首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The capacity of ulvan, a sulphated heteropolysaccharide, to prime the chitin‐ and chitosan‐elicited oxidative burst in wheat and rice cells was tested. Gas‐liquid chromatography showed that ulvan was composed of rhamnose, xylose, glucuronic acid, glucose and galactose. It contained very low amounts of proteins and ca. 19% sulphate groups. The polymer did not elicit the production of hydrogen peroxide in suspension‐cultured wheat or rice cells. Furthermore, in both cell cultures, the simultaneous addition of ulvan and chitin hexamer or chitosan polymer did not significantly alter the intensity of the oxidative burst caused by the elicitors alone. However, pretreatment of wheat cells with ulvan increased the chitin‐elicited oxidative burst about five‐ to sixfold, and that elicited by chitosan about twofold. In rice cells, the production of H2O2 elicited by chitin or chitosan was strongly primed by pretreatment with the same concentration of ulvan, increasing the burst triggered by the elicitors alone by 150 and 80 times, respectively. Pretreatment of whole plants with ulvan significantly reduced the symptom severity of Blumeria graminis infection, by 45% in wheat and by 80% in barley. Thus, the priming activity of ulvan on the oxidative burst correlates with a decrease of disease symptoms in infected plants. This is apparently the first report on priming activity of a natural algal polysaccharide.  相似文献   

2.
BACKGROUND: The antifungal properties of chitosan and acibenzolar‐S‐methyl were evaluated to assess their potential for protecting grapes against Botrytis cinerea Pers.: Fr. isolated from Vitis vinifera L. The objectives were to determine the effects of these compounds on the in vitro development of B. cinerea and to assess their effectiveness at controlling grey mould on grapes stored at different temperatures. RESULTS: Both agents significantly inhibited the radial growth of this fungus species. The EC50 was 1.77 mg mL?1 for chitosan and 3.44 mg mL?1 for acibenzolar‐S‐methyl. In addition, single grapes treated with aqueous solutions of chitosan (1.0 and 2.5 mg mL?1) and acibenzolar‐S‐methyl (1.0 and 3.0 mg mL?1) were inoculated with B. cinerea and incubated at both 4 and 24 °C. After 4 days at 24 °C, all the concentrations of chitosan and acibenzolar‐S‐methyl significantly reduced B. cinerea growth. However, at 4 °C, significant differences were only observed between chitosan at 2.5 mg mL?1 and acibenzolar‐S‐methyl at both 1.0 and 3.0 mg mL?1 and the corresponding controls. After 3 days at 24 °C, the greatest reduction in lesion size was obtained in grapes pretreated with acibenzolar‐S‐methyl at 3.0 mg mL?1. Only the highest doses of these products significantly reduced the lesion diameters when grapes were stored for 3 days at 4 °C. CONCLUSIONS: Chitosan and acibenzolar‐S‐methyl could directly inhibit the growth of Botrytis cinerea in vitro and confer resistance on grapes against grey mould. Pretreatment with these compounds could be an alternative to traditional fungicides in post‐harvest disease control in grapes. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
A screening system for apple proliferation resistance was developed, based on in vitro graft‐inoculation with the causal agent ‘Candidatus Phytoplasma mali’. For this, in vitro cultures of the field‐resistant apomictic genotypes Malus sieboldii, H0909, D2212 and the susceptible Malus × domestica genotypes Golden Delicious and rootstock M9 were established, as well as in vitro cultures of Rubinette and Golden Delicious infected with ‘Ca. P. mali’ strains PM4 and PM6, respectively. Healthy in vitro shoots were inoculated by micrografting with infected shoots used as graft tip. After 6 weeks graft contact no significant differences for graft quality were observed between healthy and infected grafts. Mortality of grafts and transmission rates were not significantly different among the different genotypes. The phytoplasma concentration in inoculated shoots was determined at different times post‐inoculation (p.i.) by quantitative real‐time PCR. Infected M. sieboldii and D2212 had lower phytoplasma concentration than the susceptible controls and showed no symptoms. H0909 showed an intermediate behaviour exhibiting lower phytoplasma concentrations with strain PM4 but growth was affected. The dynamics of phytoplasma concentration reached a maximum at 6–8 months p.i. for all genotypes but the values for 3–5 and 10–12 months p.i. were similar. The resistance of M. sieboldii and D2212 was confirmed in vitro. A significant difference in phytoplasma concentration was observed between strains PM4 and PM6.  相似文献   

4.
BACKGROUND: With the objective of exploring the fungicidal activity of 2‐oxocyclohexylsulfonamides (2), a series of novel 2‐amino‐6‐oxocyclohexenylsulfonamides (6 to 23) were synthesised, and their fungicidal activities against Botrytis cinerea Pers. were evaluated in vitro and in vivo. RESULTS: The compounds were characterised by IR, 1H NMR and elemental analysis. Bioassay results of mycelial growth showed that compounds 6 to 23 had a moderate antifungal activity against B. cinerea. N‐(2‐methylphenyl)‐2‐(2‐methylphenylamino)‐4,4‐dimethyl‐6‐oxocyclohexenylsulfonamide (13) and N‐(2‐chlorophenyl)‐2‐(2‐chlorophenylamino)‐6‐oxocyclohexenylsulfonamide (21) showed best antifungal activities, with EC50 values of 8.05 and 10.56 µg mL?1 respectively. Commercial fungicide procymidone provided an EC50 value of 0.63 µg mL?1. The conidial germination assay showed that most of compounds 6 to 23 possessed excellent inhibition of spore germination and germ‐tube elongation of conidia of B. cinerea. For in vivo control of B. cinerea colonising cucumber leaves, the compound N‐cyclohexyl‐2‐(cyclohexylamino)‐4,4‐dimethyl‐6‐oxocyclohexenylsulfonamide (19) showed a better control effect than the commercial fungicide procymidone. CONCLUSION: The present work demonstrated that 2‐amino‐6‐oxocyclohexenylsulfonamides can be used as possible new lead compounds for further developing novel fungicides against B. cinerea. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
Novel inoculation and assessment methods for Ganoderma boninense infection of oil palm are reported. The involvement of phenolic acids in the interaction was examined. HPLC was used to monitor changes in the concentrations of three specific phenolics: syringic acid (SA), caffeic acid and 4‐hydroxybenzoic acid, identified as the main compounds that accumulated. The work reported here focuses on SA, the most antifungal of the molecules detected. The oil palm cv. AVROS, reported by local planters to be less susceptible than others, showed higher accumulation of SA than cvs Ekona and Calabar. Accumulation was promoted by addition of chitosan to the plant growing medium. By the end of the time‐course, the concentration of SA decreased in the oil palm tissues inoculated with G. boninense, suggesting possible metabolism by the pathogen. This loss was, however, not detected in tissues treated with chitosan alone and was greatly reduced when G. boninense was combined with this polymer. In vitro studies on antifungal activity of SA were done using concentrations ranging from 50 to 110 μg mL?1, those typically recorded in oil palm roots. SA was found to be antifungal (EC50 90–100 μg mL?1). The concentration of SA detected in root tissues, especially in the presence of chitosan, could inhibit growth of G. boninense. The pathogen was shown to degrade SA in vitro. However, at the highest concentration tested, metabolism was greatly delayed, only occurring after a lag phase in pathogen growth. Accumulation of phenolic acids, especially SA, may prove a useful trait in breeding resistant oil palm cultivars.  相似文献   

6.
The chitin precursor [14C] N-acetylglucosamine injected into the haemolymph of Spodoptera littoralis (Boisduval) larva was incorporated into the chitin exponentially with time. When caterpillars were injected with precursor at the commencement of feeding on acylurea-treated leaf discs, flufenoxuron, teflubenzuron and diflubenzuron were found to be equally effective inhibitors of chitin synthesis, measured after 21 h. The dose response curves by feeding are not parallel, indicating that the relative potency of the compounds will vary across the dose range. When chitin precursor was injected simultaneously with topically applied diflubenzuron, flufenoxuron or teflubenzuron, all three acylureas were found to be equally effective as inhibitors of chitin synthesis when measured after five hours. The I50values (50% inhibition of chitin synthesis) were not significantly different; average 600 ng, compared with LD50values (50% lethal dose) of13 ng for flufenoxuron and teflubenzuron but 130 ng for diflubenzuron (topical application). Injection of precursor 24 h after topical application of insecticide gave an I50value which had dropped 670- and 150-fold for flufenoxuron and teflubenzuron respectively but only 20-fold for diflubenzuron. It is postulated that the reason for the low increase in diflubenzuron effectiveness with time was due either to less diflubenzuron than flufenoxuron reaching the site of action, or more probably, a faster rate of metabolism and excretion for diflubenzuron. The lower toxicity of diflubenzuron compared with flufenoxuron and teflubenzuron may not be due to any inherent differences in biochemical effectiveness, but rather to different penetration/metabolism properties.  相似文献   

7.
Quorum sensing in Gram‐negative bacteria is regulated by diffusible signal molecules called N‐acyl‐l ‐homoserine lactones (AHLs). These molecules are degraded by lactonases. In this study, six Bacillus simplex isolates were characterized and identified as a new quorum‐quenching species of Bacillus. An aiiA gene encoding an AHL‐lactonase was identified based on evidence that: (i) it showed high homology with other aiiA genes of Bacillus sp.; (ii) the deduced amino acid sequence contained two conserved regions, 104SHLHFDH111 and 165TPGHTPGH173, characteristic of the metallo‐β‐lactamase superfamily; and (iii) the protein had zinc‐dependent AHL‐degrading activity. Additionally, the expression of the aiiA gene was significantly up‐regulated by 3‐oxo‐AHL. The AHL‐lactonase inhibited multiplication of the 3‐oxo‐C6‐AHL‐producing plant pathogen Erwinia amylovora sy69 both in vitro and in planta. The results provide support for the use of the quorum‐quenching functionality of B. simplex in the integrated control of the devastating fire blight pathogen.  相似文献   

8.
郭明  梁东军  谭贤 《农药学学报》2014,16(3):319-329
采用滴涂法、自组装法及化学键合法制备了基于碳纳米管(CNTs)修饰的乙酰胆碱酯酶(AChE)生物传感器,采用循环伏安法(CV)、计时电流法(CA)、交流阻抗法(EIS)和扫描电镜(SEM)对生物传感器的电化学性能和表面形貌进行表征,通过采用该生物传感器对异丙威(氨基甲酸酯类农药)进行分析的结果,考察了其检测性能,研究了各生物传感器的动力学性质及电化学行为,并构建了新型固载酶生物传感器的等效电路模型。结果表明:各生物传感器表观表面积比裸电极显著提高,其电子传递速率遵循以下顺序逐渐降低:乙酰胆碱酯酶(AChE)/壳聚糖(CS)/功能化碳纳米管(F-CNTs/GCE)生物传感器AChE/F-CNTs/GCE生物传感器CS/双醛纤维素固载酶(DAC-AChE)/F-CNTs/GCE生物传感器,各传感器表观电子传递速率常数分别为:k s AChE/CS/F-CNTs/GCE=0.24 s-1,k s AChE/F-CNTs/GCE=0.23 s-1和k s CS/DAC-AChE/F-CNTs/GCE=0.22 s-1。获得生物传感器电学阻抗谱等效电路模型为R1(CPE1(R2(CPE2(R3)))),计算得到等效电路模型中各具体元件参数,证明该有效电路能有效模拟生物传感器检测异丙威的传感机理。该研究结果可为农药残留检测用生物传感器分析机理研究提供有益参考。  相似文献   

9.
1,5‐Diphenyl‐1‐pentanone (A) and 1,5‐diphenyl‐2‐penten‐1‐one (B) are natural products extracted for the first time from Stellera chamaejasme. Laboratory bioassay showed that the two products have strong contact activity and very good anti‐feedant activity against Aphis gossypii and Schizaphis graminum. Both products showed dose‐dependent relationships for both forms of activity against the two aphids, the contact activity of B being about twice that of A. Both products were inferior to methomyl in contact activity but superior in anti‐feedant activity against the two aphids. This is the first report of aphicidal activity in these two compounds, which may represent a new class of aphicide. © 2001 Society of Chemical Industry  相似文献   

10.
Eight amino-substituted derivatives of 1-amino-benzotriazole (ABT) were synthesized and tested. N-acetyl-N-methyl ABT (AcMeABT) was found to kill maize (Zea mays L.) hybrid Pioneer 3737 at 5 kg ha?1 dose while ryegrass (Lolium perenne L.) was unaffected. The analogous N-propionyl-N-methyl ABT had an activity similar to AcMeABT whereas other N-acyl-N-alkyl derivatives had only moderate or no effects on maize. AcMeABT was considerably toxic to oats (Avena sativa L.) and sorghum (Sorghum bicolor L.) as well. Unlike ABT, AcMeABT did not show any in vitro inhibitory effect on cytochrome P-450 enzymes of maize microsomes. However, in vivo AcMeABT pre-treatment significantly decreased the microsomal cytochrome P-450 level of aetiolated maize seedlings. Moreover, a subtoxic dose of AcMeABT was a weak antagonist of a toxic dose of EPTC in maize in vivo. These data predict the involvement of cytochrome P-450 enzyme in the mode of action of AcMeABT. N-acyl-N-alkyl l-aminobenzotriazoles: phyto-toxicité, antagonisme avec l'EPTC et effets sur le cytochrome P-450 du maïe Huit dérivés sur le groupement amine de l'1-aminobenzotriazole (ABT) ont été synthétisés. Une dose 5 kg ha?1 de N-acétyl-N-méthyl ABT (AcMeABT) détruisait le maïs (Zea mays L.) hy-bride Pioneer 3737 alors que le raygrass (Lolium perenne L.) n'était pas affecté. L'analogue N-propionyl-N-méthyl ABT avail une activité simi-laire à celle de l' AcMeABT, alors que les autres dérivés N-acyl-N-aklyl n'avaient que des effets nuls ou faibles surle maïs. L'AcMeABTétait très toxique à l'égard de l'avoine (Avena sativa L.) et du sorgho bicolore (Sorghum bicolor L.). Con-trairement à l'ABT, l'AcMeABT n'inhibait pas in vitro les enzymes P-450 des microsomes du maïs. Cependant, un pré-traitement in vivo a l'AcMeABT diminuait significativement le niveau de cytochromes P-450 microsomaux de jeunes plantes étiolées de maïs. En outre, une dose subtoxique d'AcMeABT avail sur maïs in vivo un effet antagoniste faible contre une dose loxique d'EPTC. Ces données suggèrent l'impli-cation d'enzymes cytochrome P-450 dans le mode d'action de l'AcMeABT. Phytotoxizität, Antagonismus gegenüber EPTC und Wirkungen auf das Cytochrom P-450 von N-Acyl-N-alkyl-1-aminobenztriazolen Bei Versuchen mit 8 Amino-subslituierten Deri-vaten von 1-Aminobenzotriazol (ABT) war N-Acetyl-N-methyl-1-aminobenztriazol (AcMeABT) mit 5 kg ha?1 für Mais (Zea mays L.) ‘Pionier 3737’ phyloloxisch, für Deulsches Weidelgras (Lolium perenne L.) nicht. Das analoge N-Propionyl-N-methyl-1-aminobenztriazol war ähnlich wirksam wie AcBeABT, andere Deri-vale kaum oder gar nichte. AcMeABT war für Saat-Hafer (Avena sativa L.) und Sorghumhirse (Sorghum bicolor L.) erheblich phytotoxisch. Anders als ABT zeigte AcMeABT in vitro keine Hemmwirkung auf das Cytochrom P-450 in Mais-Mikrosomen, in vivo jedoch nahm der Cy-tochrom-P-450-Gehalt etiolierter Mais-keimpflanzen nach AcMeABT-Behandlungen signifikantab. Außerdem war eine subtoxische Dosis von AcMeABT schwach antagonistisch für eine für Mais toxische EPTC-Dosis. Diese Daten weisen auf die Beteiligung des Cytochrom-P-450-Enzyms an der Wirkungsweise des AcMeABT hin.  相似文献   

11.
Chitosan (β-1,4-linked glucosamine oligomer) derived from crab shells conferred a high protection of grapevine leaves against grey mould caused by Botrytis cinerea. Under controlled conditions, it was shown to be an efficient elicitor of some defense reactions in grapevine leaves and to inhibit directly the in vitro development of B. cinerea. Treatment of grapevine leaves by chitosan led to marked induction of lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL) and chitinase activities, three markers of plant defense responses. Dose-response curves show that maximum defense reactions (PAL and chitinase activities) and strong reduction of B. cinerea infection were achieved with 75–150 mg l−1 chitosan. However, greater concentrations of chitosan did not protect grapevine leaves with the same efficiency, but inhibited mycelial growth in vitro. Present results underlined the potency of chitosan in inducing some defense responses in grapevine leaves which in turn might improve resistance to grey mould.  相似文献   

12.
The endophytic fungus, Alternaria J46, was isolated from the stem of the medicinal plant, Platycladus orientalis. A suspension of Alternaria J46 mycelial segments and the culture filtrates of the fungi exhibited marked seed germination inhibition against the monocot wheat, large crabgrass, bromegrass, rice and barnyardgrass and weak inhibition against the dicot redroot pigweed and morning glory, but it was safe for use on soybean, rape, cucumber, tomato, lettuce and radish crops. It is possible to use J46 culture filtrates in order to prevent monocot weeds in dicot cropland. Three active metabolites were isolated from an extract of the fungus cultures and elucidated as 3‐acetyl‐5‐sec‐butyltetramic acid (1, tenuazonic acid), 3‐acetyl‐5‐iso‐butyltetramic acid (2, vivotoxin II) and cyclo‐(L‐leucyl‐L‐proline) (3). Among these three compounds, compounds 1 and 2 showed significant phytotoxic effects on the seed germination of large crabgrass, while compound 3 exhibited weak activity, and all were safe for lettuce at 100 μg mL?1. Accordingly, compounds 1 and 2 were the main active metabolites that were responsible for endophytic fungus Alternaria J46's strong seed germination inhibition against monocotyledons.  相似文献   

13.
14.
《EPPO Bulletin》2009,39(3):284-288

Specific scope

This standard describes the sampling and testing of soil in which propagation and certified stocks of the following crops are to be planted: PM 4/8 (Vitis spp.), PM 4/9 (Ribes spp.), PM 4/10 (Rubus spp.), PM 4/11 (Fragaria x ananassa), PM 4/16 (Humulus lupulus), PM 4/29 (Prunus avium, Prunus cerasus and their rootstocks), PM 4/30 (Prunus armeniaca, Prunus domestica, Prunus dulcis, Prunus persica, Prunus salicina and their rootstocks), PM 4/17 (Olea europea), PM 4/32 (Sambuscus spp.), PM 4/33 (Populus spp. and Salix spp.).

Specific approval and amendment

First approved in 2009‐09.
  相似文献   

15.
BACKGROUND: Triterpenic saponins from Sapindus mukorossi Gaertn. and Diploknema butyracea JF Gmelin were evaluated for in vitro antifungal activity against four phytopathogenic fungi. The study of the structure–antifungal activity relationships of protobassic acid saponins was widened by including semi‐synthetic derivatives. RESULTS: Diploknema butyracea saponins exhibited significant antifungal activity against three fungi (ED50 230–455 µg mL?1), whereas S. mukorossi saponin was effective against two fungi (ED50 181–407 µg mL?1). The n‐butanol extract after preparative HPLC separation provided two saponins from D. butyracea saponin mixture: 3‐O‐[β‐D ‐glucopyarnosyl‐β‐D ‐glucopyranosyl]‐16‐α‐hydroxyprotobassic acid‐28‐O‐[arabinopyranosyl‐glucopyranosyl‐xylopyranosyl]‐arabinopyranoside (MI‐I), and 3‐O‐β‐D ‐glucopyranosyl‐glucopyranosyl‐glucopyranosyl‐16‐α‐hydroxyprotobassic acid‐28‐O‐[arabinopyranosyl‐xylopyranosyl‐arabinopyranosyl]‐apiofuranoside (MI‐III). The single saponin extracted from S. mukorossi saponin mixture was identified as 3‐O‐[O‐acetyl‐β‐D ‐xylopyranosyl‐β‐D ‐arabinopyranosyl‐β‐D ‐rhamnopyranosyl] hederagenin‐28‐O[β‐D ‐glucopyranosyl‐β‐D ‐glucopyranosyl‐β‐D ‐rhamnopyranosyl] ester (SM‐I). Monodesmosides resulting from the partial degradation of hederagenin and hydroxyprotobassic acid bisdesmosides exhibited significant reduction in antifungal effect. Further removal of sugar moiety yielded complete loss in activity. The antifungal activity of the triterpenic saponins was associated with their aglycone moieties, and esterification of the hydroxyl group led to change in antifungal activity. CONCLUSION: Sapindus mukorossi saponin, which is effective against Rhizoctonia bataticola (Taub.) Briton Jones and Sclerotium rolfsii Sacc., can be exploited for the development of a natural fungicide. A sugar moiety is a prerequisite for the antifungal activity of triterpenic saponin. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The inheritance of sulfonylurea (SU) resistance in Monochoria vaginalis was investigated based on the bensulfuron‐methyl response phenotypes of F1 plants between SU‐resistant (R) and ‐susceptible (S) and segregation analysis in F2 progenies. Differences of SU resistance between SU‐R biotypes and F1 plants at the recommended field dose were also investigated by comparing shoot dry weight. All F1 plants survived the treatment with 25 g a.i. ha?1 bensulfuron‐methyl, one‐third of the recommended field dose, and showed similar responses to SU‐R plants. Conversely, all F1 plants died or showed extreme necrosis at 225 g a.i. ha?1, three times the recommended field dose, as SU‐S plants. F2 plants were classified as either R or S phenotype. Segregation for resistance to bensulfuron‐methyl in F2 families did not differ from the expected 3:1 (R:S) ratio at 25 g a.i. ha?1. At 225 g a.i. ha?1, the F2 families segregated in a 1:3 (R:S) ratio. These results suggest that SU resistance in M. vaginalis is controlled by a single nuclear allele with resistance being dominant at low dose and susceptibility dominant at high dose. Moreover, F1 plants died or were extremely injured after application of bensulfuron‐methyl at the recommended field dose, although SU‐R biotypes grew normally.  相似文献   

17.
Enzymatic defense responses and protection against Phytophthora nicotianae were studied in tobacco plants treated with chitosan of different molecular weights (MW) and degrees of acetylation (DA). The concentration and mode of chitosan application affected enzymatic induction in tobacco leaves. β-1,3-Glucanase (EC 3.2.1.6) activity required 10 times the polymer concentration relative to the oligochitosan mixture to induce the highest activity above control when treated by foliar spray, indicating the influence of molecular weight in this response. PAL (EC 4.3.1.5) and POD (EC 1.11.1.6) activities increased above control as a result of the influence of polymer degree of acetylation when treatments were applied by foliar spray. A higher DA favored PAL activity, whereas a lower DA induced higher POD activity. Using an in vitro bioassay, it was found that the three chitosan compounds caused a reduction of the infection index of P. nicotianae in tobacco plants that was dependent on elicitor concentrations. There was a significant relationship between the reduction of the infection index and an increase in PAL activity when chitosan was applied by foliar spray and by substrate drench to the plant rhizosphere. These results demonstrate the influence of chitosan physico–chemical properties in plant-induced resistance and the relevance of particular responses in plant protection against pathogens.  相似文献   

18.
BACKGROUND: Tropical plants are recognised sources of bioactive compounds that can be used for pest control. The objective of this study was to evaluate the biological activity of compounds present in Acmella oleracea (Asteracea) against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), which is the main pest of tomato crops in Latin America. The selectivity of these compounds to the predator Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) and to the pollinator Tetragonisca angustula (Latr.) (Hymenoptera: Apidae: Meliponinae) was also of interest. RESULTS: A bioassay screening with hexane and ethanol extracts from 23 plants was performed. The hexane extract of A. oleraceae was the most active of the extracts and was selected for further study. The following three alkamides were isolated from a hexane extract of the aerial parts of A. oleracea : spilanthol, (E)‐N‐isobutylundeca‐2‐en‐8,10‐diynamide and (R, E)‐N‐(2‐methylbutyl)undeca‐2‐en‐8,10‐diynamide. All of the isolated compounds showed insecticidal activity, with spilanthol being the most active (LD50 = 0.13 µg mg?1) against T. absoluta . The alkamides were selective to both beneficial species studied. CONCLUSION: The crude hexane extract of A. oleraceae showed high insecticidal activity and can be used to control T. absoluta in organic or conventional crops. Quantification of LD50 values of isolated compounds against T. absoluta showed that alkamides could serve as potent insecticides for T. absoluta control programmes. Spilanthol was the main alkamide active isolated. This alkamide is the most promising as it has the highest insecticidal activity and is selective to non‐target organisms. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The distribution of N-acetylglucosamine residues in the cell wall of the white-rot pathogenic fungus, Rigidoporus lignosus, was studied by using gold labelled wheatgerm agglutinin bound to ovomucoid-colloidal gold. Ultrastructural investigation of R. lignosus-infected root tissues of Hevea brasiliensis showed a modification of the fungal cell wall throughout the infection process. Gold particles were found to occur on both thick- and thin-walled hyphae of R. lignosus rhizomorphs at the root surface. Walls of hyphae that had penetrated the roots were only labelled when they were out of the host cell, suggesting that modification of chitin molecules may be related to the excretion of host cell wall degrading enzymes. Variation in the distribution of gold particles was observed over hyphal walls of both colonized phellem and xylem cells. The observation that N-acetylglucosamine residues were released in the host cell cytoplasm suggests that lytic enzymes alter the fungal cell walls. Released chitin oligosaccharides may play a role in the induction of the root's defence system against fungal attack.  相似文献   

20.
The knowledge of the biochemical mode of action of 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea (diflubenzuron) is presented, explaining the insecticidal effect. Like its structural analog, 1-(2,6-dichlorobenzyl)-3-(3,4-dichlorophenyl)urea (Du 19111), it inhibits chitin synthesis in the cuticle of larvae. Virtually complete inhibition was demonstrable 15 min after the application of diflubenzuron. Neither diflubenzuron nor Du 19111 has any effect upon chitinase activity either in vivo or in vitro. The insecticidal effect upon the cuticle, therefore, must be explained as an inhibition of chitin synthesis and not as an activation of chitin degradation. In contrast to the action of Du 19111, no accumulation of N-acetylglucosamine occurs upon treatment of larvae with diflubenzuron. Similarities and differences in the mode of action of both compounds are discussed, together with other effects reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号