首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
BACKGROUND: An important part of the production area of common bean (Phaseolus vulgaris L.) in Belgium is located on the sandy soils of the provinces of Antwerp and Limburg where Meloidogyne chitwoodi (Golden), M. fallax (Karssen) and M. hapla (Chitwood) are present. The host plant status of ten bean cultivars for root‐knot nematodes was determined by evaluating penetration, development and egg mass formation after inoculation with second‐stage juveniles. RESULTS: The tested cultivars were poor to good hosts for M. chitwoodi, non‐hosts or bad hosts for M. fallax and excellent hosts for M. hapla. Significantly fewer M. fallax were found in the roots, and their development was delayed. Penetration of M. hapla took place over a longer period than that of M. chitwoodi and M. fallax. The number of mature females of M. chitwoodi in cv. Polder 6 weeks after inoculation was no different from that in other cultivars, although fewer egg masses were found on this cultivar in the screening test. There was no influence of M. chitwoodi on vegetative growth of cv. Polder. CONCLUSION: The differences found in host plant status of bean cultivars stress the importance of a correct diagnosis of the Meloidogyne species in agricultural fields. Cultivar Polder showed potential as a trap crop for M. chitwoodi. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, Mincognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites.  相似文献   

3.
This study describes the development of species-specific pairs of PCR primers for the root-knot nematodes Meloidogyne chitwoodi, M. fallax and M. hapla that amplify species-specific RAPD fragments. After sequencing the fragments, longer primers were designed to complement the terminal sequences of the polymorphic DNA fragments. The resulting pairs of primers were used to generate the sequence-characterized amplified regions (SCARs). Using the developed pairs of SCAR primers, SCAR fragments of M. chitwoodi, M. fallax or M. hapla were easily amplified from DNA extracts from juveniles, egg masses, females of the particular nematode species investigated, either present alone, in a mixture with other nematode species or in infested plant material. A specially designed multiplex assay using three pairs of SCAR primers enabled the identification of multiple species in a mixture in a single PCR step. Single juveniles were easily identified by applying this multiplex assay followed by a subsequent multiplex PCR using three pairs of nested primers. The SCAR-PCR-based assays described have potential to be optimized for routine practical diagnostic tests. The usefulness of converting RAPD markers into SCAR markers is discussed.  相似文献   

4.
A. Gamon  N. Lenne 《EPPO Bulletin》2012,42(1):122-126
Since 2008, the French NPPO has been controlling two outbreaks of Meloidogyne chitwoodi and Meloidogyne fallax, in Picardie (open fields) and in Bretagne (glasshouses). Intensive investigations have been undertaken to delimit these outbreaks and to help formulate the best control management strategy to adopt in these two very different situations. In open fields, eradication measures have been implemented, with bare fallow in infested fields being adopted as the main measure, despite the impact on affected growers and high financial cost. Recently, soil analyses in fields after 2 years of bare fallow showed that neither M. chitwoodi nor M. fallax was detected in 99% of cases, and measures have now been reduced: crops such as cereals are now allowed in these fields, but no tubers or root crops can be grown. Under glasshouses, eradication was not considered feasible and so a containment strategy was followed. An extensive national survey of susceptible crops has also been carried out for early detection of possible new outbreaks.  相似文献   

5.
A sensitive real‐time polymerase chain reaction (PCR) assay was developed for the quantification of Phytophthora infestans, the cause of foliar and tuber late blight in potato. A primer pair (PinfTQF/PinfTQR) and a fluorogenic probe (PinfTQPR) were designed to perform a quantitative assay for the detection of P. infestans in leaves, tubers and soils. The assay was shown to be specific to P. infestans and the very closely taxonomically related non‐potato pathogen species P. mirabilis, P. phaseoli and P. ipomoea, but did not detect the potato pathogens P. erythroseptica and P. nicotianae. The assay was able to reliably detect P. infestans DNA at 100 fg per reaction and was effective in quantifying P. infestans in infected leaf tissue from 24 h after inoculation and also in infected symptomless tubers and diseased tubers. Attempts to detect oospores of P. infestans in naturally and artificially infested soil samples are described and compared with baiting tests and previous literature. It was not possible to detect oospores in soil samples due to problems with DNA extraction from the oospores themselves. However, the assay was shown to detect even very low levels of asexual inoculum (sporangia and mycelium) in soil. This work assembles all the necessary features of a quantitative P. infestans assay, which have previously been somewhat disparate: the sensitivity, specificity and quantitation are fully validated, the assay is shown to work in common applications in leaf and tuber tissue and the problems with P. infestans oospore detection are explored and tested experimentally.  相似文献   

6.
Several conventional PCR tests have been developed for the identification of the European quarantine root-knot nematodes Meloidogyne chitwoodi and M. fallax but data are lacking for the evaluation of their performance in terms of sensitivity, repeatability, reproducibility and specificity against a large range of populations. This study evaluated the performance criteria of three conventional PCR tests recommended by the consensus diagnostic protocol for Meloidogyne chitwoodi and Meloidogyne fallax published by the European and Mediterranean Plant Protection Organization (EPPO): a species-specific PCR (IGS target), a SCAR PCR, and a rDNA ITS PCR-RFLP. Evaluation was carried out with DNA extracts from juveniles, males and females according to EPPO recommendations for test validation. A minimum of 34 populations of target and non target nematode species were tested to check the specificity of these three PCR assays. The three PCR tests were ranked according to their specificity (with regard to cross reaction with other nematodes species or genus) and their sensitivity (detection of a single juvenile or mixed with other species). The species-specific PCR proved to be more sensitive but less specific than the SCAR PCR. The PCR-RFLP enables the identification of several Meloidogyne species but profile analysis can be difficult when several species are present in the mixture. Specific PCR products and RFLP profiles were also observed for M. arenaria and M. enterolobii, and described for M. minor and M. artiellia.  相似文献   

7.
Two major proteins, Mcf-A67 and Mcf-B66, were identified by mini two-dimensional polyacrylamide gel electrophoresis in order to distinguish the two European quarantine root-knot nematodes, Meloidogyne chitwoodi and M. fallax, from eight other species. These quarantine proteinic markers have been microsequenced after enzymatic digestion. The internal amino acid sequences exhibit similarities to members of a family of low molecular weight intracellular lipid-binding proteins. Moreover, to explore a simple, rapid, and inexpensive way to identify the two quarantine nematodes, dot blot hybridizations were performed using an antiserum (A67) produced from the longest amino-acid sequence of the protein Mcf-A67. Although several proteins stained on the M. chitwoodi and M. fallax western blot membranes, the two nematodes were easily distinguished from other root-knot nematodes, on dot blot assays with soluble proteins extracted from a single female. Because of its specificity and sensitivity, the use of the A67 antiserum to improve the diagnosis of the two European quarantine root-knot nematodes is discussed.  相似文献   

8.
This paper describes a comparison study of test methods and supports the use of real‐time polymerase chain reaction (PCR) for the detection of Clavibacter michiganensis subsp. sepedonicus and Ralstonia solanacearum in potato tubers in routine testing. These 2 bacteria are quarantine organisms under European Union (EU) regulatory control and testing for (latent) infections of these bacteria in seed potatoes is mandatory. Real‐time PCR tests were performed on 276 routine potato tuber samples, including samples infected with either C. michiganensis subsp. sepedonicus or R. solanacearum, and the performance of these real‐time PCR tests was compared with that of immunofluorescence (IF). Real‐time PCR tests, using different primer sets and extraction and PCR protocols, proved to be sensitive and specific for the detection of C. michiganensis subsp. sepedonicus and R. solanacearum in potato tubers in routine testing, and performed at least as well as IF. Real‐time PCR is a good addition to the detection protocols as laid down in EU regulations (EU Council Directives 2006/56/EC and 2006/63/EC).  相似文献   

9.
The host suitability of commercial Vitis rootstocks commonly used in Spain (161‐49C, 41B, 1103P, 110R, 140Ru and SO4) to root‐knot nematodes (Meloidogyne arenaria, M. incognita, M. javanica) and Xiphinema index, and damage caused by nematode infection were determined under controlled conditions. The three root‐knot nematodes reproduced with a rate higher than one in all rootstocks, indicating that they are suitable hosts for these nematodes. Growth of rootstocks infected with the root‐knot nematodes was less vigorous than that of nematode‐uninfected controls in the majority of the rootstocks studied. Root infection resulted in moderate to severe root galling in all rootstocks. The shoot and main stem diameters appeared to be the most sensitive variables of damage caused by infection by Meloidogyne spp., with reduction rates from 36% and 53% in 161‐49C to 57% and 66% in 140Ru, respectively. The shoot height was not significantly affected by the root‐knot nematodes and the root fresh weight generally increased as a consequence of intensive galling. The nematode X. index caused significant root damage with a reproduction factor higher than one in all rootstocks. However, reproduction factor was significantly influenced by the rootstock and significantly decreased by about 12‐fold (5·7 to 18·1‐fold) with the increase in inoculum density from 100 to 1000 nematodes per plant. The root dry weight was reduced by X. index infections, and was the plant growth variable most affected by the nematode infection in all rootstocks at both inoculum densities. Meloidogyne arenaria, M. incognita, M. javanica and X. index, prevalent in many world vineyards, are all shown to have a damaging effect on the six tested rootstocks.  相似文献   

10.
Meloidogyne ethiopica is an important nematode pathogen causing serious economic damage to grapevine in Chile. In Brazil, M. ethiopica has been detected with low frequency in kiwifruit and other crops. The objectives of this study were to evaluate the intraspecific genetic variability of M. ethiopica isolates from Brazil and Chile using AFLP and RAPD markers and to develop a species‐specific SCAR‐PCR assay for its diagnosis. Fourteen isolates were obtained from different geographic regions or host plants. Three isolates of an undescribed Meloidogyne species and one isolate of M. ethiopica from Kenya were included in the analysis. The results showed a low level of diversity among the M. ethiopica isolates, regardless of their geographical distribution or host plant origin. The three isolates of Meloidogyne sp. showed a high homogeneity and clustered separately from M. ethiopica (100% bootstrap). RAPD screenings of M. ethiopica allowed the identification of a differential DNA fragment that was converted into a SCAR marker. Using genomic DNA from pooled nematodes as a template, PCR amplification with primers designed from this species‐specific SCAR produced a fragment of 350 bp in all 14 isolates of M. ethiopica tested, in contrast with other species tested. This primer pair also allowed successful amplification of DNA from single nematodes, either juveniles or females and when used in multiplex PCR reactions containing mixtures of other root‐knot nematode species, thus showing the sensitivity of the assay. Therefore, the method developed here has potential for application in routine diagnostic procedures.  相似文献   

11.
In the European Union (EU) potato production is surveyed for Clavibacter michiganensis subsp. sepedonicus (potato ring rot) and Ralstonia solanacearum (potato brown rot) under Commission Directives 93/85/EEC with its amendment 2006/56/EC and 98/57/EEC with its amendment 2006/63/EC. A regular update of the Directives is required in view of developments in understanding of the biology of these organisms and the diagnostics recommended for their detection and identification. Three inter‐laboratory tests (ILT1, ILT2 and ILT3) were performed from 2009 to 2012 as part of a Euphresco Phytosanitary ERA‐NET project to assess performance of current official methods for C. michiganensis subsp. sepedonicus and R. solanacearum. A major aim of the ILTs was to generate data on the performance of real‐time PCR protocols to support their introduction as primary (core) screening tests for both pathogens. In ILT1, 29 laboratories from 23 countries participated, in ILT2, 23 laboratories from 18 countries and in ILT3 42 laboratories from 24 countries. Relative accuracies for real‐time PCR tests averaged 92% for R. solanacearum and 96% for C. michiganensis subsp. sepedonicus) and compared with existing primary (core) screening tests (immunofluorescence, conventional PCR, semi‐selective plating and bioassay) in terms of analytical sensitivity, analytical specificity and robustness. It was concluded that all methods tested, including real‐time PCR, can be considered as equivalent. Therefore TaqMan ® real‐time PCR is recommended for inclusion in EU Directives and EPPO Standards as a reliable primary (core) screening method.  相似文献   

12.
Plant-parasitic nematodes are serious pests causing important crop losses worldwide. After extensive screening of non-tuber-bearing Solanaceae, a resistant trap crop, Solanum sisymbriifolium, with a high production level of hatching agents, seemed an ideal control method for potato cyst nematodes (PCN), Globodera spp. Recently, root-knot nematodes (RKN), Meloidogyne spp., were found coexisting with PCN. Therefore, it is important to find alternative methods to control both nematode genera. The chemical properties of S. sisymbriifolium turns this plant into an excellent candidate for further nematicidal studies and to develop new crop production models. Studies concerning the effects of this plant on plant-parasitic nematodes are presented. Pathogenicity studies with four S. sisymbriifolium cvs (Domino, Pion, Sis 4004 and Sharp) and five Meloidogyne species showed that all cultivars of S. sisymbriifolium studied were resistant to M. chitwoodi and hypersusceptible to M. arenaria and M. hapla. For M. hispanica only cv Pion was susceptible. M. javanica induced different responses: cvs Pion and Sharp were susceptible; cv Domino resistant and Sis 4004 hypersusceptible. The studies of the hatching effects of root exudates from these cvs showed that they had an influence on the hatching inhibition of second stage juveniles of the five Meloidogyne species tested.  相似文献   

13.
Potato (Solanum tuberosum) production in Africa is rapidly expanding and becoming increasingly important. As its geographical production range broadens, so does its potential to host new pests and diseases. Following the discovery that potato can be affected by Scutellonema bradys, further studies were undertaken to assess its potential pathogenicity on potato under screenhouse and field conditions, and on marketed tubers. Potato plants inoculated with S. bradys produced tubers with substantial cracking and evident tuber rot, compared with tubers from uninoculated plants. Symptoms of nematode infection on tubers included a scaly appearance, surface cracking as well as deeper tissue cracks, distortions, and darkened surface patches. In most cases these patches were related to sub‐surface rot. Nematodes were recovered from the soil, roots and tubers of inoculated plants. Eight weeks after inoculation, the reproduction factor of the nematode was greatest (2·0) at the lowest inoculation rate assessed (1000 nematodes per 2·5‐L pot) and least (0·4) at the highest inoculation rate (5000 nematodes per pot). In the screenhouse, potato tuber weights were low and mostly unaffected by nematode inoculation rate, except at 5000 nematodes per pot. In the field, non‐inoculated plants yielded over nine times more tubers than plants inoculated with 2000 S. bradys. Low densities of S. bradys were also recovered from 10 of 15 (67%) samples collected from market stalls, indicating field infection. This study confirms that potato can host and be damaged by S. bradys, raising its prospect as a likely significant biotic constraint to the crop.  相似文献   

14.
15.
Ochradenus baccatus is a widely distributed shrub in desert regions of the Middle East and North Africa. This plant's nematicidal activity against the root‐knot nematode Meloidogyne javanica was evaluated because it has been found to contain exceptionally high levels of glucosinolates. In in vitro assays with aqueous extracts of the plant, 100% of second‐stage juveniles were immobilized after exposure to 4% root‐core extract for 48 h; 8% root‐core extract suppressed their hatching by 87%, whereas stem, flower and root bark showed lower activity. Incorporation of root core or bark into the soil, as fresh or dry powder at 1 and 0·5% (w/w), respectively, reduced the number of nematodes recovered from the soil by 95–100%, whereas the flower and stem were much less effective. Results from further pot experiments indicated that only the root bark consistently contains nematicidal compounds which are effective in soil, whereas the nematicidal activity of the root core in soil was inconsistent. The presence of non‐volatile lipophilic and lipophobic nematicidal compounds in the root bark was suggested by extraction with different polar solvents, but these compounds do not seem to be isothiocyanates – glucosinolate‐hydrolysed compounds with nematicidal activity. Very poor host status of Ochradenus baccatus to M. javanica, Mincognita and M. hapla, but with root‐penetration rates of juveniles similar to those in tomato roots, suggest that this plant may be used as a cover plant or trap plant to reduce nematode populations in the soil.  相似文献   

16.
A test performance study (TPS) was organized in 2018 with ten official testing laboratories to evaluate the performance of different real-time PCR tests for the detection of Clavibacter sepedonicus and/or Ralstonia solanacearum in potato tubers. Participants were sent spiked potato extracts with low (0.8–1.2 × 104 cfu mL-1), medium (1.6–2.4 × 105 cfu mL-1) and high (1.6–2.4 × 107 cfu mL-1) bacterial loads, DNA extracts thereof and heel-end cores from symptomatic potato tubers. The four real-time PCR tests in this TPS for detection of C. sepedonicus were considered fit for purpose as principal screening methods. Two real-time PCRs in this TPS were considered fit for purpose as principal screening methods for detection of R. solanacearum. A third real-time PCR missed 23% of the DNA samples from low-level R. solanacearum spikes and is considered not fit for purpose as a principal screening method. Correct identification of spiked samples was lower when DNA extraction from the spiked samples was performed by the participating laboratories, highlighting the importance of appropriate DNA extraction protocols.  相似文献   

17.
Potato mop‐top virus (PMTV), the cause of spraing in potato tubers, is transmitted by Spongospora subterranea, the cause of powdery scab, and by planting infected seed tubers. This study was undertaken to determine the relative importance of these sources of infection in seed potato production in Scotland. The transmission of PMTV from tested seed tubers to daughter plants was examined over 2 years and six cultivars. The development of foliar symptoms varied with year and cultivar. Infection of daughter tubers derived from PMTV‐infected seed tubers was more prevalent on plants affected by foliar symptoms than those without symptoms. The rate of transmission of PMTV from infected seed tubers to daughter tubers ranged from 18 to 54%. Transmission was affected by cultivar and by origin of seed tubers used for a cultivar, but not by a cultivar's sensitivity to PMTV infection. The incidence of PMTV in daughter tubers of cv. Cara grown from seed potatoes from one source (common origin) by more than 25 seed producers was examined over two successive generations. The incidence of PMTV in daughter tubers was not correlated with that in the seed tubers but appeared to be strongly associated with soil inoculum. The incidence of PMTV was correlated with powdery scab in those crops in which both were present. There was some evidence from soil tests conducted in 2006 using a tomato bait plant and real‐time RT‐PCR that planting PMTV‐infected seed potatoes could increase the risk of introducing the virus into land not infested by PMTV.  相似文献   

18.
The root-knot nematode Meloidogyne chitwoodi is a severe pest on sandy soils in Belgium and causes quality damage to economically important crops such as carrot, potato and black salsify. Pre-planting soil sampling to detect infestations has proven useful to farmers when taking decisions on the crop rotation. To develop an adequate sampling strategy, the vertical distribution of M. chitwoodi was examined under summer barley, carrot, fodder beet, bean, marigold and black fallow on two fields with a sandy soil. Soil samples were collected at monthly intervals from April 2004 to April 2006. Cores were taken to a depth of 70 cm and split into 10 cm segments. Nematodes were extracted by zonal centrifugation. Fodder beet increased the population of M. chitwoodi immensely; carrot was also a good host. Barley was a moderate host and under bean and marigolds the population decreased. The relative distribution of M. chitwoodi over the different soil layers during two successive years was consistent in each field. The different successions with good, moderate and poor hosts did not influence this distribution significantly. A logistic model was fitted to the mean cumulative percentages of nematodes at increasing soil depth. Farmers are advised to take soil samples for detection of M. chitwoodi immediately after harvest, especially after crops with a long field period. Adapting the depth of the cores taken to the vertical distribution of the population can increase the chances of detection. Our results suggest that this distribution is persistent in crop rotations and depends on field characteristics.  相似文献   

19.
In 2013, during a field survey conducted in Portugal on potato, Solanum tuberosum, an unusual esterase (EST) phenotype was detected in a root‐knot nematode (RKN) from potato roots collected in Coimbra. This Portuguese isolate was purified and maintained on tomato, S. lycopersicum, and morphological, biochemical and molecular characteristics were studied. Perineal pattern morphology was highly variable, similar to Meloidogyne ethiopica and not useful for identification. The EST phenotype, from young egg‐laying females, displayed three bands similar to the Brazilian M. luci (L3) and distinct from M. ethiopica (E3). Phylogenetic analyses of mitochondrial cytochrome oxidase subunit I and the mitochondrial DNA region between COII and 16S rRNA genes revealed that the Portuguese isolate grouped with M. luci isolates close to M. ethiopica isolates. However, considering the ITS1‐5.8S‐ITS2 region, the Portuguese isolate grouped with isolates of M. luci, M. ethiopica and M. hispanica, which limits the confidence of this region for M. luci diagnosis, and its differentiation from other species with morphological similarities. The M. luci pathogenicity to potato was also assessed in 16 commercial cultivars and compared with M. chitwoodi, considered to be a quarantine RKN species by EPPO. All potato cultivars were susceptible to both Meloidogyne species with gall indices of 5 and higher reproduction factor values ranging from 12.5 to 122.3, which suggests that M. luci may constitute a potential threat to potato production. In the present study, M. luci is reported for the first time attacking potato in Portugal.  相似文献   

20.
Huanglongbing (HLB) disease is seriously threatening and/or damaging the citrus industry worldwide. Accurate detection of the three species associated with HLB disease, ‘Candidatus Liberibacter asiaticus’, ‘Candidatus Liberibacter africanus’ and ‘Candidatus Liberibacter americanus’, is essential for the preventive control of the disease. Real‐time PCR is a useful tool for bacterial detection. However, nucleic acid purification steps limit the number of samples that can be processed by PCR. Universal detection of ‘Ca. Liberibacter’ species was achieved by direct tissue‐printing and spotting of plant leaf petiole extracts or squashing of individual psyllids onto paper or nylon membranes. Primers were designed and used with TaqMan chemistry for accurate detection of the bacterium in immobilized targets (prints of 10 overlapping leaf pedicels per tree, or squashed single vectors), by extraction with water and direct use for real‐time PCR. This simplified method was validated and could detect HLB‐liberibacters in 100% of leaves with symptoms and 59% of symptomless leaves collected from HLB‐infected trees. The use of direct assays as template showed good agreement with use of purified DNA (κ = 0·76 ± 0·052). The squash assay allowed detection of the bacterium in 40% of mature Diaphorina citri that fed on leaves of HLB‐infected trees with or without symptoms. A commercial ready‐made kit based on this technology showed 96% accuracy in intra‐laboratory performance studies. The simplified direct methods of sample preparation presented herein can be effectively adopted for use in rapid screening of HLB agents in extensive surveys, certification schemes or for epidemiological and research studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号