首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Q fever (caused by Coxiella burnetii) is a serious zoonotic disease that occurs almost worldwide. Occupational contact with animals increases the risk of exposure, and Q fever vaccination is recommended for veterinary workers in Australia. This study aimed to investigate C. burnetii seroprevalence among unvaccinated veterinary workers in Australia and determine factors associated with a positive serological result. During 2014 and 2015, convenience sampling at veterinary conferences and workplace vaccination clinics was undertaken. Participants completed a questionnaire and provided a blood sample for C. burnetii serology. Participants were predominantly veterinarians (77%), but veterinary support staff, animal scientists, and administration workers also participated. Blood samples (n = 192) were analysed by an immunofluorescence assay and considered positive where the phase I or phase II IgG titre was ≥1/50. Seroprevalence was 19% (36/192; 95% CI 14%–25%). A positive serological result was significantly associated with (a) working in outer regional/remote areas (odds ratio [OR] 6.2; 95% CI 1.9–20.8; reference = major cities; p = .009) and (b) having spent more than 50% of total career working with ruminants (OR 4.8; 95% CI 1.7–13.5; reference = <15% of career; p = .025). These findings confirm an increased risk of exposure to C. burnetii compared to the general population, providing new evidence to support Q fever vaccination of veterinary workers in Australia.  相似文献   

2.
Australian wildlife rehabilitators (AWR) are at increased risk of developing Q fever, a serious zoonotic disease caused by the intracellular bacterium Coxiella burnetii. Previous studies have suggested that Australian wildlife may be a potential C. burnetii infection source for humans. However, a recent serological survey of AWR found no association between C. burnetii exposure and direct contact with any wildlife species. To further explore the potential risk that wildlife may pose, this study aimed to identify associations between self-reported Q fever in AWR and risk factors for exposure to C. burnetii. An online cross-sectional survey was implemented in 2018 targeting AWR nationwide. Risk factors for self-reported Q fever were determined using multivariable logistic regression. Medically diagnosed Q fever was self-reported in 4.5% (13/287) of unvaccinated respondents. Rehabilitators who self-reported medically diagnosed Q fever were significantly more likely to: primarily rehabilitate wildlife at a veterinary clinic (OR 17.87, 95% CI: 3.09–110.92), have domestic ruminants residing on the property where they rehabilitate wildlife (OR 11.75, 95% CI: 2.91–57.42), have been educated at a High School/Technical and Further Education level (OR 10.29, 95% CI: 2.13–84.03) and be aged >50 years (OR 6.61, 95% CI: 1.60–38.35). No association was found between self-reported Q fever and direct contact with wildlife. These findings support previous work suggesting that AWR are at increased risk of C. burnetii infection and may develop Q fever potentially via exposure to traditional infection sources including livestock, other domestic animals, or contaminated environments, in association with their rehabilitation practices and lifestyle. Although Q fever vaccination is recommended for AWR, vaccine uptake is low in this population. Future studies should aim to determine the level of Q fever awareness and identify barriers to Q fever vaccination in this at-risk group. The difficulty in accessing the AWR population also highlights the need for a national centralized AWR database.  相似文献   

3.
We investigated the prevalence of Hepatitis E Virus (HEV), Leptospira and Ascaris suum (A. suum) seropositivity, and of nasal methicillin‐resistant Staphylococcus aureus (MRSA) colonization among Austrian practising veterinarians, and assessed the association with occupational swine livestock exposure. The 261 participants completed a questionnaire on demographics, intensity of occupational swine livestock contact and glove use during handling animals and their secretions. Participants' blood samples were tested for HEV, Leptospira and A. suum seropositivity and nasal swabs cultured for MRSA. We compared swine veterinarians (defined as >3 swine livestock visits/week) to non‐swine veterinarians (≤3 swine livestock visits/week) with regard to the outcomes through calculating prevalence ratio (PR) and 95% confidence interval (CI). Furthermore, the relationship between occupational swine livestock contact and the study outcomes was examined by age (</≥55 years) and glove usage. The prevalence of nasal MRSA colonization was 13.4% (95% CI: 9.3–17.6), of HEV seropositivity 20.8% (95% CI: 15.8–25.7) and A. suum seropositivity 44% (95% CI: 37.7–50.2). The highest anti‐leptospiral antibodies titres were 1:200 (L. hebdomadis) and 1:100 (L. autumnalis, L. caicola) found in three non‐swine veterinarians. Compared to non‐swine veterinarians, swine veterinarians were 1.9 (95% CI: 1.0–3.4) and 1.5 (95%CI: 1.0–2.3) times more likely HEV seropositive and A. suum seropositive, respectively, and 4.8 (95%CI: 2.5; 9.3) times more likely nasally colonized with MRSA. Among glove‐using veterinarians, occupational swine contact was no longer a determinant for HEV seropositivity (PR 1.6; 95% CI: 0.8–2.9). Similar was found for A. suum seropositivity, which was no longer associated with occupational swine livestock contact in the subgroup of glove using, ≥55‐year‐old veterinarians (PR: 1.07; 95% CI: 0.4–3.3). Our findings indicate that >3 occupational swine livestock visits per week is associated with HEV and A. suum seropositivity and nasal MRSA colonization and that glove use may play a putative preventive role in acquiring HEV and A. suum. Further analytical epidemiological studies have to prove the causality of these associations.  相似文献   

4.
The role of dogs in the transmission of Coxiella burnetii to humans is uncertain, and extensive seroprevalence studies of dogs have not been previously conducted in Australia. This study determined C. burnetii exposure in four diverse canine subpopulations by adapting, verifying and comparing an indirect immunofluoresence assay (IFA) and an enzyme‐linked immunosorbent assay (ELISA) used to detect anti‐C. burnetii antibodies in humans. Canine serum samples (n = 1223) were tested with IFA from four subpopulations [breeding establishments; household pets; free‐roaming dogs in Aboriginal communities; shelter dogs]. The proportions of seropositive dogs were as follows: breeding (7/309, 2.3%), household pets (10/328, 3%), Aboriginal communities (21/321, 6.5%) and shelters (5/265, 1.9%). Dogs from Aboriginal communities were 2.8 times (CI 1.5–5.1; < 0.001) more likely to be seropositive than dogs from other populations. The ELISA was used on 86 of 1223 sera tested with IFA, and a Cohen's Kappa coefficient of 0.60 (CI 0.43–0.78) indicated good agreement between the two assays. This study has established that Australian dogs within all four subpopulations have been exposed to C. burnetii and that a higher seroprevalence was observed amongst free‐roaming dogs associated with Aboriginal communities. As C. burnetii recrudesces during pregnancy and birth products contain the highest concentration of organism, individuals assisting at the time of parturition, those handling pups shortly after birth as well as those residing in the vicinity of whelping dogs are potentially at risk of developing Q fever. However, the identification of active antigen shed in excreta from seropositive dogs is required in order to accurately define and quantify the public health risk.  相似文献   

5.
Endemic zoonoses, such as Q fever and spotted fever group (SFG) rickettsiosis, are prevalent in South Africa, yet often undiagnosed. In this study, we reviewed the demographics and animal exposure history of patients presenting with acute febrile illness to community health clinics in Mpumalanga Province to identify trends and risk factors associated with exposure to Coxiella burnetii, the causative agent of Q fever, and infection by SFG Rickettsia spp. Clinical and serological data and questionnaires elucidating exposure to animals and their products were obtained from 141 acutely febrile patients between 2012 and 2016. Exposure or infection status to C. burnetii and SFG Rickettsia spp. was determined by presence of IgG or IgM antibodies. Logistic regression models were built for risk factor analysis. Clinical presentation of patients infected by SFG rickettsiosis was described. There were 37/139 (27%) patients with a positive C. burnetii serology, indicative of Q fever exposure. Patients who had reported attending cattle inspection facilities (“dip tanks”) were 9.39 times more likely to be exposed to Q fever (95% CI: 2.9–30.4). Exposure risk also increased with age (OR: 1.03, 95% CI: 1.002–1.06). Twenty‐one per cent of febrile patients (24/118) had evidence of acute infection by SFG Rickettsia spp. Similarly, attending cattle inspection facilities was the most significant risk factor (OR: 8.48, 95% CI: 1.58–45.60). Seropositivity of females showed a significant OR of 8.0 when compared to males (95% CI: 1.49–43.0), and consumption of livestock was associated with a decreased risk (OR: 0.02, 95% CI: 0.001–0.54). A trend between domestic cat contact and SFG rickettsiosis was also noted, albeit borderline non‐significant. In this endemic region of South Africa, an understanding of risk factors for zoonotic pathogens, including exposure to domestic animals, can help clinic staff with diagnosis and appropriate therapeutic management of acutely febrile patients as well as identify target areas for education and prevention strategies.  相似文献   

6.
A Q fever outbreak in a small animal veterinary hospital, associated with a cat caesarean section, initiated a cat seroprevalence study (n = 712) that found circulating antibodies to Coxiella burnetii was highest in cattery‐confined breeding cats (9.3%). These findings stimulated interest about potential sources of C. burnetii infection for cats and humans associated with cats. Cat breeders are potentially a group at increased risk of C. burnetii infection, and this study sought to identify potential risk factors. A cross‐sectional online survey was conducted targeting all domestic cat breeders registered with an affiliate member body in Australia in 2015. Responses from 177 cat breeders across Australia were analysed. Forty per cent of responding cat breeders had not heard of Q fever. Raw meat was fed as an integral constituent of the diet by 89% of respondents. Eighty per cent of respondents allowed queens access to the home for parturition, and assistance of queens and resuscitation of kittens at the time of birth were reported by 97% of respondents. Respondents who perceived some level of exposure to Q fever through their breeding activities were three times less likely to perform mouth‐to‐snout resuscitation (OR 0.3 95% CI 0.1–0.9; = 0.034) than those who did not perceive a risk of exposure. Similarly, respondents who perceived Q fever as a risk through breeding activities were close to eight times more likely to use personal protective equipment during parturition (OR 7.7 95% CI 1.5–39.9; = 0.015) than those who did not. Husbandry practices of cat breeders that may increase the risk of C. burnetii transmission require further targeted investigations to assess the contribution of these risk factors to the acquisition of disease. Concurrent education forums are recommended to inform Australian cat breeders of the aetiopathogenesis of Q fever.  相似文献   

7.
Background Queensland has the highest incidence of Q fever in Australia. The aim of this study was to undertake a cross‐sectional seroprevalence survey of Coxiella burnetii, the causative agent of Q fever, in beef cattle in Queensland. Methods Serum samples were tested by ELISA for both phase II and phase I antigens of the organism using an Australian isolate. Blood samples were collected at an abattoir that processes beef cattle originating from northern and north‐western Queensland, in addition to blood samples taken from beef cattle across Queensland as part of a second survey. Results Seropositivity was 16.8% (95% confidence interval 16.7–16.8%). Conclusion Evidence of C. burnetii infection in beef cattle has public health implications for occupational exposure of primary producers and veterinarians and for the proximity of beef cattle properties to residential areas in regional Queensland. This study is the first known investigation of C. burnetii seroprevalence in beef cattle in Queensland and the first known use of an Australian C. burnetii isolate for screening using both phase II and phase I antigens.  相似文献   

8.
Coxiella burnetii causes significant reproduction losses in livestock and the disease Q fever in humans. Transmission of C. burnetii is facilitated by the stability of the bacterium in the environment and the susceptibility of a variety of host species to infection. Consequently, inter-species transmission occurs frequently through either direct or indirect contact. Wildlife may represent reservoirs of C. burnetii and could therefore be a source of infection for domestic animals. Understanding the prevalence of C. burnetii infections at the wildlife-livestock interface is important for disease control. This study aimed to investigate the extent of C. burnetii exposure in wild deer in eastern Australia. Serum samples were obtained from 413 wild deer from seven regions in four eastern Australian states from 2017 to 2020. Antibodies were detected using a commercial Q fever antibody kit validated for ruminants. Seroprevalence of C. burnetii antibodies in deer was determined and true prevalence estimated, for each region. The overall seroprevalence of C. burnetii antibodies in wild deer was 3.4% (14 seropositive of 413 deer sampled) with true prevalence estimated to be 4.3% (95% credible interval: 0.6%, 10.9%). Seropositive deer were identified only in Queensland (7/108 seropositive) and northern New South Wales (7/120 seropositive). This geospatial distribution is consistent with seropositivity in other animal species and indicative of the level of C. burnetii in the environment. The low seroprevalence suggests that wild deer are unlikely to be a major reservoir species for C. burnetii in eastern Australia but may still be implicated in inter-species transmission cycles.  相似文献   

9.
To estimate the effect of vaccination in preventing acute Q fever in individuals occupationally exposed to Coxiella burnetii, a systematic review and meta‐analysis were undertaken in controlled trials and observational studies. Publications were obtained through a scoping study of English and non‐English articles, and those reporting a commercially licensed or licensable vaccine compared with an unvaccinated or placebo control group were included in the review. Two authors performed independent assessment of risk of systematic error and data extraction. One controlled trial and five cohort publications met the inclusion criteria. All trials used a Henzerling phase I vaccine. A random‐effects meta‐analysis estimated significant protection in abattoir workers (RR = 0.07; 95% confidence interval [CI] 0.02–0.22) compared with the control individuals. In individuals with rare or sporadic contact with the abattoir, a significant benefit of vaccination was also found (RR = 0.06; 95% CI 0–0.93). Overall, the vaccine effectively prevented acute Q fever in individuals responsible for handling animals or their products and those working in the abattoir but not directly exposed to animals (RR = 0.06; 95% CI 0.02–0.18). Caution must be taken when interpreting the effect of C. burnetii vaccination as significant heterogeneity amongst publications was observed. A meta‐regression found no significant univariate associations. This may reflect the uncertainty provided by reported data in the cohort publications. Potential systematic biases were present in the publications, and evidence included may not be sufficiently robust to extrapolate the effect of vaccination on occupationally exposed groups beyond the population of abattoir employees in Australia where all included studies occurred.  相似文献   

10.
A Q fever epidemic occurred in 2013 in a small military residential area in Cayenne, French Guiana. A retrospective cohort study was conducted to identify Q fever risk factors. Confirmed acute Q fever case was defined as positive serology (IgM ≥ 50 and phase II IgG ≥ 200) and/or positive qPCR on serum or blood. In addition, wild mammals were captured at the study site and tested by serology and real-time PCR performed on blood, vaginal swabs and ticks. The attack rate was 20 percent (11/54). All the cases were symptomatic with fever >38.5 °C and community-acquired pneumonia for four cases. Log binomial multivariate models identified two independent risk factors associated with Q fever: to clean the house (RRa = 7.5 CI95% [1.03–55.3]) and to carry a three-toed sloth in arms (RRa = 2.6 CI95% [1.1–5.8]). Eighteen marsupial individuals were captured, all PCRs were negative but 17% (3/18) had a positive serology. Another study conducted after the epidemic found only one (1/4) three-tooth sloth (Bradypus tridactylus) with feces highly infectious for C. burnetii MST17. The same strain C. burnetii genotype 17 has been laboratory- confirmed in this mammal and in human cases. These results support the implication of three-toed-sloth in this epidemic. Human contamination mainly occurs through inhalation of infectious aerosols as suggested by high relative risk associated with house cleaning activities and pulmonary forms of the disease, and through direct contact with three- toed-sloth. Positive serological results among marsupials confirm wildlife exposure and suggest a more complex sylvatic transmission cycle among wild mammals.  相似文献   

11.
To improve estimates of C. burnetii epidemiology in Kenya, a survey was undertaken in small ruminants in Baringo County, where acute cases of Q fever in humans had been reported in 2014. From 140 household herds selected, 508 (60.5%) goats and 332 (39.5%) sheep were included and an indirect ELISA assay for C. burnetii IgG antibodies performed. In addition, epidemiological information at both herd and animal level was collected. Generalized mixed‐effects multivariable logistic model using herd as the random effect was used to determine variables correlated to the outcome. Overall seroprevalence was 20.5% (95% CI: 17.8%, 23.3%). Goats had 26.0% (95% CI: 22.2%, 30.0%) compared to sheep 12.2% (95% CI: 8.7%, 16.0%). Nomadic pastoralism, goats and older animals (>1 year) were associated with greater risk of C. burnetii seropositivity (P = ≤0.05). Heterogeneity in C. burnetii seropositivity was observed across the sublocations (P = 0.028). Evidence of C. burnetii exposure in small ruminants revealed poses a potential risk of exposure to the people living in close proximity to the animals. We recommended integrated animal–human surveillance and socio‐economic studies for C. burnetii, to aid our understanding of the risk of transmission between the animals and humans, and in the design of prevention and control strategies for the disease in the region.  相似文献   

12.
Establishing the diagnosis of Q fever (Coxiella burnetii) is important in directing the application of therapy to prevent severe manifestations of the infection. In Alberta, Canada, the presence of high livestock density creates a significant risk of infection, but to date, there has been no comprehensive analysis of local Q fever epidemiological trends and exposure patterns. Between 1998 and 2011, there were 39 cases and an overall adjusted case rate of 0.087 per 100 000 person‐years. Cases were identified most commonly during the May–June season (Figure 2). The median age at date of diagnosis was 49.0 (range: 8.7–71.5) with slightly higher percentage of cases in men (56.4%) than in women (43.6%). There was an apparent geographical clustering of cases. The majority of these cases, with exposure data (n = 31), reported contact with farms and/or livestock, predominantly cattle (6), sheep (5) and goats (5). Cases tended to occur in census divisions with higher density of sheep, goats and cattle. Our findings suggest the need for an increase in targeted messages about Q fever to those in the livestock industry, as more targeted case finding among patients with a high index of suspicion for Q fever. In addition, widespread implementation of a standard questionnaire for cases would enhance surveillance of Q fever in Alberta.  相似文献   

13.
The complement fixation and the microimmunofluorescence tests were used to determine the prevalence of antibodies to Coxiella burnetii, the etiological agent of Q fever, among veterinarians and slaughterhouse workers in Nova Scotia. Seventeen percent of the 65 veterinarians and 12.5% of the 96 slaughterhouse workers tested had complement fixing antibodies to phase II C. burnetii antigen. Forty-nine percent of the veterinarians and 35% of the slaughterhouse workers had an antibody titer of ≥ 1:8 to phase II C. burnetii antigen using the microimmunofluorescence test while 30% of the veterinarians and 14.5% of the slaughterhouse workers had antibodies detected to phase I antigen. Male veterinarians had a significantly higher rate of antibodies to C. burnetii phase II antigen compared with female veterinarians (p < 0.0087). An univariate analysis revealed that positive antibody titers (microimmunofluorescence test) to phase II antigen among veterinarians were significantly associated with exposure to cow, sheep and goat placentas; to stillborn calves, newborn foals, lambs and kids. By multivariate analysis the risk was highest for male veterinarians exposed to sheep placentas.  相似文献   

14.
Coxiella burnetii, the causative agent of Query fever (Q fever), is among the most highly infectious zoonotic pathogens transmitted among livestock, with chronic effects challenging to veterinary and medical detection and care systems. Transmission among domestic livestock species can vary regionally due to herd management practices that determine which livestock species are raised, whether or not livestock are in contact with wildlife, and the susceptibility of these livestock to infection. To explore how different livestock management practices are associated with the risk of infection in multispecies environments, we carried out a comparative study of three types of herd management systems in the central Kenyan county of Laikipia: agro‐commercial, mixed conservancy/commercial, and smallholder ranches. We tested C. burnetii antibody seroprevalence in four common livestock species. Across all management types, the highest seroprevalence was in camels (20%), followed by goats (18%), sheep (13%), and cattle (6%). We observed a lower odds of testing seropositive for young compared to adult animals (adjusted OR = 0.44 [95% CI 0.24, 0.76]), and for males compared to females (adjusted OR = 0.52 [95% CI 0.33, 0.80]). Animals from mixed conservancy/commercial and smallholder operations had a higher odds of testing seropositive compared to animals from agro‐commercial ranches (adjusted OR = 5.17 [95% CI 2.71, 10.44] and adjusted OR = 2.21 [95% CI 1.17, 4.43] respectively). These data suggest that herd management practices might affect the transmission dynamics of C. burnetiiin arid African ecosystems like those seen in Kenya where several transmission modes are possible, risk of drought has promoted new livestock species such as camels, and multiple wildlife species may co‐occur with livestock on the landscape. Further longitudinal studies are needed to disentangle the mechanisms underlying these patterns, and further explore transmission patterns between wildlife, domestic animal, and human populations.  相似文献   

15.
From 2007 through 2010, the Netherlands experienced the largest Q fever epidemic ever reported. This study integrates the outcomes of a multidisciplinary research programme on spatial airborne transmission of Coxiella burnetii and reflects these outcomes in relation to other scientific Q fever studies worldwide. We have identified lessons learned and remaining knowledge gaps. This synthesis was structured according to the four steps of quantitative microbial risk assessment (QMRA): (a) Rapid source identification was improved by newly developed techniques using mathematical disease modelling; (b) source characterization efforts improved knowledge but did not provide accurate C. burnetii emission patterns; (c) ambient air sampling, dispersion and spatial modelling promoted exposure assessment; and (d) risk characterization was enabled by applying refined dose–response analyses. The results may support proper and timely risk assessment and risk management during future outbreaks, provided that accurate and structured data are available and exchanged readily between responsible actors.  相似文献   

16.
Coxiella burnetii (C. burnetii) is the causative agent of Q fever both in humans and animals. The objectives of this study were to investigate seropositivity and bacterial shedding in heifers and primiparous cows in an endemically infected herd and to assess the effects on post‐partum diseases, fertility and milk production. At the age of 9 months, 96 Holstein heifers were included. Sampling was performed reproduction‐orientated: at the beginning of the study, at detection of first pregnancy, 3 weeks before expected calving date (blood serum), at parturition and after 21, 42, 100 and 150 days in milk (DIM) (blood serum, vaginal swabs and milk). Serum samples were investigated by a commercial ELISA for the presence of specific antibodies and vaginal swabs and milk samples by PCR to detect C. burnetii DNA. Individual animal data (calving ease, stillbirth, retained foetal membranes, puerperal metritis, endometritis after 42 DIM, presence of corpus luteum after 42 DIM, interval calving‐first service, interval calving‐conception, number of inseminations until 150 DIM, proportion of pregnant cows until 100 and 150 DIM, proportion of pregnant cows after first service and data of the dairy herd improvement test) were documented. All heifers were seronegative at the age of 9 months and 3 weeks before the expected calving date. Subsequently, the proportion of seropositive animals and the antibody score increased significantly towards 42 and 100 DIM, respectively. Vaginal C. burnetii shedding was highest at parturition (30.9%), while the most positive milk samples were detected after 100 DIM (15.3%). Coxiella burnetii seropositivity and shedding had no impact on parameters of reproduction. However, milk fat yield was declined in puerperal vaginal shedders and cows which seroconverted during their first 42 DIM, respectively.  相似文献   

17.
Q fever is a zoonotic illness which frequently has a non-specific clinical presentation. Cases among deployed US military personnel have been reported in increasing numbers indicating an emerging at-risk occupational group. Banked serum specimens were utilized to estimate seroprevalence and risk factors among military personnel deployed to Iraq. Coxiella burnetii antibody testing was performed and epidemiologic data were analysed from 909 servicemembers. The overall number who seroconverted to Q fever was 88 (10%). The most common ICD-9 code assigned to Q fever cases was fever not otherwise specified (NOS) (45%). A combat occupational specialty was a risk factor for Q fever seroconversion (OR = 1.8, 95% CI: 1.1-2.8) as well as receiving a primary diagnosis of fever NOS (OR = 2.6, 95% CI: 1.6-4.1). These findings indicate that Q fever is a significant infectious disease threat to military personnel deployed to Iraq. A heightened awareness among physicians is necessary to ensure prompt diagnosis and treatment.  相似文献   

18.
Felis catus, the domestic cat, is the definitive host for parasites that may result in adverse health outcomes in humans. Prevalence data of zoonotic parasites in feral cats, which are free‐roaming domestic cats that are born and live in the wild, are limited. The objective of this study was to assess seroprevalence of Toxoplasma gondii antibodies and copro‐prevalence of potentially zoonotic parasites in feral cats and to evaluate risk factors for seropositivity and faecal excretion of parasites. In this cross‐sectional survey, 275 feral cats at Trap‐Neuter‐Release clinics in Central Virginia were tested for parasites via faecal flotation, direct immunofluorescence assay (faeces) and modified agglutination testing (serum). Toxoplasma gondii seroprevalence was 22.35% (95% CI: 17.47–27.86). Faecal prevalence of T. gondii‐like oocysts was 1.04% (95% CI: 0.13–3.71), Toxocara cati 58.85% (95% CI: 51.54–65.89), Ancylostoma spp. 18.75% (95% CI: 13.49–25.00), Giardia duodenalis 5.73% (95% CI: 2.89–10.02) and Cryptosporidium spp. 3.33% (95% CI: 1.37–7.24). Female cats were more likely than males to excrete faecal Ancylostoma spp. eggs (OR 2.88; 95% CI 1.34–6.17). Adults were more likely than immature cats to be seropositive (OR 2.10; 95% CI: 1.11–3.97) and to excrete faecal Ancylostoma spp. eggs (OR 2.57; 95% CI: 1.10–5.99). However, immature cats were more likely than adults to excrete T. cati eggs (OR 6.79; 95% CI: 3.31–13.90) and to excrete one or more potentially zoonotic species (OR 4.67; 95% CI: 2.28–9.55) in faeces. Results of this study have implications for human and animal health and highlight the importance of collaboration between public health, medical and veterinary communities in preventive efforts.  相似文献   

19.
The Netherlands underwent a large Q fever outbreak between 2007 and 2009. In this paper, we study spatial and temporal Coxiella burnetii exposure trends during this large outbreak as well as validate outcomes against other published studies and provide evidence to support hypotheses on the causes of the outbreak. To achieve this, we develop a framework using a dose–response model to translate acute Q fever case incidence into exposure estimates. More specifically, we incorporate a geostatistical model that accounts for spatial and temporal correlation of exposure estimates from a human Q fever dose–response model to quantify exposure trends during the outbreak. The 2051 cases, with the corresponding age, gender and residential addresses, reside in the region with the highest attack rates during the outbreak in the Netherlands between 2006 and 2009. We conclude that the multiyear outbreak in the Netherlands is caused by sustained release of infectious bacteria from the same sources, which suggests that earlier implementation of interventions may have prevented many of the cases. The model predicts the risk of infection and acute symptomatic Q fever from multiple exposure sources during a multiple‐year outbreak providing a robust, evidence‐based methodology to support decision‐making and intervention design.  相似文献   

20.
Coxiella burnetii is considered a re‐emerging zoonosis in many countries. The bacterium is enzootic in livestock and wildlife in the United States, and environmental contamination is widespread. Despite the potential for exposure, the estimated prevalence of Q fever in humans and animals is not well elucidated, and reported human infections in the United States are relatively rare. Zoonotic transmission of the bacterium is usually associated with abortions in domestic ruminants, but other modes of transmission, such as contact with infected blood and/or milk during field dressing of infected wildlife, have not been thoroughly investigated. Studies of zoonotic pathogen transmission between animal reservoir hosts and humans are usually established in response to documented emergence or re‐emergence of a zoonosis in a particular locale, and, as such, the prevalence of infection in wildlife is largely unknown for many zoonotic pathogens, including C. burnetii. The objective of this study was to create a disease risk surface for C. burnetii seroprevalence in wild white‐tailed deer (Odocoileus virginianus) in New York State. Blood samples were collected from hunter‐harvested deer from across New York State in 2009 and 2010. The samples were processed and tested for the presence of anti‐C. burnetii antibodies via indirect microimmunofluorescence assays using phase II C. burnetii strain RSA439. Overall, 14.50% of the tested white‐tailed deer were C. burnetii phase II seropositive. The dual Kernel density estimation method was used to create a smoothed disease risk surface, which revealed variation in seroprevalence ranging from 0% to 32.0%. Areas of higher seroprevalence were detected in four discrete areas of Central New York and in one additional area in the southwest corner of the northern part of the state. This suggests certain locales where humans may be at increased risk for exposure to the bacterium secondary to contact with potentially infected deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号