首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
6.
BACKGROUND: Finger millet is a major food crop as well as feed and fodder for livestock, especially in regions of southern India. A sturdy crop to fluctuating environmental conditions, it can be cultivated in all seasons of the year. Leaf, neck and finger blast caused by Pyricularia grisea Sacc. and Bipolaris setariae (Saw.) Shoem, as well as leaf spot disease, Bipolaris nodulosa (Berk & M.A.Curtis) Shoem, are major production constraints in southern India. Apart from environmental conditions, the use of harvested seeds by farmers is a major reason for disease prevalence. Benzophenone analogues have been investigated for controlling phytopathogenic fungi. In addition, the most important applications of azetidin‐2‐ones are as antibiotics. Based on this information, the present study was conducted to explore the antifungal activity of integrated 2‐azetidinonyl and 1,3,4‐oxadiazoles moieties into a benzophenone framework. RESULTS: A simple high‐yielding method for the integration of heterocyclic rings, namely 2‐azetidinonyl, at the benzophenone nucleus has been achieved, starting from substituted 2‐hydroxybenzophenones under mild conditions on a wet solid surface using microwave irradiation. In the present study, an array of newly synthesised compounds, 2‐azetidinonyl‐5‐(2‐benzoylphenoxy)methyl‐1,3,4‐oxadiazoles, were screened for their antifungal property against blast and leaf spot causing fungi associated with the seeds of finger millet, cv. Indof‐9. CONCLUSION: Two of the newly synthesised compounds showed promising effects in depleting the incidence of seed‐borne pathogenic fungi of finger millet. The suppression of Pyricularia grisea and Bipolaris setariae resulted in enhanced seed germination and seedling growth. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
8.
9.
10.
Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat‐based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer‐reviewed literature. Results from a vote‐counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry  相似文献   

11.
Meloidogyne species pose a significant threat to crop production in Africa due to the losses they cause in a wide range of agricultural crops. The direct and indirect damage caused by various Meloidogyne species results in delayed maturity, toppling, reduced yields and quality of crop produce, high costs of production and therefore loss of income. In addition, emergence of resistance‐breaking Meloidogyne species has partly rendered various pest management programmes already in place ineffective, therefore putting food security of the continent at risk. It is likely that more losses may be experienced in the future due to the on‐going withdrawal of nematicides. To adequately address the threat of Meloidogyne species in Africa, an accurate assessment and understanding of the species present, genetic diversity, population structure, parasitism mechanisms and how each of these factors contribute to the overall threat posed by Meloidogyne species is important. Thus, the ability to accurately characterize and identify Meloidogyne species is crucial if the threat of Meloidogyne species to crop production in Africa is to be effectively tackled. This review discusses the use of traditional versus molecular‐based identification methods of Meloidogyne species and how accurate identification using a polyphasic approach can negate the eminent threat of root knot nematodes in crop production. The potential threat to Africa posed by highly damaging and resistance‐breaking populations of ‘emerging’ Meloidogyne species is also examined.  相似文献   

12.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

13.
14.
An investigation, using herbicidal pot tests in a greenhouse condition, was conducted to determine the whole‐plant dose–response relationships to several acetolactate synthase (ALS)‐inhibiting herbicides of sulfonylurea (SU)‐resistant Schoenoplectus juncoides with various Pro197 mutations in ALS that was collected from Japanese rice paddy fields. All the tested SU‐resistant accessions with a Pro197 mutation were highly resistant to two commonly used SU herbicides (imazosulfuron and bensulfuron‐methyl), but were much less resistant to another SU herbicide, metsulfuron‐methyl, and were substantially not resistant to imazaquin‐ammonium. These cross‐resistance patterns have been known previously in fragments of S. juncoides and other weed species and were comprehensively confirmed in this study with a whole set of Pro197 mutations. The analyses of resistance levels, based on ED90 values, newly showed that different accessions with a common amino acid substitution in ALS1 showed similar responses to these herbicides (confirmed with four amino acid substitutions), that the rankings of resistance levels that were conferred by various Pro197 mutations in ALS1 differed among the SU herbicides and that the resistance levels of the ALS2‐mutated accessions were higher than, lower than or similar to those of the corresponding ALS1‐mutated accessions, depending on the compared pair, but the deviation patterns were generally similar among the SU herbicides in each compared pair. The final finding might suggest that the abundance of ALS2 is not as stable as that of ALS1. In addition, as a result of these new findings, together with expected further research, a suggested possibility is that substituting amino acids at Pro197 generally could be estimated by plotting each accession's ED90 values of imazosulfuron and bensulfuron‐methyl in a two‐dimensional graph.  相似文献   

15.
16.
BACKGROUND: Codling moth, Cydia pomonella (L.), has been intensely managed with the organophosphate insecticide azinphos‐methyl for 50 years, and populations have developed resistance. New management programs have been developed and implemented that rely more heavily on other classes of insecticides. A prerequisite for developing effective resistance management strategies for these compounds is to establish their current levels of effectiveness. Adult and neonate larval assays were conducted to assess the response of field‐collected codling moth populations from apple in Washington State. RESULTS: Male codling moth populations exhibited a range of responses to a discriminating concentration of azinphos‐methyl in a survey of 20 populations. Populations from certified organic orchards were more susceptible than those from conventional orchards. Mean fecundity was inversely related to azinphos‐methyl tolerance. Male responses to azinphos‐methyl and acetamiprid varied significantly among populations and were correlated. The residual effectiveness of field applications of both insecticides varied significantly against neonate larvae. Neonate bioassays with insecticide‐dipped fruit found significant differences among populations with azinphos‐methyl, acetamiprid, methoxyfenozide and spinosad, but not with esfenvalerate. CONCLUSION: These results support a concern that alternation of insecticides with different modes of action may not be a sufficient strategy to avoid the evolution of broad‐spectrum insecticide resistance by codling moth. Published 2010 by John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
BACKGROUND: Repeated use of acetyl‐CoA carboxylase (ACCase) inhibitors, especially fenoxaprop and clodinafop, since the late 1980s has selected for resistance in Alopecurus myosuroides Huds. (black‐grass) in France. We investigated whether resistance to pinoxaden, a phenylpyrazoline ACCase inhibitor to be marketed in France, was present in French black‐grass populations. We investigated pinoxaden resistance conferred by five mutant ACCase isoforms. Using 84 French black‐grass field samples, we also compared the frequencies of other mechanisms endowing resistance to fenoxaprop, clodinafop or pinoxaden. RESULTS: ACCase mutant isoforms Leu‐1781, Gly‐2078 and, likely, Cys‐2027 conferred cross‐resistance to pinoxaden, while isoform Asn‐2041 possibly conferred moderate resistance. Other mechanisms of resistance to fenoxaprop, clodinafop and pinoxaden were detected in 99, 68 and 64% of the samples investigated, respectively. Cross‐ or multiple resistance to fenoxaprop or clodinafop and pinoxaden was not systematically observed, suggesting a diversity of mechanisms exist. CONCLUSION: Pinoxaden resistance was observed before pinoxaden release in France. Only a fraction of the mechanisms endowing fenoxaprop or clodinafop resistance also confer pinoxaden resistance. Pinoxaden resistance was likely mostly selected for by ACCase inhibitors, and, in some cases, possibly by herbicides with other modes of action. This illustrates the necessity to use metabolisable herbicides cautiously where black‐grass has evolved non‐target‐site‐based resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号