首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND: Grey mould caused by the fungus Botrytis cinerea Pers. ex Fr. is one of the major diseases in grapes. The use of fungicides is a simple strategy to protect grapes against B. cinerea disease. However, phenotypes exhibiting resistance to fungicides have been detected in B. cinerea populations. The variation of fungicide‐resistant B. cinerea isolates renders B. cinerea disease control difficult in grapevine fields. RESULTS: The authors have developed a nested polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) method to detect fungicide‐resistant B. cinerea isolates at an early growth stage of grapes in grapevine fields. The nested PCR‐RFLP method was carried out to detect benzimidazole‐, phenylcarbamate‐ and/or dicarboximide‐resistant B. cinerea isolates from grape berries and leaves at Eichorn–Lorenz growth stage 25 to 29. This method successfully detected fungicide‐resistant B. cinerea isolates at an early growth stage of grapes. In addition, only 8 h was required from tissue sampling to phenotyping of fungicide resistance of the isolates. CONCLUSION: It is proposed that the early diagnosis of fungicide‐resistant B. cinerea isolates would contribute to further improvement of integrated pest management against B. cinerea in grapevine fields, and that the nested PCR‐RFLP method is a high‐speed, sensitive and reliable tool for this purpose. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
3.
BACKGROUND: The antifungal properties of chitosan and acibenzolar‐S‐methyl were evaluated to assess their potential for protecting grapes against Botrytis cinerea Pers.: Fr. isolated from Vitis vinifera L. The objectives were to determine the effects of these compounds on the in vitro development of B. cinerea and to assess their effectiveness at controlling grey mould on grapes stored at different temperatures. RESULTS: Both agents significantly inhibited the radial growth of this fungus species. The EC50 was 1.77 mg mL?1 for chitosan and 3.44 mg mL?1 for acibenzolar‐S‐methyl. In addition, single grapes treated with aqueous solutions of chitosan (1.0 and 2.5 mg mL?1) and acibenzolar‐S‐methyl (1.0 and 3.0 mg mL?1) were inoculated with B. cinerea and incubated at both 4 and 24 °C. After 4 days at 24 °C, all the concentrations of chitosan and acibenzolar‐S‐methyl significantly reduced B. cinerea growth. However, at 4 °C, significant differences were only observed between chitosan at 2.5 mg mL?1 and acibenzolar‐S‐methyl at both 1.0 and 3.0 mg mL?1 and the corresponding controls. After 3 days at 24 °C, the greatest reduction in lesion size was obtained in grapes pretreated with acibenzolar‐S‐methyl at 3.0 mg mL?1. Only the highest doses of these products significantly reduced the lesion diameters when grapes were stored for 3 days at 4 °C. CONCLUSIONS: Chitosan and acibenzolar‐S‐methyl could directly inhibit the growth of Botrytis cinerea in vitro and confer resistance on grapes against grey mould. Pretreatment with these compounds could be an alternative to traditional fungicides in post‐harvest disease control in grapes. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
5.
6.
7.
8.
9.
Ammonium molybdate was tested as a potential fungicide for use in apples (cv Golden Delicious) against blue and grey mould, important post‐harvest diseases of pome fruits. In tests in vivo at 20 °C, ammonium molybdate (15 mM ) reduced lesion diameters of Penicillium expansum, Botrytis cinerea and Rhizopus stolonifer by 84%, 88% and 100% respectively. When apples treated with ammonium molybdate were stored at 1 °C for three months, a significant reduction in severity and incidence of P expansum and B cinerea was observed in both years of study (1998 and 1999). In the second year of the experiment the reduction in disease severity was greater than 88% for both pathogens, and the level of control was similar to, or greater than, that observed with the fungicide imazalil. When ammonium molybdate was applied as a pre‐harvest treatment, a significant reduction in blue mould decay was observed after three months in cold storage. In vitro, ammonium molybdate greatly inhibited spore germination of P expansum and B cinerea, although better inhibition was obtained against grey mould. Ammonium dimolybdate, sodium molybdate and potassium molybdate were also tested in vitro in comparison with ammonium molybdate as inhibitors of spore germination, but only ammonium molybdate inhibited spore germination by more than 50%. © 2001 Society of Chemical Industry  相似文献   

10.
11.
12.
13.
BACKGROUND: Although more than ten strobilurin analogues have been commercialized since 1996 as fungicides, only one was available as an acaricide as of 2003. To search for novel strobilurin analogues with unique biological activities, a synthetic screening programme was carried out. RESULTS: Syntheses of compounds analogous to the commercialized fungicide metominostrobin and the acaricide fluacrypyrim led to the discovery of a lead compound, (E)‐2‐{2‐[[3,5‐bis(trifluoromethyl)phenoxy]methyl]phenyl}‐2‐(methoxyimino)‐N‐methylacetamide (3b), that showed moderate acaricidal activity against Tetranychus urticae Koch. Compound 3b has a 3,5‐(CF3)2‐phenoxymethyl group instead of the unsubstituted phenoxy substituent in metominostrobin. Optimization of compound 3b was achieved by introducing an oxime ether bridge along with an alkylthio(alkyl) branch in place of the oxymethylene chain between two aromatic moieties, as well as by replacing the methoxyiminoacetamide group with a methoxyacrylate structure, leading to (E)‐ methyl 2‐{2‐[[[(Z)[1‐(3,5‐bis(trifluoromethyl)phenyl)‐2‐methylthioethylidene]amino]oxy] methyl]phenyl}‐3‐methoxyacrylate (6c) and (E)‐ methyl 2‐{2‐[[[(Z)[1‐(3,5‐bis(trifluoromethyl)phenyl)‐1‐methylthiomethylidene]amino]oxy]methyl]phenyl}‐3‐methoxyacrylate (9a, HNPC‐A3066). CONCLUSION: The above two compounds (6c, 9a) were shown to exhibit potent acaricidal and fungicidal activity. Compound 9a (HNPC‐A3066) also exhibits larvicidal and ovicidal activities against various acarids. The acaricidal potency is comparable with those of commercial acaricides such as fluacrypyrim, tebufenpyrad and chlorfenapyr. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Evolved resistance to fungicides is a major problem limiting our ability to control agricultural, medical and veterinary pathogens and is frequently associated with substitutions in the amino acid sequence of the target protein. The convention for describing amino acid substitutions is to cite the wild‐type amino acid, the codon number and the new amino acid, using the one‐letter amino acid code. It has frequently been observed that orthologous amino acid mutations have been selected in different species by fungicides from the same mode of action class, but the amino acids have different numbers. These differences in numbering arise from the different lengths of the proteins in each species. The purpose of the present paper is to propose a system for unifying the labelling of amino acids in fungicide target proteins. To do this we have produced alignments between fungicide target proteins of relevant species fitted to a well‐studied ‘archetype’ species. Orthologous amino acids in all species are then assigned numerical ‘labels’ based on the position of the amino acid in the archetype protein. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
16.
The effect of the quinone outside inhibitors (QoI) azoxystrobin and pyraclostrobin on yields of winter wheat where QoI resistant Mycosphaerella graminicola isolates were dominant was investigated in field trials in 2006 and 2007. Pyraclostrobin significantly increased yields by 1·57 t ha?1 in 2006 and 0·89 t ha?1 in 2007 when compared to the untreated controls, while azoxystrobin only provided a significant increase of 1·28 t ha?1 in 2006. These yield increases were associated with reduction in septoria tritici blotch (STB) development as determined by weekly disease assessments over a 7 week interval. The effect of pyraclostrobin on STB was studied in controlled environment experiments using wheat seedlings inoculated with individual M. graminicola isolates. Pyraclostrobin significantly reduced STB symptoms by up to 62%, whether applied 48 h pre‐ or post‐ inoculation with resistant M. graminicola isolates containing the cytochrome b mutation G143A. Extremely limited disease (<1%) was observed on similarly treated seedlings inoculated with an intermediately resistant isolate containing the cytochrome b mutation F129L, while no disease was observed on seedlings inoculated with a wild‐type isolate. Germination studies of pycnidiospores of M. graminicola on water agar amended with azoxystrobin or pyraclostrobin showed that neither fungicide inhibited germination of spores of resistant isolates containing the mutation G143A. However, pyraclostrobin significantly reduced germ tube length by up to 46% when compared with the untreated controls. Although the QoIs can no longer be relied upon to provide effective M. graminicola control, this study provides an insight into why QoIs still provide limited STB disease control and yield increases even in situations of high QoI resistance.  相似文献   

17.
18.
19.
BACKGROUND: In 2004, field isolates of Botrytis cinerea Pers. ex Fr., resistant to strobilurin fungicides (QoIs), were first found in commercial citrus orchards in Wakayama Prefecture, Japan. Subsequently, QoI‐resistant isolates of this fungus were also detected in plastic strawberry greenhouses in Saga, Ibaraki and Chiba prefectures, Japan. Biological and molecular characterisation of resistant isolates was conducted in this study. RESULTS: QoI‐resistant isolates of B. cinerea grew well on PDA plates containing kresoxim‐methyl or azoxystrobin at 1 mg L?1, supplemented with 1 mM of n‐propyl gallate, an inhibitor of alternative oxidase, whereas the growth of sensitive isolates was strongly suppressed. Results from this in vitro test were in good agreement with those of fungus inoculation tests in vivo. In resistant isolates, the mutation at amino acid position 143 of the cytochrome b gene, known to be the cause of high QoI resistance in various fungal pathogens, was found, but only occasionally. The heteroplasmy of cytochrome b gene was confirmed, and the wild‐type sequence often present in the majority of resistant isolates, indicating that the proportion of mutated cytochrome b gene was very low. CONCLUSION: The conventional RFLP and sequence analyses of PCR‐amplified cytochrome b gene are insufficient for molecular identification of QoI resistance in B. cinerea. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Mycosphaerella fijiensis Morelet causes black sigatoka, the most important disease in bananas and plantains. Disease control is mainly through the application of systemic fungicides, including sterol demethylation inhibitors (DMIs). Their intensive use has favoured the appearance of resistant strains. However, no studies have been published on the possible resistance mechanisms. RESULTS: In this work, the CYP51 gene was isolated and sequenced in 11 M. fijiensis strains that had shown different degrees of in vitro sensitivity to propiconazole, one of the most widely used DMI fungicides. Six mutations that could be related to the loss in sensitivity to this fungicide were found: Y136F, A313G, Y461D, Y463D, Y463H and Y463N. The mutations were analysed using a homology model of the protein that was constructed from the crystallographic structure of Mycobacterium tuberculosis (Zoff.) Lehmann & Neumann. Additionally, gene expression was determined in 13 M. fijiensis strains through quantitative analysis of products obtained by RT‐PCR. CONCLUSION: Several changes in the sequence of the gene encoding sterol 14α‐demethylase were found that have been described in other fungi as being correlated with resistance to azole fungicides. No correlation was found between gene expression and propiconazole resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号