenance of anaesthesia with isoflurane or by a total intravenous anaesthesia (TIVA) technique.Study designExperimental, cross–over study.AnimalsSix healthy ponies weighing mean 286 (range 233–388) ± SD 61 kg, age 13 (9-16) ± 3 years.MethodsThe ponies were anaesthetized twice, a minimum of two weeks apart. Following sedation with romifidine [80 μg kg?1 intravenously (IV)], anaesthesia was induced IV with midazolam (0.06 mg kg?1) and ketamine (2.5 mg kg?1), then maintained either with inhaled isoflurane (Fe’Iso = 1.1 vol%) (T-ISO) or an IV infusion of romifidine (120 μg kg?1 hour?1), midazolam (0.09 mg kg?1 hour?1 IV) and ketamine (3.3 mg kg?1 hour?1) (T-TIVA). Ponies were placed in lateral recumbency. Breathing was spontaneous and Fi’O2 60%. After an instrumentation/stabilisation period of 30 minutes, arterial and mixed venous blood samples were taken simultaneously every 10 minutes for 60 minutes and analysed immediately. Oxygen extraction ratio (O2ER) and venous admixture were calculated. Tidal volume (TV), minute volume (MV), respiratory rate (fR), packed cell volume (PCV), arterial blood pressure and heart rate (HR) were measured and recorded. Data were analysed with mixed model anova (a = 0.05). Treatments were compared overall and at two selected time points (T30 and T60) using Bonferroni correction.ResultsArterial and mixed venous partial pressures of O2 and CO2, and TV were significantly lower and MV and fR were higher in T-TIVA compared to T-ISO. Venous admixture did not differ between treatments. O2ER was significantly higher in T-TIVA. Mean arterial pressure was higher and HR was lower in T-TIVA compared to T-ISO.Conclusions and clinical relevanceWhilst arterial CO2 was within an acceptable range during both protocols, the impairment of oxygenation was more pronounced with the T-TIVA evidenced by lower arterial and venous oxygen partial pressures.  相似文献   

16.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

17.
ObjectiveTo evaluate perioperative stress-related hormones in isoflurane-anesthetized horses administered infusions of dexmedetomidine alone or with butorphanol or remifentanil, compared with ketamine–morphine.Study designRandomized, prospective, nonblinded clinical study.AnimalsA total of 51 horses undergoing elective surgical procedures.MethodsHorses were premedicated with xylazine, anesthesia induced with ketamine–diazepam and maintained with isoflurane and one of four intravenous infusions. Partial intravenous anesthesia (PIVA) was achieved with dexmedetomidine (1.0 μg kg–1 hour–1; group D; 12 horses); dexmedetomidine (1.0 μg kg–1 hour–1) and butorphanol bolus (0.05 mg kg–1; group DB; 13 horses); dexmedetomidine (1.0 μg kg–1 hour–1) and remifentanil (3.0 μg kg–1 hour–1; group DR; 13 horses); or ketamine (0.6 mg kg–1 hour–1) and morphine (0.15 mg kg–1, 0.1 mg kg–1 hour–1; group KM; 13 horses). Infusions were started postinduction; butorphanol bolus was administered 10 minutes before starting surgery. Blood was collected before drugs were administered (baseline), 10 minutes after ketamine–diazepam, every 30 minutes during surgery and 1 hour after standing. Mean arterial pressure (MAP), pulse rate, end-tidal isoflurane concentration, cortisol, nonesterified fatty acids (NEFA), glucose and insulin concentrations were compared using linear mixed models. Significance was assumed when p < 0.05.ResultsWithin D, cortisol was lower at 120–180 minutes from starting surgery compared with baseline. Cortisol was higher in KM than in D at 60 minutes from starting surgery. Within all groups, glucose was higher postinduction (except DR) and 60 minutes from starting surgery, and insulin was lower during anesthesia and higher after standing compared with baseline. After standing, NEFA were higher in KM than in DB. In KM, MAP increased at 40–60 minutes from starting surgery compared with 30 minutes postinduction.Conclusions and clinical relevanceDexmedetomidine suppressed cortisol release more than dexmedetomidine–opioid and ketamine–morphine infusions. Ketamine–morphine PIVA might increase catecholamine activity.  相似文献   

18.
ObjectiveTo investigate the influence of a dexmedetomidine constant rate infusion (CRI) in horses anaesthetized with isoflurane.Study designProspective, randomized, blinded, clinical study.AnimalsForty adult healthy horses (weight mean 491 ± SD 102 kg) undergoing elective surgery.MethodsAfter sedation [dexmedetomidine, 3.5 μg kg?1 intravenously (IV)] and induction IV (midazolam 0.06 mg kg?1, ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen/air (FiO2 55–60%). Horses were ventilated and dobutamine was administered when hypoventilation [arterial partial pressure of CO2 > 8.00 kPa (60 mmHg)] and hypotension [arterial pressure 70 mmHg] occurred respectively. During anaesthesia, horses were randomly allocated to receive a CRI of dexmedetomidine (1.75 μg kg?1 hour?1) (D) or saline (S). Monitoring included end-tidal isoflurane concentration, cardiopulmonary parameters, and need for dobutamine and additional ketamine. All horses received 0.875 μg kg?1 dexmedetomidine IV for the recovery period. Age and weight of the horses, duration of anaesthesia, additional ketamine and dobutamine, cardiopulmonary data (anova), recovery scores (Wilcoxon Rank Sum Test), duration of recovery (t-test) and attempts to stand (Mann–Whitney test) were compared between groups. Significance was set at p < 0.05.ResultsHeart rate and arterial partial pressure of oxygen were significantly lower in group D compared to group S. An interaction between treatment and time was present for cardiac index, oxygen delivery index and systemic vascular resistance. End-tidal isoflurane concentration and heart rate significantly increased over time. Packed cell volume, systolic, diastolic and mean arterial pressure, arterial oxygen content, stroke volume index and systemic vascular resistance significantly decreased over time. Recovery scores were significantly better in group D, with fewer attempts to stand and significantly longer times to sternal position and first attempt to stand.Conclusions and clinical relevance A dexmedetomidine CRI produced limited cardiopulmonary effects, but significantly improved recovery quality.  相似文献   

19.
ObjectiveTo determine the effect of remifentanil infusion on the minimum alveolar concentration of sevoflurane preventing movement (SEVOMACNM) and bispectral index (BIS) in dogs.Study designProspective, unmasked study.AnimalsA total of 10 adult Beagle dogs weighing 9.0 ± 1.1 kg.MethodsDogs were anesthetized with sevoflurane and baseline SEVOMACNM was determined. Remifentanil was infused at 5, 10 and 20 μg kg–1 hour–1, in sequence, with 20 minutes washout between infusions. Variables monitored throughout anesthesia included heart rate (HR), oscillometric blood pressure, end-tidal partial pressure of carbon dioxide, end-tidal sevoflurane concentration (Fe′Sevo) and BIS. SEVOMACNM after remifentanil infusion (SEVOMACNM-REMI) determination started 20 minutes after the start of each infusion. Venous blood samples were collected for plasma remifentanil concentration determination at baseline, SEVOMACNM-REMI determination time points, and 20 minutes after each infusion was stopped. A mixed model analysis was used to determine the effect of remifentanil infusion on response variables. The relationships between BIS and Fe′Sevo, plasma remifentanil concentrations and the percentage decrease in baseline SEVOMACNM were evaluated (p < 0.05).ResultsThe overall SEVOMACNM at baseline was 2.47 ± 0.11%. Addition of remifentanil at all infusion rates significantly decreased SEVOMACNM, but the medium and high doses resulted in significantly greater decreases in SEVOMACNM than the lower dose. There was no difference in SEVOMACNM percentage change between infusions 10 and 20 μg kg–1 hour–1. Plasma remifentanil concentrations were significantly different in all infusion rates. Baseline BIS value was 70 ± 1 and was lower than the BIS values recorded during all remifentanil infusions. BIS values were not significantly different among infusion rates. HR was lower and mean arterial pressure was higher during remifentanil infusions than at baseline.Conclusions and clinical relevanceAll remifentanil infusions decreased SEVOMACNM in dogs. Remifentanil infusion at any rate studied did not reduce BIS values.  相似文献   

20.
HistoryTwo cats were presented for orthopaedic surgery.Physical ExaminationWith the exception of the orthopaedic injuries found, clinical examination showed no abnormality.ManagementAs part of anaesthetic management, one cat received intrathecal morphine, the other epidural morphine. Following recovery, intense grooming was observed. After ensuring adequate analgesia this behaviour was interpreted as pruritus.In the first cat, pruritus was initially managed with medetomidine constant rate infusion (CRI) at 1 and 1.5 μg kg?1 hour?1. The lower dose produced sedation and no relief from pruritus, the higher dose ablated pruritus but induced sedation. Two propofol (lipid emulsion formulation) boli of 0.1 mg kg?1 ablated pruritus without causing sedation. The second cat was successfully treated with four boli of 0.1 mg kg?1 propofol over 20 minutes.Follow–upFollowing treatment with propofol, pruritus did not recur in either cat and both were discharged from the hospital.ConclusionsThis is the first clinical report of morphine–induced pruritus in cats and management with low–dose propofol. These cases suggest an antipruritic mechanism for lipid–formulation propofol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号