首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,5‐Diphenyl‐1‐pentanone (A) and 1,5‐diphenyl‐2‐penten‐1‐one (B) are natural products extracted for the first time from Stellera chamaejasme. Laboratory bioassay showed that the two products have strong contact activity and very good anti‐feedant activity against Aphis gossypii and Schizaphis graminum. Both products showed dose‐dependent relationships for both forms of activity against the two aphids, the contact activity of B being about twice that of A. Both products were inferior to methomyl in contact activity but superior in anti‐feedant activity against the two aphids. This is the first report of aphicidal activity in these two compounds, which may represent a new class of aphicide. © 2001 Society of Chemical Industry  相似文献   

2.
3.
BACKGROUND: Finger millet is a major food crop as well as feed and fodder for livestock, especially in regions of southern India. A sturdy crop to fluctuating environmental conditions, it can be cultivated in all seasons of the year. Leaf, neck and finger blast caused by Pyricularia grisea Sacc. and Bipolaris setariae (Saw.) Shoem, as well as leaf spot disease, Bipolaris nodulosa (Berk & M.A.Curtis) Shoem, are major production constraints in southern India. Apart from environmental conditions, the use of harvested seeds by farmers is a major reason for disease prevalence. Benzophenone analogues have been investigated for controlling phytopathogenic fungi. In addition, the most important applications of azetidin‐2‐ones are as antibiotics. Based on this information, the present study was conducted to explore the antifungal activity of integrated 2‐azetidinonyl and 1,3,4‐oxadiazoles moieties into a benzophenone framework. RESULTS: A simple high‐yielding method for the integration of heterocyclic rings, namely 2‐azetidinonyl, at the benzophenone nucleus has been achieved, starting from substituted 2‐hydroxybenzophenones under mild conditions on a wet solid surface using microwave irradiation. In the present study, an array of newly synthesised compounds, 2‐azetidinonyl‐5‐(2‐benzoylphenoxy)methyl‐1,3,4‐oxadiazoles, were screened for their antifungal property against blast and leaf spot causing fungi associated with the seeds of finger millet, cv. Indof‐9. CONCLUSION: Two of the newly synthesised compounds showed promising effects in depleting the incidence of seed‐borne pathogenic fungi of finger millet. The suppression of Pyricularia grisea and Bipolaris setariae resulted in enhanced seed germination and seedling growth. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
A series of novel types of 7‐(4,6‐dimethoxypyrimidin‐2‐yl)oxy ‐ and ‐thio‐3‐methyl‐1 (3H)‐isobenzofuranones were discovered at Dr R Maag AG. From the thio‐isobenzofuranyl series, CGA 279 233—BSI‐proposed common name pyriftalid—was chosen for further development as a grass herbicide for use in rice. General synthetic approaches to these new phthalic acid‐derived compounds are given, with emphasis on the synthesis of pyriftalid and its physico‐chemical behaviour. © 2001 Society of Chemical Industry  相似文献   

14.
15.
16.
17.
Phytophthora root rot (PRR) of avocado, caused by Phytophthora cinnamomi, is a significant threat to sustainable production wherever the crop is grown. Resistant rootstocks in combination with phosphite applications are the most effective options for managing this disease. Recently, the mechanisms underpinning PRR resistance have been investigated by the avocado community. Here, biochemical assays and confocal and scanning electron microscopy were used to investigate early defence responses in PRR resistant and ‐susceptible avocado rootstocks. Zoospore germination and subsequent hyphal growth for the pathogen were significantly inhibited on the surface of resistant avocado roots. When penetration occurred in the resistant R0.06 rootstock, callose was deposited in the epidermal cells, parenchyma and cortex of roots. In addition, β‐1,3‐glucanase was released early (6 h post‐inoculation, hpi) in response to the pathogen, followed by a significant increase in catalase by 24 hpi. In contrast, susceptible R0.12 roots responded only with the deposition of lignin and phenolic compounds incapable of impeding pathogen colonization. In this study, PRR resistance was attributed to a timely multilayered response to infection by P. cinnamomi.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号