首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
BLACKSHAW  HARKER 《Weed Research》1998,38(1):55-62
Field studies were conducted to determine the effect of various densities and duration of interference of Erodium cicutarium (L.) L'Her. ex Ait. on the yield of wheat, oilseed rape, pea and dry bean. The magnitude of yield reductions caused by E. cicutarium differed among the crops. Results indicate that the ranking of crop tolerance to E. cicutarium, when established at their recommended planting densities, was wheat > oilseed rape > pea ? dry bean. Maximum yield reduction occurred at E. cicutarium densities of 100–200 plants m?2 and were 36% for wheat, 37% for oilseed rape, 82% for dry bean and 92% for pea. Crop yield progressively decreased as the duration of E. cicutarium interference increased. Three weeks of E. cicutarium interference after emergence was sufficient to reduce the yield of all crops, indicating the importance of controlling this weed early in the growing season. The mean yield reduction for each week of E. cicutarium interference was 1·6%, 2·7%, 3·6% and 6·3% for wheat, oilseed rape, pea and dry bean respectively. E. cicutarium is therefore a weed that warrants consideration for control in annual cropping systems.  相似文献   

2.
Effects of density and period of competition by Solanum nigrum L. on direct seeded tomatoes in relation to weed control The effects of density and period of competition from Solanum nigrum L. were measured in direct seeded tomatoes given weed control treatments currently used in south-east France. S. nigrum emerging after a diquat treatment at the 2–3 leaf stage of the crop and thinned to low densities (<12.8 plants ha?1) at the 5–6 leaf stage of the crop caused significant yield loss if left to compete with the crop until harvest. Yield reduction was smaller if the same weed densities were present only until the onset of flowering. The regression curves of yield on weed density differed as annual climatic variations affected sowing date and plant growth; a comparison between years was made using the relation ‘crop yield × weed biomass/crop biomass’. Significant interactions between weed density and period of competition were found with yield of both green and red fruit. For late sown crops with low densities of S. nigrum two weed control treatments at the 5–6 leaf stage and at the onset of flowering were sufficient to prevent yield loss.  相似文献   

3.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

4.
Studies on competition between Ridolfia segetum Maris, and sunflower (Helianthemum annuus L.) were conducted at eight locations in southern Spain in 1990 and 1991. in order to define competition models and to estimate from these economic thresholds as affected by crop inputs and potential yields. Competition losses in sunflower crops ranged from 19% to 56% of weed–free yields. There were slightly better correlations between percentage sunflower reduction and weed density than with weed dry weight, (?0.66 and ?0.59, respectively). The weed competitive index, or sunflower crop dry weight reduction per unit dry weight of R. segetum, was 1.09. The percentage yield losses due to weed density (NPRt) were fitted to multiple linear, quadratic, exponential and hyperbolic models. The hyperbolic equation, %RSY=100 (1+1/b*NPRt)?1, where b=0.14 and is the R. segetum competitive ability index, had the lowest error sum of squares (SSE), and gave the best biological explanation for the competition response. Early emergence (before mid–March) made weeds about 1.5 times more competitive than late emergence. The economic threshold to offset the cost of a shallow post–emergence tillage, assuming 70% control efficiency, ranged from about 2.5 plants m ?2 for low–yielding crops(1200kgha?1) to less than one plant m?2 for higher–yielding crops (2800 kg ha?1).  相似文献   

5.
The growth and competition of wild oats (Avena fatua L.) emerging at different times, and the time of onset of competition by them were studied using natural populations in spring barley. In one experiment in 1972, wild oats emerging in the 0–0?5, 0?5–2?5, 2?5–4 crop leaf stages at densities of 54, 46, 15 m ?2 respectively were allowed to compete all season with the crcp. These gave rise to 82, 17 and l% of all seed shed and caused 16%, and two non-significant yield losses respectively. In two other experiments in 1973, nearly all the wild oats that caused yield losses had emerged by the crop 2˙45 leaf stage. Where wild oats emerging up to the crop 2?5 leaf stage were removed, the later ones did not compensate by making extra growth. In one of these experiments in which densities of crop and weed were 416 and 414 m 2, and in the other where they were 295 and 294 m 2 respectively, grain yield losses were significant if the wild oats remained in the crop until the crop had 2?5–4?5 leaves and 4?5–6?5 leaves respectively. In a third experiment in 1973 with initial densities of 464 wild oats and 336 barley plants m ?2, and where a top dressing of nitrogen was given at the crop 3–4 leaf stage, unlike the other two experiments in 1973 where all nitrogen was applied at sowing, no yield losses resulted unless the wild oats remained in the crop until after the crop 6 leaf stage.  相似文献   

6.
G Fried  B Chauvel  X Reboud 《Weed Research》2015,55(5):514-524
Temporally repeated data sets can provide useful information about the management practices governing changes in the arable weed flora. This study aimed (i) to investigate changes in the most common weed species in winter oilseed rape crops in France between the 1970s and the 2000s and (ii) to pinpoint the main plant biological traits and associated management practices underlying the development of a specific weed flora in this crop. We compared two large‐scale surveys covering France in the 1970s and the 2000s, the later survey including several floristic samplings, on two dates, and both herbicide‐free control and treated plots. This last survey aimed to identify the species best able to maintain high densities over a growing season of oilseed rape. Since the 1970s, the frequency of two‐thirds (69%) of the 26 most common species has changed, spectacularly in some cases, with several species once considered rare becoming very common (e.g. Geranium dissectum) and, conversely, some formerly common species becoming rarer (e.g. Stellaria media). Our results indicated a general strong increase in specialist weeds of oilseed rape. Weed species success was favoured by tolerance to oilseed rape herbicides and germination synchronous with the crop. The proportion of specialist oilseed rape weed species tended to increase with herbicide treatment intensity and to decrease with increases in the proportion of spring‐sown crops in the rotation. Changes to the rotation may therefore constitute an additional or alternative means of controlling some weeds well adapted to oilseed rape crops.  相似文献   

7.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

8.
The potential of oilseed rape to suppress weed growth while maintaining optimal yield and quality is not well understood under field conditions in Australia. This study, conducted in Condobolin and Wagga Wagga, New South Wales (NSW), during 2015 and 2016, examined a diverse range of commercial oilseed rape cultivars for their inherent ability to suppress weeds and maintain yields when in competition with natural weed infestations, with and without pre-emergent herbicide treatment. Cultivar differences were observed in oilseed rape canopy architecture and yield; however, early-season biomass, light interception, leaf area index and visual vigour ratings exhibited both year and location interactions. Cultivars with the highest biomass, light interception, leaf area indices and visual vigour were typically also the most weed-suppressive, in particular GT-50 and Hyola 600RR. Although crop and weed biomass accumulation differed significantly among cultivars for both location and year, weed biomass was inversely related to cultivar biomass in both years and locations. Hybrid Hyola and GT-50 cultivars exhibited up to 50% less weed biomass while maintaining consistently high levels of dry crop biomass. In addition, pre-emergent herbicide applications reduced weed infestation and contributed to higher crop yield in both locations and years. Given the consistent aboveground competitive ability of certain oilseed rape cultivars, our study demonstrated that diverse cultivar-dependent competitive traits such as early growth vigour, biomass production, absorption of photosynthetically active radiation and production and retention of crop residue significantly impacted weed establishment and total weed biomass. Our findings suggest that cultivar selection offers potential as a tool for maintaining suitable grain yield in the presence of weeds while potentially delaying the development of herbicide resistance through efficacious weed suppression.  相似文献   

9.
Modelling the effect of crop and weed on herbicide efficacy in wheat   总被引:1,自引:0,他引:1  
BRAIN  WILSON  WRIGHT  SEAVERS  & CASELEY 《Weed Research》1999,39(1):21-35
Recommended field application rates of herbicides have to give effective weed control in every situation and are, thus, often higher than that required for specific fields. An understanding of the interaction between crop:weed competition and herbicide dose may, in many cases, allow herbicide application rates to be reduced, important both environmentally and economically. We have developed a model of the interaction between crop:weed competition and herbicide dose, using an empirical model of the relationship between crop yield and weed biomass (related to weed density), and an empirical model of the relationship between weed biomass and herbicide dose. The combined model predicts crop yield, given herbicide dose and weed biomass at an interim assessment date. These crop yield loss predictions may be used to quantify the herbicide dose required to restrict yield loss to a given percentage. Parameters of the model were estimated and the model tested, using results from experiments, which used cultivated oats ( Avena sativa ) or oilseed rape ( Brassica napus ) as model weeds in a crop of winter wheat ( Triticum aestivum ).For the crop:weed:herbicide combinations investigated there was little increase in crop yield for herbicide dose rates above 20% of recommended field rates, in broad agreement with the model predictions. There may still be potential for further reduction below this level on economic grounds; the model could be used to estimate the `break-even' herbicide dose.  相似文献   

10.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

11.
The effects of a range of herbicide doses on crop–multiple weed competition were investigated. Competitivity of Galium aparine was approximately six times greater than that of Matricaria perforata with no herbicide treatment. Competitivities of both weeds decreased with increasing herbicide dose, being well described by the standard dose–response curve with the competitivity of M. perforata being more sensitive than that of G. aparine to a herbicide mixture, metsulfuron‐methyl and fluroxypyr. A combined model was then developed by incorporating the standard dose–response curve into the multivariate rectangular hyperbola competition model to describe the effects of multiple infestation of G. aparine and M. perforata and the herbicide mixture on crop yield. The model developed in this study was used to predict crop yield and to estimate the herbicide dose required to restrict crop yield loss caused by weeds to an acceptable level. At the acceptable yield loss of 5% and the weed combination of 120 M. perforata plants m?2 and 20 G. aparine plants m?2, the model recommends a mixture of 1.2 g a.i. ha?1 of metsulfuron‐methyl and 120 g a.i. ha?1 of fluroxypyr.  相似文献   

12.
Soybean is the most important oilseed crop that is grown in India. Horse purslane (Trianthema portulacastrum L.) infests soybean heavily, causing enormous yield losses and threatening the sustainability of the soybean production system. Information on the interference and economic threshold of horse purslane will be useful for the effective management of horse purslane in soybean. This will lead to the rationalization of herbicide use and the reduction of herbicide input into the environment. It was observed in this study that “a composite stand of weeds including horse purslane”, and 200 horse purslane plants per m2 were equally competitive to soybean. These two treatments resulted in a higher dry weight, growth rate, and uptake of N, P, and K by the weeds and/or horse purslane, compared to the other treatments. They caused more reductions in soybean growth (dry weight, height, crop growth rate, net assimilation rate, and leaf area index) and resulted in a more significant yield reduction than did the other treatments. The weed density–crop yield and the relative leaf area–crop yield models were found to be equally effective in simulating soybean yield losses in relation to a wide range of horse purslane densities and the regression equations were a good fit. The quadratic equations revealed that a density of approximately six, five, and four horse purslane plants per m2 would be the economic threshold levels of horse purslane in soybean cultivation, when considering the 70, 80, and 90% horse purslane control efficiencies, respectively, of the herbicide, lactofen.  相似文献   

13.
Predicting the growth and competitive effects of annual weeds in wheat   总被引:1,自引:0,他引:1  
The growth and competitiveness of 12 annual weed species were studied in crops of winter wheat, in which weeds were sown to give a wide range of plant densities. Weed growth patterns were identified; early species which senesced in mid-summer were less competitive than those with a growth pattern similar to that of the crop. Most species had little effect on crop yield in 1987, and this was attributed to a high crop den sity. Crop yield-weed density relationships for all species in 1988 and for Galium aparine in 1987 were well described by a rectangular hyperbola. Species were listed in the following competitive order based on the percentage yield loss per weed m?2: Avena fatua > Matricaria perforata > Galium aparine > Myosotis arvenis > Poa trivialis > Alopecurus myosuroides > Stellaria media > Papaver rhoeas > Lamiumpur-pureum > Veronica persica > Veronica hederi-folia > Viola arvensis. Prediction of yield loss is discussed. The assumptions inherent in using Crop Equivalents (based on relative weights of weed and crop plants), are challenged; with intense competition, weed biomass at harvest failed to replace lost crop biomass, and harvest index was reduced. It is concluded that a competi tive index, derived from yield density relation ships, and expressed as the percentage yield loss per weed m?2, is more likely to reflect the com petitive ability of a species than an index obtained from plant weights in the growing crop.  相似文献   

14.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

15.
Atrazine carryover often limits growers to production of atrazine-tolerant crops the year following application, and allows the increase of triazine-tolerant weed species such as Panicum miliaceum L. (wild proso millet). Tiriazine-resistant Brassica napus L. cv. ‘Triton’ (oilseed rape) was tested to characterize the nature of interspecific interference with P. miliaceum. In a greenhouse study, atrazine at 2.2 kg ha?1 depressed oilseed rape fruit (siliqua) number and fruit dry weight, and delayed flowering, but did not significantly affect height or weight of shoots, Oilseed rape fruit weight was reduced at 200 P. miliaceum plants m?2. fruit number and shoot weight were inhibited at 400 weeds m?2. and height was reduced and flowering delayed at 600 weeds m?2. Number and weight of fruits were reduced by one-third after 8 weeks of interference as compared to oilseed rape grown with the weed for 4 weeks. Oilseed rape height was reduced by 29% and shoot weight by 55% by 600 weeds m?2 and 2–2 kg ha?1 atrazine, while fruit number and weight were reduced by 72%. Oilseed rape shoot weight was reduced by 74% by 600 weeds m?2 for 12 weeks of interference, while fruit number and weight were reduced by 85% and 82%. respectively. In a field study, fluazifop reduced early season P. miliaceum cover by 72%, but did not increase oilseed rape cover. Mid-season P. miliaceum shoot weight was decreased by 97% by fluazifop and oilseed rape shoot weight was increased by 34%. P. miliaceum control increased oilseed rape biomass by 38% at 89 days, but biomass of oilseed rape sown at 11.2 kg ha?1 with 2.2 kg atrazine ha?1 was not decreased by P. miliaceum interference at 89 days.  相似文献   

16.
The competitive abilities of eight winter crops were compared against Lolium rigidum Gaud, (annual ryegrass), an important weed of southern Australia, as a potential strategy to suppress weeds and reduce dependence on herbicides. Two cultivars of each species were chosen to represent the range of competitive ability within each crop and grown in field experiments in 1992 and 1993. The order of decreasing competitive ability (with the ranges of percentage yield reduction from L. rigidum at 300 plants m?2 in parenthesis) was as follows: oats (Avena sativa L.), 2–14%; cereal rye (Secale cereale L.), 14–20%; and triticale (×Triticosecale), 5–24%; followed by oilseed rape, (Brassica napus L.), 9–30%; spring wheat (Triticum aestivum L.), 22–40%; spring barley (Hordeum vulgare L.), 10–55%; and, lastly, field pea (Pisum sativum L.), 100%, and lupin (Lupinus angustifolius L.), 100%. Differences in competitive ability of cultivars within each species were identified, but competition was strongly influenced by seasonal conditions. Competition for nutrients (N, P and K) and light was demonstrated. L. rigidum dry matter and seed production were negatively correlated with grain yield of the weedy crops. More competitive crops offer the potential to suppress grass weeds while maintaining acceptable grain yields. Ways of improving the competitive abilities of grain legume crops are discussed.  相似文献   

17.
The outcome of crop-weed competition should be predicted as early as possible in order to allow time for weed control measures. Maize grain yield losses caused by interference from Amaranthus retroflexus L. (redroot pigweed) were determined in 1991 and 1992. The performance of three empirical models of crop-weed competition were evaluated. Damage functions were calculated based on the weed density or relative leaf area of the weed. In the yield loss-weed density model, values of I (percentage yield loss at low weed density) were relatively stable for similar emergence dates of A. retroflexus across years and locations. Estimated maximum yield loss (A) was more variable between locations and may reflect environmental variation and its effect on crop-weed competition, at least in 1991. The two-parameter yield loss-relative leaf area model, based on m (maximum yield loss caused by weeds) and q (the relative damage coefficient) gave a better fit than the single-parameter version of the model (which includes only q). In both relative leaf area models, the values of q varied between years and locations. Attempts to stabilize the value of q by using the relative growth rate of the leaves of the crop and weed were successful; however, the practical application of such relative leaf area models may still be limited owing to the lack of a method to estimate leaf area index quickly and accurately.  相似文献   

18.
A new simple empirical model for early prediction of crop losses by weed competition was introduced. This model relates yield loss to relative leaf area of the weeds shortly after crop emergence using the relative damage coefficient q as the single model parameter. The model is derived from the hyperbolic yield density relationship and therefore accounts for the effects of weed density. It is shown that the model also accounts for the effect of different relative times of weed emergence. A strong advantage of the approach is that it can be used when weeds emerge in separate flushes. The regression model described experimental data on sugar-beet – lambsquarters (Beta vulgaris L. –Chenopodium album L.) and maize-barnyard grass (Zea mays L. –Echinochloa crus-galli L.) competition precisely. The model describes a single relationship between crop yield loss and relative leaf area of the weeds over a wide range of weed densities and relative times of weed emergence. Possibilities for scientific and practical application of the model are discussed.  相似文献   

19.
The performance of three empirical models describing white bean yield loss (YL) from common ragweed competition was compared using field experiments from Staffa and Woodstock, both in Ontario, Canada, in 1991 and 1992. One model was based upon both weed density and relative time of emergence. The other two models described yield loss as a function of weed leaf area relative to the crop. The model based on both weed density and relative time of emergence best described the data sets. The predicted maximum yield loss (A) and the parameter for relative time of weed emergence (C) varied across locations and years whereas the yield loss at low weed density (I) was relatively more consistent across locations and years. Use of thermal time (base temperature=10oC) rather than calendar days did not change the overall fit of the model, but reduced the value of the parameter for the relative time of weed emergence (C). The two parameter leaf area model accounting for maximum yield loss (m) gave a better fit to the data compared with the one parameter model. The relative damage coefficient (q) varied with time of leaf area assessment, location and year. Values of q calculated from relative leaf area growth rates of the crop and weed were similar to observed values. The relationship between q and accumulated thermal time was linear but varied with location and year. As management tools, models based upon relative leaf area have advantages over models based on density and relative time of emergence since the level of weed infestation needs only to be assessed once, whereas density and emergence time require frequent observations. The ability to assess accurately and quickly both the crop and weed leaf area, however, may limit the practical application of models based on leaf area. The inability of empirical models to account for year–to–year variation in environmental conditions was observed.  相似文献   

20.
Modelling the effects of weeds on crop production   总被引:3,自引:0,他引:3  
M. J. KROPFF 《Weed Research》1988,28(6):465-471
In most quantitative studies on interplant competition, static regression models are used to describe experimental data. However, the generality of these models is limited. More mechanistic models for interplant competition, which simulate growth and production of species in mixtures on the basis of the underlying physiological processes, have been developed in the past decade. Recently, simulation models for competition between species for light and water were improved and a detailed version was developed for sugarbeet and fat hen (Chenopodium album L.). The model was validated with data sets of five field experiments, in which the effect of fat hen on sugarbeet production was analysed. About 98% of the variation in yield loss between the experiments (which ranged from –6 to 96%) could be explained with the model. Further analysis with the model showed that the period between crop and weed emergence was the main factor causing differences in yield loss between the experiments. Sensitivity analysis showed a strong interaction between the effect of the variables weed density and the period between crop and weed emergence on yield reduction. Different quantitative approaches to crop-weed competition are discussed in view of their practical applicability. Simulations of experiments, where both the weed density and the period between crop and weed emergence were varied over a wide range, showed a close relation between relative leaf cover of the weeds shortly after crop emergence and yield loss. This relation indicates that relative leaf cover of the weeds accounts for both the effect of weed density and the period between crop and weed emergence. This relation has the potential to be developed into a powerful tool for weed-control advisory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号