首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo determine the magnitude and duration of sevoflurane minimum alveolar concentration (MAC) reduction following a single intravenous (IV) dose of methadone in cats.Study designProspective experimental study.AnimalsEight (four females and four males) healthy mixed-breed adult (1–2 years) cats weighing 5.82 ± 0.42 kg.MethodsAnesthesia was induced and maintained with sevoflurane. Intravenous catheters facilitated administration of methadone and lactated Ringer’s solution. After baseline MAC determination in triplicate using a tail clamp technique, 0.3 mg kg?1 of methadone was administered IV. End-tidal sevoflurane concentration (e′SEVO) was reduced and MAC was redetermined. In an effort to determine the duration of MAC reduction, measurements were repeated in a stepwise manner until MAC values returned to baseline. After the last stimulation, the e′SEVO was increased to 1.2 individual MAC for 15 minutes, then sevoflurane was discontinued and cats were allowed to recover from anesthesia.ResultsBaseline sevoflurane MAC was 3.18 ± 0.06%. When compared with baseline the sevoflurane MAC after methadone administration was significantly reduced by 25, 15 and 7% at 26, 76 and 122 minutes, respectively. The final MAC value (3.09 ± 0.07%) determined 156 minutes after methadone administration was not significantly different from baseline.Conclusions and clinical relevanceIntravenous methadone (0.3 mg kg?1) significantly decreased MAC of sevoflurane in cats but the effect was short-lived.  相似文献   

2.
ObjectiveDetermine if maropitant decreases the minimum alveolar concentration (MAC) of sevoflurane during stimulation of the ovarian ligament in cats.Study designProspective study.AnimalsFifteen, female cats weighing 2.5 ± 0.6kg (mean ± SD).MethodsAnesthesia was induced and maintained with sevoflurane. The right ovary was accessed via laparoscopy. A suture around the ovary and ovarian ligament was exteriorized through the abdominal wall for stimulation. A stimulus–response curve was created to identify the optimal force for MAC comparisons. In 10 cats, MAC was determined with only sevoflurane (baseline) then after 1 and 5 mg kg?1 intravenous maropitant administration. The stimulation tension force used was 4.9 N. Repeated measures anova was used to compare the groups. MAC was defined as the average of the cross‐over concentrations and reported MAC is adjusted to sea‐level and depicted as mean ± SD.ResultsThe stimulus‐response curve was hyperbolic and plateaued at 4.3 ± 3 N. The optimal tension force chosen to compare MAC was 4.9 N. The baseline sevoflurane MAC was 2.96 ± 0.3%. Maropitant, 1 mg kg?1, decreased the MAC to 2.51 ± 0.3% (15%, p < 0.01). The higher maropitant dose of 5 mg kg?1 did not change MAC further when compared to the low dose (2.46 ± 0.4%, p = 0.33).Conclusion and clinical relevanceThe ovarian ligament stimulation model is suitable to determine MAC during visceral stimulation in cats. Maropitant decreased the anesthetic requirements during visceral ovarian and ovarian ligament stimulation in cats. Maropitant (1 mg kg?1) decreases MAC by 15%; a higher dose had no additional effect.  相似文献   

3.
ObjectiveTo test whether naltrexone, an opioid receptor antagonist, affects the minimum alveolar concentration (MAC) of isoflurane in cats, a species that is relatively resistant to the general anesthetic sparing effects of most opioids.Study designRandomized, crossover, placebo-controlled, blinded experimental design.AnimalsSix healthy adult cats weighing 4.9 ± 0.7 kg.MethodsThe cats were studied twice. In the first study, baseline isoflurane MAC was measured in duplicate. The drug (saline control or 0.6 mg kg?1 naltrexone) was administered IV every 40–60 minutes, and isoflurane MAC was re-measured. In the second study, cats received the second drug treatment using identical methods 2 weeks later.ResultsIsoflurane MAC was 2.03 ± 0.12% and was unchanged from baseline following saline or naltrexone administration.Conclusion and clinical relevanceMinimum alveolar concentration was unaffected by naltrexone. Because MAC in cats is unaffected by at least some mu-opioid agonists and antagonists, spinal neurons that are directly modulated by mu-opioid receptors in this species cannot be the neuroanatomic sites responsible for immobility from inhaled anesthetics.  相似文献   

4.
ObjectiveTo determine the effect of maropitant, an NK-1 receptor antagonist on the minimum alveolar concentration (MAC) of sevoflurane after intravenous and epidural administration to dogs.Study designProspective experimental study.AnimalsSeven, adult, spayed-female dogs (24.8 ± 1.9 kg).MethodsEach dog was anesthetized twice with sevoflurane in oxygen, with at least 10 days separating the anesthetic events. The minimum alveolar concentration (MAC) of sevoflurane was determined using the tail-clamp technique. During the first anesthetic event, the MAC of sevoflurane was determined initially and again after intravenous administration of maropitant (5 mg kg?1) and an infusion (150 μg kg?1 hour?1). During the second anesthetic event, an epidural catheter was advanced to the 4th lumbar vertebra and MAC was determined after administration of saline and maropitant (1 mg kg?1) epidurally. All MAC determinations were done in duplicate. The MAC values were adjusted to sea level and compared using student's t-test.ResultsThe baseline MAC for sevoflurane was 2.08 ± 0.25%. Intravenous maropitant decreased (p < 0.05) MAC by 16% (1.74 ± 0.17%). In contrast, epidural administration of either saline or maropitant did not change (p > 0.05) the MAC (2.17 ± 0.34% and 1.92 ± 0.12%, respectively).Conclusion and clinical relevanceMaropitant decreased the MAC of sevoflurane when administered intravenously to dogs but not after epidural administration.  相似文献   

5.
Lidocaine has been reported to decrease the minimum alveolar concentration (MAC) of inhalation anesthetics in several species and has been used clinically to reduce the requirements for other anesthetic drugs. This study examined the effects of intravenous lidocaine on isoflurane MAC in cats. Six cats were studied. In experiment 1, the MAC of isoflurane was determined. An intravenous bolus of lidocaine 2 mg kg–1 was then administrated and venous plasma lidocaine concentrations measured to determine pharmacokinetic values. In experiment 2, lidocaine was administered to achieve target plasma concentrations between 1 and 11 μg mL–1 and the MAC of isoflurane was determined in triplicate at each lidocaine plasma concentration, using the tail‐clamp method. End‐tidal isoflurane concentration was determined using a calibrated infrared analyzer. Systolic blood pressure (Doppler), SpO2 and end‐tidal PCO2 (calibrated Raman spectrometer) were measured prior to each MAC determination. Body temperature was maintained between 38.5 and 39.5 °C by supplying external heat as needed. MAC values at the different lidocaine plasma concentrations were analyzed by a repeated measures ANOVA , using the Huynh–Feldt correction. The MAC of isoflurane in these cats was 2.21 ± 0.17. For the target concentrations of 1, 3, 5, 7, 9, and 11 μg mL–1, the actual lidocaine plasma concentrations was 1.06 ± 0.12, 2.83 ±0.39, 4.93 ± 0.64, 6.86 ± 0.97, 8.86 ± 2.10, and 9.84 ± 1.34 μg mL–1, respectively. At these target concentrations, the MAC of isoflurane was 2.14 ± 0.14, 1.88 ± 0.18, 1.66 ± 0.16, 1.47 ±0.13, 1.33 ± 0.23, and 1.06 ± 0.19%, respectively. Lidocaine, at target plasma concentrations of 1, 3, 5, 7, 9, and 11 μg mL–1, linearly decreased isoflurane MAC by –6 to 6, 7 to 28, 19 to 35, 28 to 45, 29 to 53, and 44 to 59%, respectively. Lidocaine significantly dose‐dependently and linearly decreases the requirements for isoflurane in cats. No ceiling effect was observed within the range of plasma concentrations studied.  相似文献   

6.
ObjectiveTo determine the effect of experimentally induced hypothyroidism on isoflurane (ISO) minimum alveolar concentration (MAC) in dogs.Study designProspective experimental study.AnimalsEighteen adult female mongrel dogs, age 2–4 years and weighing 8.2–13.1 kg.MethodsHypothyroidism was induced in nine dogs by the intravenous administration of 1 mCi kg−1 of 131Iodine. The remaining nine dogs served as controls. Dogs were studied 9–12 months after the induction of hypothyroidism. Anesthesia was induced with ISO in oxygen via a mask. The trachea was intubated, and anesthesia was maintained using ISO in oxygen using a semi-closed rebreathing circle system. The dogs were mechanically ventilated to maintain an end-tidal carbon dioxide concentration between 35 and 45 mmHg. End-tidal ISO concentrations were measured with an infrared gas analyzer. The MAC was determined in duplicate using a tail clamp technique. The mean values for the groups were compared using a two sample t-test.ResultsThe mean ± SD MAC of isoflurane in the hypothyroid and euthyroid dogs was 0.98 ± 0.31% and 1.11 ± 0.26%, respectively. The mean MAC of isoflurane in hypothyroid dogs was not significantly different from the mean MAC of isoflurane in the control dogs (p=0.3553).Conclusion and clinical relevanceThe MAC of ISO in dogs was not significantly affected by experimentally induced hypothyroidism. The dose of ISO in dogs with hypothyroidism does not need to be altered.  相似文献   

7.
This study was undertaken to evaluate the effect of 3 different doses of epidurally administered morphine sulphate on the minimum alveolar concentration (MAC) of isoflurane in healthy cats. Five 4-year-old, spayed female cats weighing 4.7 ± 0.8 kg were allocated randomly to receive one of 3 doses of morphine on each study day. The 3 doses of morphine were 0.05, 0.1 and 0.2 mg/kg bwt and each cat was studied 3 times so that each cat received all doses. On each study day, cats were anaesthetised with isoflurane and instrumented. The MAC of isoflurane was determined in triplicate and morphine sulphate was administered via an epidural catheter chronically implanted prior to the study. Maximum MAC reduction was determined over the following 2 h. At the end of the study cats were allowed to recover. There was a significant reduction in MAC of isoflurane, with all doses of epidural morphine (P<0.05). The maximum reduction in MAC of isoflurane after 0.05 mg/kg bwt, 0.10 mg/kg bwt and 0.20 mg/kg bwt morphine was 21.4 ± 9.796, 30.8 ± 9.696, and 30.2 ± 6.8%, respectively, with no significant difference between doses. Systolic, mean and diastolic blood pressure, heart rate, respiratory rate and arterial pH decreased significantly whereas arterial carbon dioxide tension increased significantly after morphine administration (P<0.05). The means for all variables returned to pre-morphine values when the end-tidal isoflurane concentration was reduced to the new MAC point. In conclusion, epidural morphine decreased the concentration of isoflurane required to prevent movement in response to noxious mechanical stimulation to the tail base. A similar effect may be seen clinically allowing lower doses of isoflurane to be used to provide surgical anaesthesia for procedures involving the hind limbs, pelvis and tail.  相似文献   

8.
ObjectiveTo determine the minimum alveolar concentration (MAC) of sevoflurane in Holstein steers using electric stimulation.Study designProspective experimental study.AnimalsA total of 15 Holstein steers aged 7.3 ± 1.2 months and weighing 121 ± 25 kg.MethodsAnimals were anesthetized with sevoflurane at 8% in oxygen at 5 L minute–1 via facemask and were intubated with an orotracheal tube of a compatible size. After 15 minutes of stabilization of the initial expired concentration of sevoflurane (Fe′Sevo) at 2.6%, electrical stimulation on the thoracic limb was initiated with a sequence of 2 × 10 ms followed by 2 × 3 second electrical currents of 50 V and 50 Hz, 5 seconds apart. Following each stimulus with a negative response, the Fe′Sevo was decreased by 0.2% and a 15 minute interval was awaited before the next stimulus. The procedure was repeated until the first Fe′Sevo value with a positive motor response was obtained. The Fe′Sevo was then increased by 0.1%, followed by a new stimulus, until a negative response was obtained. The value of MAC was calculated as the arithmetic mean between the lowest Fe′Sevo associated with a negative motor response and the highest Fe′Sevo associated with a positive response.ResultsThe mean MAC for the 15 steers was 2.0 ± 0.3%, which corresponds to 2.1 ± 0.3% at sea level.ConclusionsBased on the proposed methodology, the MAC of sevoflurane for healthy Holstein steers is 2.1 ± 0.3% at sea level.Clinical relevanceThis Fe′Sevo value can be used to guide depth of anesthesia in steers weighing approximately 120 kg in clinical practice.  相似文献   

9.
Minimum alveolar concentration (MAC) of an inhalant is an indicator of its anesthetic potency. Individuals vary in their sensitivity to anesthetic agents as demonstrated by different individual MAC values. We hypothesized that individual animal sensitivity would be maintained with different inhalant anesthetics. As part of separate studies, six female DSH cats, aged 24 ± 2.5 (mean ± SD) months and weighing 3.5 ± 0.3 kg, were studied similarly on three separate occasions over a 12‐month period to determine the MAC of isoflurane (ISO), sevoflurane (SEVO), and desflurane (DES), respectively. In each study, chamber induction was followed by orotracheal intubation, and anesthesia was maintained via a nonrebreathing circuit. ECG, pulse oximetry, Doppler systolic blood pressure, end‐tidal gases, and esophageal temperature were monitored. End‐tidal gases were hand‐sampled from a catheter whose tip lay level with the distal end of the ET tube. Gases were analyzed by Raman spectrometry and, for each agent, the analyzer was calibrated with at least three gas standards. MAC was determined in triplicate using standard tail‐clamp technique. Data were analyzed by two‐way anova followed by Tukey's test and significant differences were found. Average MACs (%) for ISO, SEVO, and DES were 1.90 ± 0.18, 3.41 ± 0.65, and 10.27 ± 1.06, respectively. Body temperatures, Doppler systolic blood pressure, and SpO2 were recorded at the time of MAC determinations for ISO, SEVO, and DES were 38.3 ± 0.3, 38.6 ± 0.1, 38.3 ± 0.35 °C; 71 ± 8, 75 ± 16, 88 ± 12 mm Hg; 99 ± 1, 99 ± 1, 99 ± 1%, respectively. Both the anesthetic agent and the individual cat had significant effects on MAC (p = 0.0001 and 0.0185, respectively). MAC varied between individuals and cats were consistent in their order of sensitivity to inhalant anesthetics across the three agents. Within this group of cats, the relationship of individual MAC to the group MAC for each of the three inhalant agents was maintained. This suggests that any individual may be consistently more or less sensitive to a variety of inhalant agents.  相似文献   

10.
ObjectiveTo determine the impact of three different target plasma concentrations of fentanyl on the minimum anaesthetic concentration (MAC) for isoflurane in the red-tailed hawk and the effects on the haemodynamic profile.Study designExperimental study.Animal populationSix healthy adult red-tailed hawks (Buteo jamaicensis) of unknown sex with body weights (mean ± SD) of 1.21 ± 0.15 kg.MethodsThis study was undertaken in two phases. In the first phase anaesthesia was induced with isoflurane in oxygen via facemask and maintained with isoflurane delivered in oxygen via a Bain circuit. Following instrumentation baseline determination of the MAC for isoflurane was made for each animal using the bracketing method and a supramaximal electrical stimulus. End-tidal isoflurane concentration (E′Iso) was then set at 0.75 × MAC and after an appropriate equilibration period a bolus of fentanyl (20 μg kg?1) was administered intravenously (IV) in order to determine the pharmacokinetics of fentanyl in the isoflurane-anaesthetized red-tailed hawk. During the second phase anaesthesia was induced in a similar manner and E′Iso was set at 0.75 × MAC for each individual. Fentanyl was infused IV to achieve target plasma concentrations between 8 and 32 ng mL?1. At each fentanyl plasma concentration, the MAC for isoflurane and cardiovascular variables were determined. Data were analyzed by use of repeated-measures anova.ResultsMean ± SD fentanyl plasma concentrations and isoflurane MACs were 0 ± 0, 8.51 ± 4, 14.85 ± 4.82 and 29.25 ± 11.52 ng mL?1, and 2.05 ± 0.45%, 1.42 ± 0.53%, 1.14 ± 0.31% and 0.93 ± 0.32% for the target concentrations of 0, 8, 16 and 32 ng mL?1, respectively. At these concentrations fentanyl significantly (p = 0.0016) decreased isoflurane MAC by 31%, 44% and 55%, respectively. Dose had no significant effect on heart rate, systolic, diastolic or mean arterial blood pressure.Conclusions and clinical relevanceFentanyl produced a dose-related decrease of isoflurane MAC with minimal effects on measured cardiovascular parameters in red-tailed hawks.  相似文献   

11.
Objective To quantitate the dose‐ and time‐related magnitude of the anesthetic sparing effect of, and selected physiological responses to detomidine during isoflurane anesthesia in horses. Study design Randomized cross‐over study. Animals Three, healthy, young adult horses weighing 485 ± 14 kg. Methods Horses were anesthetized on two occasions to determine the minimum alveolar concentration (MAC) of isoflurane in O2 and then to measure the anesthetic sparing effect (time‐related MAC reduction) following IV detomidine (0.03 and 0.06 mg kg?1). Selected common measures of cardiopulmonary function, blood glucose and urinary output were also recorded. Results Isoflurane MAC was 1.44 ± 0.07% (mean ± SEM). This was reduced by 42.8 ± 5.4% and 44.8 ± 3.0% at 83 ± 23 and 125 ± 36 minutes, respectively, following 0.03 and 0.06 mg kg?1, detomidine. The MAC reduction was detomidine dose‐ and time‐dependent. There was a tendency for mild cardiovascular and respiratory depression, especially following the higher detomidine dose. Detomidine increased both blood glucose and urine flow; the magnitude of these changes was time‐ and dose‐dependent Conclusions Detomidine reduces anesthetic requirement for isoflurane and increases blood glucose concentration and urine flow in horses. These changes were dose‐ and time‐related. Clinical relevance The results imply potent anesthetic sparing actions by detomidine. The detomidine‐related increased urine flow should be considered in designing anesthetic protocols for individual horses.  相似文献   

12.
ObjectiveTo assess agreement between infrared (IR) analysers and a refractometer for measurements of isoflurane, sevoflurane and desflurane concentrations and to demonstrate the effect of customized calibration of IR analysers.Study designIn vitro experiment.SubjectsSix IR anaesthetic monitors (Datex-Ohmeda) and a single portable refractometer (Riken).MethodsBoth devices were calibrated following the manufacturer’s recommendations. Gas samples were collected at common gas outlets of anaesthesia machines. A range of agent concentrations was produced by stepwise changes in dial settings: isoflurane (0–5% in 0.5% increments), sevoflurane (0–8% in 1% increments), or desflurane (0–18% in 2% increments). Oxygen flow was 2 L minute?1. The orders of testing IR analysers, agents and dial settings were randomized. Duplicate measurements were performed at each setting. The entire procedure was repeated 24 hours later. Bland–Altman analysis was performed. Measurements on day-1 were used to yield calibration equations (IR measurements as dependent and refractometry measurements as independent variables), which were used to modify the IR measurements on day-2.ResultsBias ± limits of agreement for isoflurane, sevoflurane and desflurane were 0.2 ± 0.3, 0.1 ± 0.4 and 0.7 ± 0.9 volume%, respectively. There were significant linear relationships between differences and means for all agents. The IR analysers became less accurate at higher gas concentrations. After customized calibration, the bias became almost zero and the limits of agreement became narrower.Conclusions and clinical relevanceIf similar IR analysers are used in research studies, they need to be calibrated against a reference method using the agent in question at multiple calibration points overlapping the range of interest.  相似文献   

13.
ObjectiveTo compare the effects of continuous rate infusions (CRIs) of intravenous (IV) morphine and morphine-tramadol on the minimum alveolar concentration (MAC) of sevoflurane, and on electroencephalographic entropy indices in dogs.DesignProspective study.AnimalsEight young, healthy German shepherds, weighing 26.3 ± 3.1 kg (mean ± SD).MethodsAnaesthesia was induced and maintained with sevoflurane. A standard tail-clamp technique was used for MAC determination. Within one anaesthetic period, MAC was first determined during sevoflurane anaesthesia alone (MACB); then during morphine infusion (MACM), (loading dose 0.5 mg kg−1IM; CRI, 0.2 mg kg−1hour−1) then finally during morphine-tramadol infusion (tramadol loading dose 1.5 mg kg−1IV; CRI, 2.6 mg kg−1 hour−1) (MACMT). At each change, periods of 45 minutes were allowed for equilibration. Stated entropy (SE), response entropy (RE), and RE-SE differences were measured five minutes prior to and during tail clamping.ResultsThe MACB was 2.1 ± 0.3vol%. The morphine and morphine-tramadol infusions reduced MAC to 1.6 ± 0.3vol% and 1.3 ± 0.3vol%, respectively. MAC was decreased below baseline more during morphine-tramadol than during morphine alone (39 ± 9% versus 25 ± 6%, respectively; p = 0.003). All SE and RE and most RE-SE differences were increased significantly (p < 0.05) over pre-stimulation in all groups when the dogs responded purposefully to noxious stimulation. When no response to noxious stimulation occurred, the entropy indices did not change.Conclusion and clinical relevanceIn dogs, combined morphine-tramadol CRI decreased sevoflurane MAC more than morphine CRI alone. Entropy indices changed during nociceptive responses in anaesthetized animals, suggesting that entropy measurements may be useful in determining anaesthetic depth in dogs.  相似文献   

14.
ObjectiveAt the minimum alveolar concentration (MAC), isoflurane potentiates GABAA receptor currents and inhibits NMDA receptor currents, and these actions may be important for producing anesthesia. However, isoflurane modulates GABAA receptors more potently than NMDA receptors. The objective of this study was to test whether isoflurane would function as a more potent NMDA receptor antagonist if its efficacy at GABAA receptors was decreased.Study designProspective experimental study.AnimalsFourteen 10-week-old male Sprague–Dawley rats weighing 269 ± 12 g.MethodsIndwelling lumbar subarachnoid catheters were surgically placed in isoflurane-anesthetized rats. Two days later, the rats were anesthetized with isoflurane, and artificial CSF containing either 0 or 1 mg kg?1 picrotoxin, a GABAA receptor antagonist, was infused intrathecally at 1 μL minute?1. The baseline isoflurane MAC was then determined using a standard tail clamp technique. MK801 (dizocilpine), an NMDA receptor antagonist, was then administered intravenously at 0.5 mg kg?1. Isoflurane MAC was re-measured.ResultsPicrotoxin increased isoflurane MAC by 16% compared to controls. MK801 significantly decreased isoflurane MAC by 0.72% of an atmosphere in controls versus 0.47% of an atmosphere in rats receiving intrathecal picrotoxin.Conclusions and clinical relevanceA smaller MK801 MAC-sparing effect in the picrotoxin group is consistent with greater NMDA antagonism by isoflurane in these animals, since it suggests that fewer NMDA receptors are available upon which MK801 could act to decrease isoflurane MAC. Decreasing isoflurane GABAA potentiation increases isoflurane NMDA antagonism at MAC. Hence, the magnitude of an anesthetic effect on a given channel or receptor at MAC may depend upon effects at other receptors.  相似文献   

15.
OBJECTIVE: To determine the effects of nitrous oxide (N2O) on the speed and quality of mask induction with sevoflurane or isoflurane in dogs. ANIMALS: 7 healthy Beagles. PROCEDURE: Anesthesia was induced with sevoflurane or isoflurane delivered in 100% oxygen or in a 2:1 mixture of N2O and oxygen via a face mask. Each dog received all treatments with at least 1 week between treatments. Initial vaporizer settings were 0.8% for sevoflurane and 0.5% for isoflurane (0.4 times the minimum alveolar concentration [MAC]). Vaporizer settings were increased by 0.4 MAC at 15-second intervals until settings were 4.8% for sevoflurane and 3.0% for isoflurane (2.4 MAC). Times to onset and cessation of involuntary movements, loss of the palpebral reflex, negative response to tail-clamp stimulation, and endotracheal intubation were recorded, and cardiopulmonary variables were measured. RESULTS: Administration of sevoflurane resulted in a more rapid induction, compared with isoflurane. However, N2O had no effect on induction time for either agent. Heart rate, mean arterial blood pressure, cardiac output, and respiratory rate significantly increased and tidal volume significantly decreased from baseline values immediately after onset of induction in all groups. Again, concomitant administration of N2O had no effect on cardiopulmonary variables. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of N2O did not improve the rate or quality of mask induction with sevoflurane or isoflurane. The benefits provided by N2O attributable to concentrating and second gas effects appear minimal in healthy dogs when low solubility inhalation agents such as isoflurane and sevoflurane are used for mask induction.  相似文献   

16.
ObjectiveTo evaluate the effects of combined infusions of vatinoxan and dexmedetomidine on inhalant anesthetic requirement and cardiopulmonary function in dogs.Study designProspective experimental study.MethodsA total of six Beagle dogs were anesthetized to determine sevoflurane minimum alveolar concentration (MAC) prior to and after an intravenous (IV) dose (loading, then continuous infusion) of dexmedetomidine (4.5 μg kg–1 hour–1) and after two IV doses of vatinoxan in sequence (90 and 180 μg kg–1 hour–1). Blood was collected for plasma dexmedetomidine and vatinoxan concentrations. During a separate anesthesia, cardiac output (CO) was measured under equivalent MAC conditions of sevoflurane and dexmedetomidine, and then with each added dose of vatinoxan. For each treatment, cardiovascular variables were measured with spontaneous and controlled ventilation. Repeated measures analyses were performed for each response variable; for all analyses, p < 0.05 was considered significant.ResultsDexmedetomidine reduced sevoflurane MAC by 67% (0.64 ± 0.1%), mean ± standard deviation in dogs. The addition of vatinoxan attenuated this to 57% (0.81 ± 0.1%) and 43% (1.1 ± 0.1%) with low and high doses, respectively, and caused a reduction in plasma dexmedetomidine concentrations. Heart rate and CO decreased while systemic vascular resistance increased with dexmedetomidine regardless of ventilation mode. The co-administration of vatinoxan dose-dependently modified these effects such that cardiovascular variables approached baseline.Conclusions and clinical relevanceIV infusions of 90 and 180 μg kg–1 hour–1 of vatinoxan combined with 4.5 μg kg–1 hour–1 dexmedetomidine provide a meaningful reduction in sevoflurane requirement in dogs. Although sevoflurane MAC-sparing properties of dexmedetomidine in dogs are attenuated by vatinoxan, the cardiovascular function is improved. Doses of vatinoxan >180 μg kg–1 hour–1 might improve cardiovascular function further in combination with this dose of dexmedetomidine, but beneficial effects on anesthesia plane and recovery quality may be lost.  相似文献   

17.
ObjectiveTo assess the effect of two intravenous (IV) doses of lidocaine on the minimum anesthetic concentration (MAC) of isoflurane in chickens.Study designBlinded, prospective, randomized, experimental crossover study.AnimalsA total of six adult female chickens weighing 1.90 ± 0.15 kg.MethodsChickens were anesthetized with isoflurane and mechanically ventilated. Isoflurane MAC values were determined (T0) in duplicate using an electrical noxious stimulus and the bracketing method. After MAC determination, a low dose (LD; 3 mg kg–1 followed by 3 mg kg–1 hour–1) or high dose (HD; 6 mg kg?1 followed by 6 mg kg?1 hour–1) of lidocaine was administered IV. MAC determination was repeated at 1.5 (T1.5) and 3 (T3) hours of lidocaine administration and blood was collected for analysis of plasma lidocaine and monoethylglycinexylidide (MEGX) concentrations. Pulse rate, peripheral hemoglobin oxygen saturation, noninvasive systolic arterial pressure and cloacal temperature were recorded at T0, T1.5 and T3. Treatments were separated by 1 week. Data were analyzed using mixed-effects model for repeated measures.ResultsMAC of isoflurane (mean ± standard deviation) at T0 was 1.47 ± 0.18%. MAC at T1.5 and T3 was 1.32 ± 0.27% and 1.26 ± 0.09% (treatment LD); and 1.28 ± 0.06% and 1.30 ± 0.06% (treatment HD). There were no significant differences between treatments or times. Maximum plasma lidocaine concentrations at T3 were 496 ± 98 and 1200 ± 286 ng mL–1 for treatments LD and HD, respectively, and were not significantly different from T1.5. With treatment HD, plasma concentration of MEGX was significantly higher at T3 than at T1.5. Physiological variables were not significantly different among times with either treatment.Conclusions and clinical relevanceAdministration of lidocaine did not significantly change isoflurane MAC in chickens. Within treatments, plasma lidocaine concentrations were not significantly different at 1.5 and 3 hours.  相似文献   

18.
Sevoflurane has recently been introduced in feline anesthesia. However, its cardiovascular effects have not, to our knowledge, been reported in this species. Six healthy cats, aged 1.81 ± 0.31 years (mean ± SEM) and weighing 3.47 ± 0.11 kg, were studied. Anesthesia was induced and maintained with sevoflurane in oxygen. Body temperature was maintained between 38.5 and 39.55 °C. After instrumentation, end‐tidal sevoflurane concentration was randomly set at 1.25, 1.5, and 1.75 times the individual minimum alveolar concentration (MAC), determined in a previous study, according to a Latin Square Design. Thirty minutes of stabilization was allowed after each change of concentration. ECG and heart rate, systemic and pulmonary arterial pressures, central venous pressure (CVP), and core body temperature were continuously monitored and recorded. Inspired and end‐tidal oxygen, carbon dioxide, and sevoflurane concentrations were measured using a Raman spectrometer, calibrated every 80 minutes with three calibration gases of known sevoflurane concentration (1, 2, and 5%). Moreover, at selected times, pulmonary artery occlusion pressure and cardiac output (thermodilution) were measured, and arterial and mixed venous blood samples were collected for pH and blood gas analysis, hemoglobin concentration, hemoglobin oxygen saturation, packed cell volume (PCV) and total protein determination, and lactate concentration measurement. Cardiac index (CI), stroke index (SI), systemic and pulmonary vascular resistance indices, rate‐pressure product, left and right ventricular stroke work indices (LVSWI and RVSWI, respectively), arterial and mixed venous oxygen contents, oxygen delivery, oxygen consumption, and oxygen utilization ratio were calculated. Data were analyzed by a Repeated Measure Latin Square Design followed by a Tukey's test for 2 × 2 comparisons. Arterial pH significantly decreased from 7.40 ± 0.05 to 7.29 ± 0.07 with the administration of increasing concentrations of sevoflurane. Similarly, LVSWI decreased from 3.72 ± 0.60 to 2.60 ± 0.46 g m?2. Mean arterial pressure, PaO2, mixed venous pH, CI, SI, and oxygen delivery tended to decrease dose‐dependently, whereas CVP, PaCO2, Pv CO2, PCV, and arterial and mixed venous hemoglobin concentrations tended to increase dose‐dependently with the administration of sevoflurane. However, these trends did not reach statistical significance, possibly because of the limited number of animals studied. Sevoflurane seemed to induce dose‐dependent cardiovascular depression in cats.  相似文献   

19.
Different structurally related phenylpiperidine opioids exhibit different isoflurane-sparing effects in cats. Because minimum alveolar concentration (MAC) in cats is affected only by very high plasma concentrations of some phenylpiperidine opioids, we hypothesized these effects are caused by actions on nonopioid receptors. Using a prospective, randomized, crossover design, six cats were anesthetized with isoflurane, intubated, ventilated, and instrumented. Isoflurane MAC was measured in triplicate using a tail-clamp and bracketing technique. A computer-controlled intravenous infusion using prior pharmacokinetic models targeted plasma concentrations of 60 ng/ml fentanyl, 10 ng/ml sufentanil, or 500 ng/ml alfentanil, and isoflurane MAC was measured in duplicate. Next, naltrexone 0.6 mg/kg was administered to cats hourly during the opioid infusion, and isoflurane MAC was measured in duplicate. Blood was collected during MAC determinations to measure opioid concentrations. Responses were analyzed using repeated measures ANOVA with significance at p < .05. Alfentanil and sufentanil decreased isoflurane MAC by 16.4% and 6.4%, respectively, and these effects were completely reversed by naltrexone. Fentanyl had no significant effect on isoflurane MAC. Alfentanil and sufentanil modestly reduce isoflurane MAC via agonist effects on opioid receptors. However, these effects are too small to justify clinical use of phenylpiperidine opioids as single agents to reduce MAC in cats.  相似文献   

20.
The anesthetic potency and cardiopulmonary effects of sevoflurane were compared with those of isoflurane and halothane in goats. The (mean +/- SD) minimal alveolar concentration (MAC) was 0.96 +/- 0.12% for halothane, 1.29 +/- 0.11% for isoflurane, and 2.33 +/- 0.15% for sevoflurane. Cardiopulmonary effects of sevoflurane, halothane and isoflurane were examined at end-tidal concentrations equivalent to 1, 1.5 and 2 MAC during either spontaneous or controlled ventilation (SV or CV). During SV, there were no significant differences in respiration rate, tidal volume and minute ventilation between anesthetics. Dose-dependent decreases in both tidal volume and minute ventilation induced by halothane were greater than those by either sevoflurane or isoflurane. Hypercapnia and acidosis induced by sevoflurane were not significantly different from those by either isoflurane or halothane at 1 and 1.5 MAC, but were less than those by halothane at 2 MAC. There was no significant difference in heart rate between anesthetics during SV and CV. During SV, all anesthetics induced dose-dependent decreases in arterial pressure, rate pressure product, systemic vascular resistance, left ventricular minute work index and left ventricular stroke work index. Systemic vascular resistance with isoflurane at 2 MAC was lower than that with sevoflurane. During CV, sevoflurane induced dose-dependent circulatory depression (decreases in arterial pressure, cardiac index, rate pressure product, systemic vascular resistance, left ventricular minute work index and right ventricular minute work index), similar to isoflurane. Halothane did not significantly alter systemic vascular resistance from 1 to 2 MAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号